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Abstract: This study introduces electro-optical (EO) sensors (TurbNet sensors) that utilize a remote
laser beacon (either coherent or incoherent) and an optical receiver with CCD camera and embedded
edge AI computer (Jetson Xavier Nx) for in situ evaluation of the path-averaged atmospheric turbu-
lence refractive index structure parameter C2

n at a high temporal rate. Evaluation of C2
n values was

performed using deep neural network (DNN)-based real-time processing of short-exposure laser-
beacon light intensity scintillation patterns (images) captured by a TurbNet sensor optical receiver.
Several pre-trained DNN models were loaded onto the AI computer and used for TurbNet sensor
performance evaluation in a set of atmospheric propagation inference trials under diverse turbulence
and meteorological conditions. DNN model training, validation, and testing were performed using
datasets comprised of a large number of instances of scintillation frames and corresponding reference
(“true”) C2

n values that were measured side-by-side with a commercial scintillometer (BLS 2000).
Generation of datasets and inference trials was performed at the University of Dayton’s (UD) 7-km at-
mospheric propagation test range. The results demonstrated a 70–90% correlation between C2

n values
obtained with the TurbNet sensors and those measured side-by-side with the scintillometer.

Keywords: atmospheric turbulence; deep neural network; electro-optics sensor; embedded edge AI
computing; NVIDIA Jetson Xavier Nx; real-time sensing

1. Introduction

Performance of atmospheric electro-optical (EO) systems, such as free-space laser
communication, remote sensing, active imaging, directed energy, and optical surveillance
can be significantly degraded by atmospheric effects (e.g., optical turbulence, refractivity
and absorption) [1–5]. Atmospheric turbulence causes the most detrimental impact on
laser-beam and image characteristics, especially in the deep turbulence conditions typical
for slant and/or extended-range propagation scenarios [6]. In contrast with refractivity
and absorption, atmospheric turbulence strength, as characterized by the refractive index
structure parameter C2

n, can strongly fluctuate during only a few seconds for a stationary
target [7,8] and by an order of magnitude for high-velocity targets when the line-of-site
rapidly sweeps across a large volume of turbulence.

To evaluate and mitigate the negative impact of atmospheric effects on the perfor-
mance of EO systems, it is necessary for these effects to be accurately characterized and
potentially forecast along the line-of-site to the target (including moving targets) at a tem-
poral resolution that is significantly higher (in situ) than in today’s available atmospheric
turbulence characterization EO sensors. In situ turbulence strength characterization can be
applied for real-time parameter adjustment in wavefront sensing, beam control and adap-
tive optics systems [5,9,10], for turbulence effects mitigation in atmospheric imaging [11],
and to reduce the bit error rate in laser communication systems [12–14]. Conventional
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electro-optics (EO) sensors currently used for C2
n measurements are based on estimation of

the statistical characteristics of the received optical field, e.g., the laser beam scintillation
index, focal spot wander and/or widening, image sharpness, etc. [6,15,16]. Time-averaging
is used to calculate these statistical characteristics based on sensing data collected over
a relatively long time (typically a few minutes), resulting in low temporal resolution for
C2

n evaluation.
A novel approach for path-integrated C2

n parameter estimation at high temporal reso-
lution was introduced in [8], where deep neural network (DNN)-based signal processing
models (Cnˆ2Net DNN models) were developed for C2

n value prediction based on the
processing of short-exposure laser beam intensity scintillation patterns. Preliminary results
that describe the hardware implementation of this approach using EO sensor configurations
(TurbNet sensors) with coherent and incoherent laser beacons and deep-machine-learning-
based signal processing have been reported in conference presentations [17,18]. In this
study we further extend these early results.

The application of deep-machine-learning approaches to turbulence strength charac-
terization is a rapidly growing research area. The major emphasis in recent publications in
this field has been on the development of DNN architectures for C2

n prediction by utilizing
pre-recorded or simulated input data obtained using meteorological sensors [19], numerical
weather prediction simulations [12], or wave-optics numerical simulations of turbulence-
degraded imagery [11,20]. The goal of the research presented here was to experimentally
demonstrate and compare the performance of DNN-based TurbNet sensors over a 7 km
distance for path-integrated C2

n parameter evaluation at a high temporal rate (approxi-
mately 1.5 s. per C2

n measurement) under a wide range of turbulence, environmental and
meteorological conditions.

This paper provides an in-depth description of TurbNet sensors, including the EO
hardware (Section 2), the pre-processing of scintillation images (Section 3), the generation
of datasets during the set of atmospheric measurement trials (Section 4), and DNN model
training, validation, and testing (Section 5). The performance evaluation of TurbNet sensors
in atmospheric inference experiments for C2

n value prediction using pre-trained DNN
models under diverse atmospheric turbulence and weather conditions is described in
Section 6. The results of TurbNet sensor development and evaluation are summarized
in Section 7.

2. TurbNet Sensor: Hardware Implementation and Experimental Setting

A TurbNet sensor is comprised of optical receiver modules, a laser beacon located at
opposite ends of an atmospheric propagation path, and DNN signal-processing hardware
(Figure 1). In the experiments described here, we used two laser-beacon types: coherent,
based on a single-mode laser source, and incoherent, utilizing a laser-emitting diode (LED).
The corresponding TurbNet sensor configurations are referred to here as TurbNet-LB and
TurbNet-LED for convenience.

The laser-beacon module of the TurbNet-LB sensor in Figure 2 (top right) is based on
a single-mode fiber-collimator with an aperture diameter of 50 mm emitting a collimated
Gaussian beam of 30 mm width at 1064 nm wavelength (about 5 mW power). The fiber
collimator was mounted on a gimbal platform used for angular alignment of the beacon
beam, directing it towards the optical receiver module located at the opposite side of the
7 km propagation path at the UD atmospheric test range, as illustrated in Figure 1. The
characteristic laser-beam footprint at the receiver plane was of the order of 60 cm.
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Figure 1. Schematic of the experimental setup used for TurbNet sensor development and evaluation. 
The laser/LED beacon modules and scintillometer transmitter were located inside an instrumental 
installation on the 40-m-high roof of the VA Medical Center (VAMC) in Dayton, Ohio. Optical re-
ceiver modules of both the TurbNet sensor and the scintillometer were installed directly behind the 
window inside the UD Intelligent Optics Laboratory (UD/IOL). Locations of EO modules are indi-
cated by arrows. Insert shows the propagation path altitude profile. This experimental setting is 
described in more detail in [8]. Both data collection and inference experiments were performed us-
ing side-by-side 2

nC  measurements with a commercial (Scintec BLS 2000 [21]) scintillometer serving 

as “ground truth” reference. The Jetson Xavier Nx AI computer was used for DNN-based 2
nC  value 

prediction. 

 
Figure 2. Receiver and laser-beacon modules of the TurbNet-LB (top row) and TurbNet-LED (bot-
tom row) sensors. 

Due to the impact of environmental factors (e.g., weather conditions, position of the 
sun and clouds) and atmospheric refractivity, the laser-beacon footprint slowly drifted 
with respect to the optical receiver during the experimental measurement trials. The char-
acteristic range of these drifts was of the order of the beam footprint size over a 60 to 90 
min timescale. To exclude the influence of laser-beam footprint centroid drift on measure-
ments, the laser beacon was frequently (approximately every 10–15 min) re-aligned. This 
circumstance precluded uninterrupted multi-hour data collection, which is desirable for 
the generation of large datasets of data instances (scintillation images and 2

nC  values) 

Figure 1. Schematic of the experimental setup used for TurbNet sensor development and evaluation.
The laser/LED beacon modules and scintillometer transmitter were located inside an instrumental
installation on the 40-m-high roof of the VA Medical Center (VAMC) in Dayton, Ohio. Optical receiver
modules of both the TurbNet sensor and the scintillometer were installed directly behind the window
inside the UD Intelligent Optics Laboratory (UD/IOL). Locations of EO modules are indicated by
arrows. Insert shows the propagation path altitude profile. This experimental setting is described in
more detail in [8]. Both data collection and inference experiments were performed using side-by-side
C2

n measurements with a commercial (Scintec BLS 2000 [21]) scintillometer serving as “ground truth”
reference. The Jetson Xavier Nx AI computer was used for DNN-based C2

n value prediction.
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Due to the impact of environmental factors (e.g., weather conditions, position of the
sun and clouds) and atmospheric refractivity, the laser-beacon footprint slowly drifted
with respect to the optical receiver during the experimental measurement trials. The
characteristic range of these drifts was of the order of the beam footprint size over a 60
to 90 min timescale. To exclude the influence of laser-beam footprint centroid drift on
measurements, the laser beacon was frequently (approximately every 10–15 min) re-aligned.
This circumstance precluded uninterrupted multi-hour data collection, which is desirable
for the generation of large datasets of data instances (scintillation images and C2

n values)
that are representative of a wide range of turbulence and weather conditions. These
datasets were used for DNN model training, validation, and testing, as described below
(see Sections 5 and 6).

Note that laser-beam divergence of the TurbNet-LB beacon can, in principle, be in-
tentionally increased to enlarge the laser-beam footprint at the optical receiver plane, thus
mitigating the impact of laser-beacon misalignment on measurements. Nevertheless, to
maintain high contrast in the scintillation images captured by the CCD camera, increas-
ing the divergence would require a corresponding increase in laser power, which was
undesirable for eye-safety reasons.

The laser-beam footprint drift issue was addressed in the TurbNet-LED sensor by
utilizing an LED (940 nm center wavelength, 1.0 W output power) as a light source. To
reduce the emitted light divergence, the LED was placed in the focal plane of a collimating
Fresnel lens with a 30 cm aperture and 30 cm focal length, as shown in Figure 2 (bottom
right). The laser-beam footprint diameter at the optical receiver plane for the LED-based
beacon was about 20 m. Significantly enlarging the beam footprint dramatically reduced
the impact of environmental factors, thus allowing continuous measurements over 24 h
without the need for laser-beacon re-alignment.

The optical receivers of both TurbNet sensors were comprised of a telescope lens (L1)
and imaging lens (L2) that were utilized for re-imaging the telescope pupil into a CCD
camera, as illustrated in Figure 1. A diaphragm (D1) in the focal plane of the telescope was
used to reduce the impact of ambient light.

The TurbNet-LB receiver module in Figure 2 (top left) was implemented based on
a refractive telescope of aperture diameter D = 11 cm and focal distance F = 77 cm. The
light-gathering power of the telescope was not sufficient to obtain high-contrast scintil-
lation images with the LED beacon. For this reason, in the TurbNet-LED sensor receiver
module in Figure 2 (bottom left), the refractive telescope was replaced by a reflective
Schmidt–Cassegrain type telescope having an approximately 2.8-times larger aperture
diameter (D = 30.48 cm, F = 3.048 m). Note that the LED-based sensor necessitated a more
expensive and bulkier receiver telescope in comparison with the receiver telescope of the
TurbNet-LB sensor.

Both TurbNet sensors utilized an identical CCD camera (12-bit Allied Vision sensor
with 808 × 608 pixel resolution) to capture short-exposure laser-light-intensity distributions
(scintillation frames). The camera integration time (exposure time) τCCD was adjusted
based on the received laser-light-intensity level: shorter (τCCD = 0.1 ms) for the TurbNet-
LB sensor with the coherent laser beacon, and significantly longer (τCCD = 3 ms) for the
TurbNet-LED sensor due to the relatively low received laser-light intensity.

A characteristic example of scintillation frames captured by the TurbNet sensors
under different atmospheric turbulence conditions is illustrated in Figure 3. From visual
assessment, the spatial structures of the scintillation images are noticeably different for
various turbulence strengths.
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Figure 3. Example of scintillation patterns acquired from the TurbNet-LB sensor (top row) and
TurbNet-LED sensor (bottom row) for weak-to-strong turbulence conditions, as characterized by
C2

n values measured by the BLS 2000 scintillometer. Scintillation images obtained with the TurbNet-
LED sensor have a characteristic black circular area due to laser-light obscuration by the Schmidt–
Cassegrain telescope secondary mirror.

3. Pre-Processing of Scintillation Images and Dataset Generation

Pre-processing of the input scintillation images for C2
n assestment by the TurbNet

sensors was performed using an embedded-edge AI computer (Jetson Xavier Nx) that
was synchronized with the scintillometer. The C2

n values sequentially measured by the
scintillometer were considered as “ground truth” for DNN model optimization, training,
testing, and performance evaluation in the inference experiments. The scintillometer was
pre-set to provide a single C2

n measurement per minute—the shortest measurement rate
available with the BLS 2000 instrument. During each ∆tscin = 60 s time interval between
sequential C2

n measurements, the CCD camera captured 300 frames, corresponding to a
frame rate of 5 frames/s.

The GStreamer multimedia framework was used to create a pipeline from the CCD
camera to the OpenCV application of the AI computer, as illustrated in Figure 4. The
pipeline was used to pre-set the camera frame rate and exposure time, convert the cam-
era raw video stream into AVI format, and downscale from a 10-bit to 8-bit grayscale
video stream. Image pre-processing steps were carried out for each frame before sav-
ing it to the dataset or inputting to the DNN models and included resizing frames to
128 × 128 pixel resolution, masking the region of interest (ROI), excluding low-contrast
frames, and performing intensity normalization on the maximum pixel value within each
frame. Corresponding to the receiver telescope aperture, the ROI was defined as an in-
scribed circle for the TurbNet-LB sensor and as two inscribed concentric circles for the
TurbNet-LED (see Figure 3). Pre-processed frames were tagged with the corresponding
“true” C2

n values to create a dataset composed of instances (normalized C2
n values and the

corresponding 300 scintillation frames) obtained during the data-collection trials. The same
media pipeline and preprocessing steps were applied to real-time inference experiments.
A description of software and driver versions used for implementation of the GStreamer
framework and AI processor can be found in [18].
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Figure 4. Flow-diagram visualizing the sequence of steps performed in scintillation frames pre-
processing in the TurbNet sensors.

4. Data Collection Experimental Trials

The experimental setup described in Section 2 (see Figure 1) was utilized for synchronous
recording of short-exposure scintillation images and corresponding “true” C2

n values under
diverse turbulence and environmental conditions using both the TurbNet-LB and TurbNet-
LED sensors. Summaries of the data collection atmospheric trials are presented in Tables 1
and 2, which include information about date and local time (EDT) of the measurement trials,
the number of recorded scintillation frames, and weather conditions. During these trials a
total of approximately 0.25·106 (TurbNet-LB dataset) and 1.3·106 (TurbNet-LED dataset) data
instances were acquired with the TurbNet-LB and TurbNet-LED sensors, respectively. Note
that the 300 scintillation frames captured between sequential scintillometer measurements
were associated with a single C2

n value (see Section 3).

Table 1. Log of experimental trials conducted with the TurbNet-LB sensor.

Date Start Time End Time # Frames Weather Condition

2021-07-14 16:03 20:19 37,800 Partly sunny
2021-07-15 12:48 13:35 9900 Sunny and passing clouds
2021-07-19 13:05 13:49 12,300 Sunny
2021-07-21 13:49 17:29 49,800 Sunny and broken clouds
2021-07-22 14:08 14:48 12,000 Sunny
2021-08-10 15:14 17:02 19,800 Partly sunny
2021-08-11 13:52 14:45 15,300 Sunny and broken clouds
2021-08-18 11:56 14:33 16,500 Partly sunny
2021-08-19 16:07 16:33 6900 Partly sunny
2021-08-23 10:27 15:40 48,600 Partly sunny
2021-08-24 13:58 16:18 44,700 Sunny and scattered clouds
2021-09-02 18:01 18:59 15,300 Sunny

Table 2. Log of experimental trials conducted with the TurbNet-LED sensor.

Date Start Time End Time # Frames Weather Condition

2021-11-09 14:28 23:59 171,600 Partly sunny, cloudy, and passing clouds

2021-11-10 00:00 23:59 432,000 Passing clouds, clear, fog, and
scattered clouds

2021-11-11 00:00 13:59 252,000 Passing clouds, clear, and partly sunny
2021-11-18 12:56 23:59 199,200 Partly sunny and passing clouds
2021-11-19 00:00 17:33 316,200 Clear, overcast, and sunny

Data collection with the TurbNet-LB sensor (Table 1) was performed during 12 rela-
tively short (lasting less than six hours) measurement trials conducted between 15 July 2021
and 2 September 2021. During each trial the laser beacon required frequent re-alignment
due to laser-beacon footprint drift (see Section 2), which made it difficult to pursue data
collection representing day and night turbulence variability. Enduring data-collection
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trials were conducted using the TurbNet-LED sensor, which did not require LED beacon
realignment and, thus, allowed continuous measurements over durations exceeding 24 h.
Correspondingly, with the TurbNet-LED sensor, a large dataset (5.2-times larger than with
the TurbNet-LB sensor) was obtained from only five measurement trials (lasting many
hours), as summarized in Table 2.

The distributions of scintillation frames obtained under different turbulence conditions
in the TurbNet datasets are illustrated in Figure 5 by histograms showing the number of
scintillation frames within the interval ∆C2

n = C2
n,0 = 1.0 · 10−15m−2/3 (histogram bin

width). Note that the first bin acounts for all scintillation frames aquired under weak
turbulence conditions corresponding to C2

n ≤ C2
n,0.
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It is apparent that the distribution of scintillation frames in the TurbNet-LB dataset in
Figure 5 (left) is more balanced (more uniform across C2

n values) than the corresponding
TurbNet-LED dataset (Figure 5 (right)), which shows that a predominantly large number of
frames were recorded under medium-strength turbulence (C2

n,0 ≤ C2
n ≤ 2C2

n,0). This was
not a surprise, as data collection with the TurbNet-LED sensor was performed continuously
for multiple days under wide-ranging turbulence conditions. This non-uniformity in the
distribution of instances in the TurbNet-LED dataset is not desirable for DNN model
training, as it leads to higher error in C2

n prediction for both low- and strong-turbulence
conditions due to the obvious bias in training data volume towards medium-strength
turbulence. In the case of the TurbNet-LED dataset containing a large number of instances,
the desired uniformity in data distribution (dataset balancing) was achieved by selective
partial removal of data instances belonging to the medium-strength turbulence range. The
modified (balanced) TurbNet-LED dataset, comprised of approximately an equal number
of instances (0.25·106) as in the TurbNet-LB dataset, was used for DNN model training as
described in Section 5. In general, removal of instances from a dataset is not the optimal
method to balance it. Nevertheless, from a practical viewpoint, it was convenient to
conduct a single “unsupervised” atmospheric data collection trial for 24 h and to further
“balance” this dataset by selective and random removal of data instances recorded under
medium-strength turbulence. An alternative was to conduct many additional “supervised”
atmospheric data-collection trials by selecting days and times when C2

n was either low
or high.

For data collection using the TurbNet-LB sensor, uniformity of data distribution across
the C2

n span was achieved without data removal by intentionally increasing the number of
“supervised” measurement trials performed under both low- and high-turbulence conditions.
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5. DNN Model Training, Validation, and Testing

Processing of scintillation images in the TurbNet sensors was performed using the
DNN (Cnˆ2Net) model architecture illustrated in Figure 6 [8]. A set of 16 pre-processed
consecutive scintillation frames from the CCD camera were used as the input for MFEB = 16
feature-extraction blocks (FEBs) with identical topology and trainable weights. The input
frames entered the DNN models with a sliding window shift of mshift = 8 frames. The
parameter mshift (1≤ mshift ≤16) controls the frequency of each frame reprocessing within
the 16-input frame sequence. This parameter (DNN hyper-parameter) was used for C2

n
prediction accuracy optimization and stabilization of the DNN training process. Input
frames were simultaneously processed by the FEBs using three convolutional and max-
pooling layers, followed by perceptron and fully connected layers. Additional details of the
Cnˆ2Net DNN model can be found in [8]. The Cnˆ2Net software code was used to generate
several (about 5–15) pretrained DNN models obtained using different realizations of the
initial random weights.
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Figure 6. Cnˆ2Net DNN model architecture used for C2
n prediction via processing of scintillation

images (see [8] for detailed description).

Both the TurbNet-LP and modified (balanced) TurbNet-LED datasets were subdivided
into three subsets: training (70%), validation (20%), and testing (10%). The DNN models
were trained with identical training and validation subsets at a learning rate of 0.0001 using
100 epochs and applying an early stop to the validation phase using 10% of the number
of epochs as the validation patience (number of epochs allowed to improve performance
without error decrease).

The mean squared error (MSE) in C2
n prediction was selected as the cost function

for performance evaluation of the DNN model-training process. The DNN models that
predicted C2

n with less than 0.1 MSE in the training process were selected to evaluate the
“never seen” data from the corresponding validation subsets. The three DNN models
that demonstrated the best performance for each TurbNet-LB and TurbNet-LED data
subsets were saved and loaded to the AI processor for real-time C2

n prediction in the
inference experiments. The outputs of these models were averaged to increase prediction
accuracy. A characteristic example of Cnˆ2Net model optimization is presented in Figure 7
by scatter plots that compare C2

n values predicted by a DNN model to the “ground truth”
measurements obtained for the training, validation, and testing subsets of the TurbNet-
LED dataset. As shown in Figure 7, the highest prediction errors were observed for data
instances corresponding to strong-turbulence conditions. Note that most of the prediction
errors were in the ±20% range for both TurbNet sensors.
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C2

n,0 = 1.0 · 10−15m−2/3). The corresponding results for DNN training, validation, and testing on the
TurbNet-LB dataset are similar and, therefore, are not presented.

6. Performance Evaluation of TurbNet Sensors in Real-time Inference Experiments

Performance evaluation (inference) trials of the TurbNet sensors were conducted using
the experimental setup shown in Figure 1. The sensors’ CCD cameras and AI computers
were synchronized with the scintillometer that provided “ground-truth” C2

n values at a
∆tscin = 60 second time rate. The AI computer received scintillation frames at a time
interval of ∆t f rame = 200 ms. Each scintillation frame was pre-processed and added to
the image buffer to create an input sequence containing 16 sequentially captured and pre-
processed scintillation frames. Each of the Nmodel pre-trained DNN models (Nmodel varied
from one to five) loaded into the AI computers received identical input sequences of 16 pre-
processed scintillation frames in sequential order. For a given scintillation frame input
sequence, prediction of a C2

n value by a single DNN model required about ∆tmodel = 100 ms.
The overall processing time ∆tDNN depended on the number of DNN models Mmodel
used—a parameter that is contigent on such factors as the characteristics of the training
dataset (e.g., volume, distribution of data instances, etc.), the DNN training approach,
the selection of DNN models for inference experiments, and a compromise between the
processing time ∆tDNN and C2

n prediction accuracy. In the atmospheric inference trials
conducted, the C2

n prediction rate was varied from approximately ∆tDNN = 1.4 s (Nmodel = 1)
to ∆tDNN 1.8 s (Nmodel = 5), which was from 33 to 43 times faster than the corresponding
C2

n sensing rate of the commercial scintillometer used to obtain “ground-truth” C2
n values.

The output data provided by the AI computer consisted of C2
n,j(tm) (j = 1, . . . , Nmodel)

predictions independently computed by the DNN models, their average (model-average)
value Ĉ2

n(tm), and the moving-average (also referred to as the rolling-average) prediction
C2

n(tm), which was obtained based on ten sequential model average Ĉ2
n(tm) outputs. Here

tm is the timestamp with time interval ∆tDNN .
TurbNet sensor performance was evaluated in a set of atmospheric interference trials

repeated several weeks (from one to 24) after the last day of the training dataset collection
trials to ensure that performance was not affected by environmental factors, including
diurnal and seasonal changes in the weather. Exemplary results of the atmospheric infer-
ence trials are presented in Figures 8 and 9, where the “true” C2

n values measured by the
scintillometer are compared to both model-average Ĉ2

n(tm) and moving-average C2
n(tm)

TurbNet sensor outputs for the entire range of turbulence conditions observed during the
inference trials, which lasted approximately two hours (Figure 8 top and Figure 9) and
24 h (Figure 8 bottom). Note that the last inference trial (see Figure 9) was performed
in the middle of a sunny, warm day in early May 2022, six months after recording the
corresponding DNN training dataset during several days of relatively cold weather in
November 2021 (see Table 2).
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Figure 8. Comparison of C2
n(tk) values measured using the BLS2000 scintillometer (red curve) with

the DNN model-average Ĉ2
n(tm) (green curve) and the moving-average C2

n(tm) (blue curve) obtained
with the TurbNet-LB (top) and TurbNet-LED (bottom) sensors during atmospheric inference trials
performed on 9 September 2021 and 9–10 December 2021 (C2

n,0 = 1.0 · 10−15m−2/3). The moving
average, computed using ten sequential model-average outputs, corresponding to 18 seconds for the
TurbNet-LB and 16 seconds for the TurbNet-LED sensor.
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Figure 9. “Measurement-vs.-prediction” dataplots (see Figure 8 caption) obtained during the atmo-
spheric inference trial with the TurbNet-LED sensor performed six months after collection of the
dataset used for DNN model training.

The plots in Figures 8 and 9 show a close match between the sequence of datapoints
[Ĉ2

n(tm) and C2
n(tm)] obtained with the TurbNet sensors and the corresponding measure-

ments [C2
n(tk)] obtained with the scintillometer. The corresponding values of the correlation

coefficient γ computed for the moving-average DNN output and scintillometer datapoints
were γ = 0.7 for the inference trial in Figure 8 (top), γ = 0.77 for the trials in Figure 8
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(bottom), and γ = 0.9 for the inference trial in Figure 9. Note that a similar span of the
correlation coefficient γ was observed in several more recent field experiments.

Because of the high C2
n sensing rate, the TurbNet sensors can be used to monitor

rapid changes in atmospheric turbulence dynamics. This unique capability is illustrated
in Figure 10. The measured vs. DNN-predicted C2

n time evolution plots in this figure
represent exemplary segments of the corresponding dependences in Figure 8. The span of
model-average Ĉ2

n(tm) data provided by the TurbNet-LB and TurbNet-LED sensors clearly
indicates the significant changes that occurred in turbulence strength during the 60 s time
interval between sequential C2

n measurements by the scintillometer. The DNN-predicted
Ĉ2

n values show about a two-fold change in Figure 10 (left) and nearly a five-fold change in
Figure 10 (right).
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received from the scintillometer [C2

n(tk)] and TurbNet sensors, respectively. The characteristic Fried
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(
0.423k2C2

nL
)−3/5 [22] corresponding to points A-D are: r0 = 5 cm and 8.2 cm

for A and B, and r0 = 1.6 cm and 4.2 cm for C and D. Here k = 2π/λ, λ = 940 nm (TurbNet-LED),
λ = 1064 nm (TurbNet-LB), L = 7 km.

The selected scintillation images shown in Figure 10 (bottom) correspond to the
highest and lowest Ĉ2

n values (points A through D in Figure 10 (top)). The scintillation
pattern spatial features in these images corroborate the TurbNet sensor measurements in
Figure 10 (top).

These results show that the TurbNet sensors enabled detection of changes in turbu-
lence strength at high temporal resolution (in real-time), which cannot be achieved with
conventional EO instruments based on collection and time-averaging of sensing data.

7. Summary and Concluding Remarks

In this paper, we discuss the implementation and field evaluation of novel EO sensors
(TurbNet sensors) that enable atmospheric turbulence strength characterization at high
temporal resolution via DNN-based processing of scintillation patterns originating from
a remote laser or LED beacon, using an embedded-edge AI computer (Jetson Xavier Nx).
The DNN models were developed and trained with datasets composed of a large number
of instances (scintillation images and their corresponding C2

n values) collected during
several atmospheric measurement trials over a 7 km propagation path. TurbNet sensor
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performance was validated in a set of atmospheric inference trials performed side-by-side
with a conventional scintillometer. The results of the inference trials demonstrated good
correspondence (correlation coefficient γ ranging from 0.7 to 0.9) between the scintillometer
measurements and turbulence strength assessment with the TurbNet sensors. It was shown
that, due to the high temporal rate (between 1.4 and 1.8 s per measurement, depending on
the number of DNN models used), the TurbNet sensors enabled real-time evaluation of
rapid changes in atmospheric turbulence dynamics.

For practical applications of EO sensors utilizing DNN-based signal processing for
C2

n evaluation, one can potentially avoid atmospheric field trials used for the collection
of DNN training datasets, which require side-by-side installation of both a DNN-based
EO sensor (TurbNet) and a reference scintillometer, as described in Section 3. The training
dataset can be generated using wave-optics numerical simulations that provide accurate
modeling of laser-beam propagation over any selected turbulence characterization site and,
thus, can be utilized for the generation of sufficiently large datasets (SIM datasets) for DNN
training. A DNN that is trained with this dataset can then be further used for real-time
processing of scintillation images and C2

n prediction at the selected site, as described in [8].
In the case of DNN training using a simulated dataset, a scintillometer for collection of
the training data in the field is not required. Furthermore, the EO sensor with a DNN
model trained using a SIM dataset could be utilized at other propagation sites simply by
computing a new SIM dataset specific for that site, with corresponding DNN retraining [8].

In conclusion, it should be noted that since DNN models of TurbNet sensors are
“trained” using a dataset (training dataset) obtained for specific system parameters and
propagation lengths, deviation from these pre-set conditions results in a corresponding
decline in C2

n prediction accuracy. As recently shown, this problem can be addressed via
scaling of the TurbNet sensor output C2

n values [23]. The required C2
n scaling factors can

be obtained separately for each system parameter or propagation length using either an
analytical expression derived from the classical Kolmogorov turbulence theory (theory-
based scaling), or through wave-optics numerical modeling and simulations (M&S-based
scaling) mimicking sensor operation. For the TurbNet sensor described in this paper, the
theory-based scaling factor α(L) that minimizes C2

n prediction error for the propagation
distance L is given by the simple expression α(L) = L0 ⁄ L, where L0 is the propagation length
(L0 = 7 km) used for generation of the training dataset. A similar scaling (adjustment) of the
EO sensor output signal to address changes in path length or wavelength is used in con-
ventional C2

n sensing systems. Typically, these adjustments are also based on either theory
(available analytical expressions), simulations, or experimental measurements performed
during sensor calibration [15,21].

Furthermore, conventional EO atmospheric turbulence sensing systems (e.g., scintil-
lometers [15], differential image motion monitor (DIMM) sensors [16], etc.) are based on
analytical expressions derived from Kolmogorov turbulence theory, and, for this reason,
are restrained by the theoretical assumptions and simplifications made in the derivations
of these formulas. This significantly limits the utilization of these sensing systems out-
side the provisions prescribed by the theory, which are specific for each sensor type, e.g.,
weak scintillations, quasi-monochromatic, spatially coherent laser-beacon beam, point-like
incoherent light source, etc. Violation of these prescribed requirements can lead to low
accuracy or even incorrect C2

n sensing data. This limitation of conventional C2
n sensors can

be overcome in the DNN-based sensing approach described here, which can be exploited
for various EO sensing modalities (e.g., turbulence strength characterization using a par-
tially coherent optical wave generated by the LED beacon of the TurbNet-LED sensor). The
only requirement is that instantaneously measured output sensing data in such systems
distinctly change in response to variations in atmospheric turbulence conditions.
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