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Abstract: Solar energy is widely used as a renewable and clean energy, and how to improve the
photovoltaic conversion efficiency of solar devices has always been a hot topic. Singlet fission (SF),
which converts one singlet exciton into two triplet excitons, is an exciton multiplication generation
process in organic semiconductors and is expected to be integrated into solar cells. Moreover, acenes
are currently one of the most widely used and popular SF materials. We review recent research on
novel acene materials and their developments in the field of solar cells, aiming to provide researchers
with ideas for applying the SF process to solar cells.
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1. Introduction

Today, we face serious environmental pollution problems, such as haze, greenhouse
effect, and soil erosion. As such, the development of green and sustainable energy, espe-
cially solar energy, is particularly important. There is a wide range of research and most
research in this area is conducted on solar energy. Solar cells can efficiently convert solar
energy into electrical energy, so how to construct solar devices to achieve high photovoltaic
conversion efficiency at low cost is a top priority in research on solar cells [1–8].

The theoretical maximum photovoltaic conversion efficiency of 33% for conventional
single-junction silicon solar cells, also known as the Shockley–Queisser (SQ) limit, was
calculated by Shockley and his assistant Queisser in 1961 [9]. Much effort has been made
in order to break this limit. The multiple exciton generation (MEG) process is regarded
as the most promising process to break through this limit, which refers to the absorption
of one photon to generate multiple electron–hole pairs [10]. The SF process is one of the
most efficient MEG processes. It absorbs one photon and generates two low-energy triplet
excitons, each of which can provide an electron for the photocurrent of the photovoltaic
device to achieve the effect of current multiplication. Theoretically, the external quantum
efficiency of the SF process can exceed 100%, and the photovoltaic conversion efficiency
can be increased from 33% of the SQ limit to 44% [11].

The SF process was first discovered in anthracene to explain the delayed luminescence
of anthracene [12], and then this phenomenon was found in crystalline tetracene, and
increased the fluorescence efficiency of tetracene to 38% [13]. Subsequently, scientists
observed the SF phenomenon in pentacene, hexacene, carotenoids, rubrene and some
other materials [14–17]. However, because the SF phenomenon could only occur in a
few particular materials, and the triplet quantum yield was low, research enthusiasm
gradually faded. It was not until 2006 that Nozik proposed that the SF phenomenon had
broad prospects for improving the photovoltaic conversion efficiency of solar cells, and the
enthusiasm for SF research was rekindled [11]. Subsequently, some new materials were
produced, such as acenes and their derivatives, peryleneimides. In 2010, Michl summarized
the previous work in the field of the SF process, and proposed a variety of practical
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chromophores with SF properties that could improve the photovolatic efficiency of solar
cells. They discovered a new type of high-efficiency SF material, 1,3-diphenylisobenzofuran,
which laid a foundation for the development of the SF process in the future [18]. In recent
years, more complex and efficient SF materials, especially some dimers and trimers, have
been prepared through rational design of covalently bound chromophore architectures
built with guidance from recent fundamental studies [19,20]. On the one hand, this is in
order to explore the mechanism of the SF process, such as the influence of excimers on the
SF process, the existence of a charge transfer (CT) state, and the formation and dissociation
process of triplet pairs—these issues are still controversial [20–23]. On the other hand, SF
materials with a high triplet yield and a long triplet lifetime are prepared for application in
photovoltaic devices to enhance their external quantum efficiency [24]. This paper focuses
on acene and its derivatives, discusses some new progress in recent years, and summarizes
some achievements that have been applied to solar cells.

2. Principles and Research Methods of SF
2.1. The SF Process

The SF process: An organic chromophore absorbs one photon and transitions to the
singlet excited state, this singlet excited state molecule interacts with another adjacent
ground state chromophore and transfers partial energy to the ground state chromophore,
the two form an coupled triplet state pair 1(TT), and the subsequent separation of 1(TT)
produces two free triplet excited states. The simplest description of the SF process that
provides insight into the process is shown in Equation (1).

S0 + S1

k−2
�
k2

1(TT)
k−1
�
k1

T1 + T1 (1)

In Equation (1), the interconversion of 1(TT) with the initial state S0 + S1 is described
by the rate constants k−2 and k2, and the dissociation of the initially formed triplet pair
1(TT) and T1–T1 annihilation are, respectively, described by k−1 and k1. In addition, the
ratio ε = k2/k−1 is often referred to the branching ratio because it reflects the probability
of 1(TT) returning to S1. Over time, the SF mechanism has become more complex and
controversial, the SF process cannot be described by these rate constants [25].

The mechanism of the SF process has been hotly debated in recent years, and the key
to studying it is to understand the process of transition from the singlet exciton state to
the intermediate state. Here, we touch upon the mechanism briefly to provide the reader
with a background in which to discuss in depth [21,22,25–27]. The simplest description
is the one-step direct mechanism (Figure 1a) [25], where the fission rate is determined
by direct coupling between S0S1 and 1(TT). Then, there is the mediated mechanism (or
the indirect mechanism), which uses a higher-order perturbation theory, the fission rate
is determined by the mixing of S0S1 and 1(TT) with the CT state, which could be real or
virtual in nature [25,27]. Specifically, if the off-diagonal diabatic coupling is significant and
the energy difference between S1/1(TT) and the CT state is small enough, the transition
is mediated by the “virtual“ CT state (Figure 1b). When the magnitude of the electronic
coupling strength is weak, and there are too high-energy gaps for the CT states, the CT-
mediated mechanism becomes negligible and the direct mechanism is dominant [28]. In a
different scenario, the CT state may participate directly in the 1(TT) formation by means of
“real” populated intermediates in a two-step mechanism (Figure 1c). However, it is rarely
observed and detrimental with the triplet quantum yield [29–31].
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2.2. Condition for SF

The basic requirements of SF materials include strong and broad absorption in the
visible light band, a fast fission rate, a high triplet yield and a long triplet lifetime, excellent
stability and low cost. At present, two main factors are considered in the development of
SF materials: energy matching and coupling.

SF is an ultrafast process, and many other physical processes will compete with it, such
as intersystem crossing (ISC) and internal conversion (IC). Therefore, in thermodynamics,
in order to ensure that the SF process occupies the dominant position, a certain energy
matching relationship needs to be satisfied, and the whole process is preferably exothermic
or isothermal. At the same time, the singlet exciton energy is not lower than twice the
triplet exciton energy, E(S1) ≥ 2E(T1). Even if this condition is met, the rate of the SF
process is not necessarily fast, because triplets may annihilate themselves to form singlets,
triplets or quintets. Therefore, it is necessary to satisfy the energy relationship E(T2) ≥
2E(T1), which can slow the process: triplet excitons annihilate each other to form S0 + T2
(T2 is the next higher-level triplet state) [25]. This is in order to reduce the influence of
the T1–T1 annihilation process on SF, which can reduce the occurrence of the annihilation
process. However, it is not only exothermic systems that can carry out the SF process, the
tetracene system is a classic endothermic system. Some studies have found a temperature
dependence of the SF process of tetracene (Figure 2) [32]. At 10–140 K, the decay of singlet
excitons is accompanied by the increase in triplet excitons, and SF does not change with
temperature. This research overturns the statement that the SF process of tetracene is
involved in thermal activation. It was also gradually realized that the SF process can also
occur in slow endothermic processes in the absence of other competing decay pathways,
and additional heat collected by the endothermic SF process can also be used to improve
solar cell performance [33–35]. A mechanistic understanding of the endothermic SF process
has changed significantly from earliest studies. The energy of T1 + T1, 1(TT) is determined
by experiments [36], and it was found that 1(TT) is more stable than T1 + T1, so the initial
conditions for the occurrence of the SF process are always allowed, and the endothermic
process is mainly concentrated in the second stage 1(TT)→ T1 + T1, it is related to the energy
transfer of the triplet state or molecular packing [34,37]. The studies on the properties
of 1(TT), including dynamic equilibrium with S1 [38], ultrafast formation in a strongly
exothermic system [39], and theoretical re-evaluations of triplet-pair interactions [21,40],
have highlighted the current debate about the nature of 1(TT).
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If energy matching is a prerequisite for the occurrence of the SF process, the coupling
between chromophores is the key factor for the occurrence of the effective SF process.
Taking tetracene as an example, it does not meet the strict energy conditions. The SF
process is an endothermic process, but its triplet quantum yield in the crystalline state is
very high, we believe that this is closely related to the coupling between chromophores in
the crystalline state. The tetracene polycrystalline film obtained by thermal evaporation
has a faster SF rate than the tetracene crystal grown by solution, because the thermal
evaporation of the tetracene polycrystalline film has high order and fewer defects [41].
There are two crystal structures of 1,3-diphenylisobenzofuran, and only the polycrystalline
film with αmorphology exhibits an efficient SF process, resulting in a triplet exciton yield of
200% at 77 K and 140% at room temperature. Because two molecular interactions between
the molecular pillars of the slip stacking layers are different in the crystal form, resulting in
a much smaller triplet quantum yield in the β morphology crystal [42]. The substituents of
the diphenyl-substituted tetracene limit the growth of crystals, and molecules are arranged
in a disordered manner, resulting in the formation of noncrystalline amorphous films,
but it exhibits surprisingly high SF yields in a few hundred picoseconds, and it produces
triplet quantum yields as high as 122% [43]. In other words, different states of molecules
have different molecular orientations and intermolecular interactions, resulting in different
efficiencies of the SF process. Through theoretical calculations and experiments, it was
concluded that the coupling between chromophores cannot be too weak or too strong.
If the coupling is too weak, it will be unfavorable for the SF process to compete with
other physical processes, and 1(TT) cannot be effectively formed, which causes exciton-
exciton annihilation and reduces the SF efficiency. Physical contacts between molecules
in crystals or aggregates, and covalent linkages in dimers or polymers, are all beneficial
for the coupling between chromophores, which provides theoretical support for designing
more efficient SF materials and improving the SF process rate.

2.3. Experimental Method

Various techniques have been applied in detection of the SF process due to the fast
development of laser technology. This section will focus on two commonly used experi-
mental methods, transient absorption (TA) spectra and time-resolved fluorescence spectra,
due to their advantages in measuring dynamics of materials.

Transient absorption spectra. The SF process generally occurs on the time scale of
ultrafast, so that time-resolved TA spectra is essential to study its physical process [44–49].
Depending on the time scale, TA spectra is generally divided into fs TA and ns TA spectra.
The TA spectra is based on the pump–probe technique and involves two beams of light.
For fs TA spectra, usually femtosecond pulse passes through a nonlinear medium to
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generate white light continuum as probe pulse, and the other beam passes through an
optical parametric amplifier to generate wavelength-tunable pump pulse. A fraction of
the molecules is excited by a pump pulse, then a probe pulse is sent through the sample
by a mechanical delay. In addition to the pulse width of the pump pulse is different from
fs TA spectra, the probe pulse of ns TA spectra is usually a light source produced by an
inert gas, which can generate a pulse of the order of ms and has a very wide spectral range.
In addition, the time delay in ns TA spectra is controlled by electrical delay, which is also
different from fs TA spectra. A difference absorption spectrum is calculated at different
time delays, the absorption spectrum of the excited sample minus the absorption spectrum
of the sample in the ground state (∆A) [50]. The spectrum ∆A contains contribution from
the ground-state bleach (GSB), stimulated emission (SE) and excited-state absorption (ESA).
When the sample is excited, different components, such as singlet excitons, triplet excitons,
and coupled triplet pairs, will correspond to different absorption peaks. Analyzing the TA
data at different delay times can obtain the information on the growth or decay of different
components and information such as the rate of the SF process. If the absorption peaks are
close and overlap, the dynamics of different components can also be understood by means
of global target analysis, and singular value decomposition.

Time-resolved fluorescence spectra. Time-resolved fluorescence spectra focus on fluo-
rescence, unlike TA spectra which tracks both the bright and dark state species created upon
excitation. It detects the change in fluorescence over time after excitation, which reflects
more information about the dynamics of the lowest excited state [51–53]. Furthermore, dif-
ferent methods are selected depends on the chosen time window for lifetime measurement.
Time-correlated single-photon counting (TCSPC) is a unique time-resolved fluorescence
measurement method that collects fluorescence by a single photon and measures the ex-
cited state fluorescence lifetime on a time scale of nanoseconds to microseconds [49,52,54].
Fluorescence up-conversion (FUC) technology measures fluorescence lifetime on ultra-
fast time scales from femtoseconds to nanoseconds. Some electronic processes, such as
energy transfer, excitation delocalization, all take place in this time scale, so FUC is very
suitable to understand their dynamics [49,55]. For an exponentially fitted decay profile,
the fluorescence lifetime is the time it takes for 63%(1-1/e) of the population of the excited
electrons to return to the ground state. Lifetime measurement can help us better understand
the energy transfer, triplet state generation process and other information that occur in
organic molecules. To study general SF process comprehensively, both TA spectra and
time-resolved fluorescence spectra are needed most of the time.

3. SF Materials

In order to achieve high photovoltaic conversion efficiency of photovoltaic devices, it
is necessary to select and study suitable SF materials. At present, there are many materials
which can occur in the SF process, but scientists still lack an understanding of the factors
which promote the SF process. There are a few SF materials whose triplet exciton yield can
reach 200%, such as tetracene [56], pentacene [57], hexacene [58,59], 1,3-diphenylisobenz-
ofuran [42,60]. Some studies found that the SF efficiency of single-crystal pentacene was
higher than that of its vacuum deposition film, because the film mainly existed in the form
of excimer after being excited, and the SF yield was only 2% [61–63]. In addition, the SF
process was also found in covalently linked dimer of tetracene, and the efficiency was lower
than that of tetracene crystal [64–66]. Molecular structure, intermolecular arrangement and
crystal packing can all affect the SF process [67,68]. This section introduces some recent
studied acene monomers and their oligomeric, and their SF process has been found in
systems such as noncrystalline solid film, nanoparticle and solution [43,69,70]. Tables 1
and 2 summarize the time scales of SF in monomers and dimers.

3.1. Monomer

Tetracene. Linear acenes are the most widely studied and typical SF materials. A large
number of theoretical studies and experimental data on tetracene, pentacene and their
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derivatives show that they can perform the SF process quickly and efficiently. The singlet
excited state energy of tetracene is approximately equal to twice the triplet excited state
energy, its SF process is a slightly endothermic process and occurs in the range of 10–100
ps. Some studies believe that the singlet exciton state S1 and the multi-exciton intermediate
state ME are coherently superimposed to form a higher-energy ME state [56]. The entropy
increase in the tetracene crystal acts as the driving force to decay the S1↔ME superposition
state into two triplet excitons, resulting in a higher SF rate and a temperature-independent
fission rate in the tetracene crystal. However, through experiments, Wilson found that in
the temperature range of 10–270 K, the initial decay process of tetracene singlet excitons
(within 200 ps) had no temperature dependence, and its SF process did not change with
temperature, but the process after the initial decay (over 200 ps) showed a clear temperature
dependence [32].

Tetracene derivatives. For two tetracene derivatives with PEG groups of different
lengths (PhTc-PEG-1 with a short PEG chain and PhTc-PEG-2 with a long PEG chain), the
SF process can be conducted in these two nanoparticles via a real charge-transfer (CT)
intermediate state. However, the formation of the real CT state is not conducive to the
occurrence of the SF process, resulting in relatively low SF yields for two nanoparticles
(60.6% and 53.3% for PhTc-PEG-1 and PhTc-PEG-2). The PhTc-PEG-2 nanoparticle has
a lower SF yield because of the weaker interaction, so that the long PEG chain should
be avoided when modifying SF chromophore [71]. In addition to modifying the chain
length of the chromophore, the introduction of different functional groups also has an
effect on the SF rate, for example, the hydrophilic effect of carboxyl groups. Compared
with PhTc, PhTc-COOH molecules are more parallel and tighter in the nanoparticles, which
enables stronger coupling between adjacent tetracene, enabling faster and more efficient SF
process [72].

Pentacene. Different from tetracene, pentacene is a ‘star’ molecule in electronics, and
its SF process is an exothermic system. The previous studies are less about pentacene,
because the pentacene molecule basically does not glow, and the internal process is too fast.
It was not until the appearance of pump–probe technology that scientists slowly began to
understand and clearly observe the SF process of pentacene. From the partial Jablonski
diagram of pentacene (Figure 3), it can be seen that its lowest singlet excited state energy
is 1.83 eV, which is approximately 100 meV higher than the twice energy of the triplet
excited state (0.86 eV) [44,73]. Moreover, because of the strong intermolecular coupling of
pentacene crystal, pentacene’s SF process occurs in ultrafast time scale of 80–110 fs and it is
a unidirectional and exothermic process. From then on, the research on pentacene is not
limited to crystals, but also amorphous film [69], solution [52,57], its related derivatives [74].
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Pentacene derivatives. Due to the unsubstituted acene molecules have relatively
low solubility and poor photostability, the acene derivatives substituted with different
functional groups have been designed. The conjugated alkyl chains are introduced at the 6,
13 positions of pentacene to obtain a pentacene modified by triisopropylsilylethynyl, which
improves the solubility and air stability of the pentacene molecule [74]. The SF mechanism
of TIPSpentacene in concentrated solution is dominated by diffusive encounters, and has a
long free triplet state lifetime (6.5 µs) and a high triplet yield (~200%). The above results
indicate that TTA is suppressed in concentrated solutions [57]. However, in dilute solution,
due to the too large intermolecular distance, the diffusing molecules cannot combine
during the lifetime, and the SF process cannot be efficiently generated. Walker found in
concentrated solutions of TIPSpentacene that a transient bound excimer intermediate was
formed by the collision of one photoexcited and one ground-state TIPS–pentacene molecule,
and the intermediate broke up when the two triplets separated to each TIPS–pentacene
molecule. Dvorak did not find the existence of excimers in the experiment, which was
in sharp contrast to the findings of Walker [52]. Dvorak believed that the SF process
occurred mainly through diffusive encounters, and denied the statement of Grieco [75]
that the SF process did not occur through diffusive encounters. In addition, Grieco also
found a nonlinear relationship between SF rate and concentration, which was attributed to
molecular crowding effects.

For the TIPSpentacene film, many experiments have shown that its singlet excited
state S1 and ME state coexist. The S1 and ME excitons undergo the decoupling of ME from
S1, and evolve into the state of ME’ state over the course of ~200 fs. Subsequently, the ME’
state decays to the T1 state with a time constant of ~1.5 ps [76]. Herz added sp2 nitrogen
atoms to the backbone of TIPS–pentacene, which led to the evolution of S1 and ME to
ME’ state over the course of 110 fs and doubled the rate of the SF process (Figure 4). This
result underlines the potential of aza derivatives to optimize efficiencies by eliminating
loss channels. Moreover, comparing with TIPS–pentacene, Diaza–TIPS–pentacene has a
stronger T1→ Tn signal in the near-infrared spectrum, which may lead to the higher triplet
quantum yield of Diaza–TIPS–pentacene [77].
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Table 1. Summary of time scales of the SF process in monomers.

Monomer Structure Name
S1

Decay
Time

Intermediate
State

Lifetime
TT

Lifetime
T1

Lifetime SF Yield Reference

Tetracene
and its

derivatives
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Diaza–
TIPS–

pentacene
110 fs 1.0 ps

(S1/ME) — >1 ns — [77]

3.2. Dimers

Acene dimers are most common dimer that perform the SF process. Two chromophores
that can generate the SF process are connected by covalent bonds to form dimers, such as
tetracene dimers, pentacene dimers [78–80]. Most chromophores typically exist in solid-
state crystals; however, when these molecules are covalently coupled, dimers can serve as
model systems to study fundamental photophysical dynamics. This part describes several
factors that affect SF rates and triplet yields in dimers, such as through-space coupling,
through-bond coupling and connecting bridge. Some of the material structures mentioned
are shown in Figure 5.
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Through-space coupling. The main factor affecting the SF rate and the triplet yield of
the dimer is the electronic coupling of the two chromophores, which is not only affected by
through-bond coupling between the chromophores, but also has a close relationship with
their relative positions [81]. Korovina synthesized two tetracene dimers: BET-X with a large
overlap of tetracene π orbitals, and BET-B with less overlap between the tetracene π orbitals
because of twisted arrangement. The former has a faster intramolecular singlet fission
(iSF) rate than the latter, which shows the dominance of the spatial coupling [64]. Sumitha
obtained pentacene dimers (Figure 5 1–3) of three different configurations with slip-stacked
(2,2′ BP, Jtype), oblique (2,6′ BP), facial (6,6′ BP, H-type) by covalently linking pentacene
with an acetylene bridge at different positions and their fs TA spectra (Figure 6) [79].
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In the 2,2′ BP with slip-stacked configuration, through-space coupling dominates, and
the iSF efficiency reaches 182%. In the 2,6′ BP with oblique configuration, the degree of
chromophore overlap becomes smaller, the through-space coupling becomes weaker, and
the iSF efficiency dropped to 97%. At 6,6′ BP, facial configuration, strong electronic coupling
leads to the formation of excimers. These excimers prevent the formation of correlated
triplet pairs, which in turn hinders the efficient iSF process.

Photonics 2022, 9, x FOR PEER REVIEW 10 of 23 
 

 

and the iSF efficiency reaches 182%. In the 2,6′ BP with oblique configuration, the degree 
of chromophore overlap becomes smaller, the through-space coupling becomes weaker, 
and the iSF efficiency dropped to 97%. At 6,6′ BP, facial configuration, strong electronic 
coupling leads to the formation of excimers. These excimers prevent the formation of cor-
related triplet pairs, which in turn hinders the efficient iSF process. 

 
Figure 6. Femtosecond transient absorption spectra of (a) 2,2′ BP, (b) 2,6′ BP, and (c) 6,6′ BP in tolu-
ene obtained upon excitation at different delay times. Reprinted with permission from Ref. [79]. 
Copyright 2022, American Chemical Society. 

Table 2. Summary of time scales of the SF process in dimers. 

Dimers Name Solvent SF Time Scale TT Lifetime Triplet 
Yield 

Refer-
ences 

Tetracene 
dimers 

BET-B THF 2 ± 0.5 ps — 154 ± 10% (film) 
[64] 

BET-X toluene <180 fs — — 

Pentacene 
dimers 

2,2′ BP toluene 13.45 ± 0.5 ps 495.41 ± 15 ps 182% 
[79] 2,6′ BP toluene 5.85 ± 0.25 ps 17.29 ± 0.8 ps 97% 

6,6′ BP toluene 2.26 ± 0.25 ps — — 

m-2 
benzonitrile 63.0 ± 6.3 ps 2.2 ± 0.1 ns 156 ± 5% 

[82] 

THF 70.3 ± 7.0 ps 2.5 ± 1.0 ns 132 ± 2% 
toluene 90.2 ± 9.0 ps 2.6 ± 0.1 ns 125 ± 5% 

o-2 
benzonitrile 0.5 ± 0.2 ps 12.0 ± 0.3 ps — 

toluene — — — 

p-2 
benzonitrile 2.7 ± 1.0 ps 17.3 ± 1.3 ps 130 ± 10% 

toluene — — — 
BP0 chloroform 760 fs 0.45 ns ~200% 

[78] BP1 chloroform 20 ps 16.5 ns ~200% 
BP2 chloroform 220 ps 270 ns ~200% 

FL-PD toluene 7.14 ± 0.3 ps 186.67 ± 4.5 ps 197.8 ± 5% 
[83] MBP-PD toluene — ~147.05 ns 16 ± 2% 

DPA-PD toluene 10.71 ± 0.5 ps 1.09 ± 0.05 ns 185.12 ± 6% 

Heterodi-
mers 

PA chloroform (S1 lifetime = 11.5 ns) — — 
[84] PT chloroform 0.83 ps 2.4 ns — 

PH chloroform 1.2 ps 0.21 ns — 

Figure 6. Femtosecond transient absorption spectra of (a) 2,2′ BP, (b) 2,6′ BP, and (c) 6,6′ BP in
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Table 2. Summary of time scales of the SF process in dimers.

Dimers Name Solvent SF Time Scale TT Lifetime Triplet
Yield References

Tetracene
dimers

BET-B THF 2 ± 0.5 ps — 154 ± 10% (film)
[64]BET-X toluene <180 fs — —

Pentacene
dimers

2,2′ BP toluene 13.45 ± 0.5 ps 495.41 ± 15 ps 182%
[79]2,6′ BP toluene 5.85 ± 0.25 ps 17.29 ± 0.8 ps 97%

6,6′ BP toluene 2.26 ± 0.25 ps — —

m-2
benzonitrile 63.0 ± 6.3 ps 2.2 ± 0.1 ns 156 ± 5%

[82]

THF 70.3 ± 7.0 ps 2.5 ± 1.0 ns 132 ± 2%
toluene 90.2 ± 9.0 ps 2.6 ± 0.1 ns 125 ± 5%

o-2
benzonitrile 0.5 ± 0.2 ps 12.0 ± 0.3 ps —

toluene — — —

p-2 benzonitrile 2.7 ± 1.0 ps 17.3 ± 1.3 ps 130 ± 10%
toluene — — —

BP0 chloroform 760 fs 0.45 ns ~200%
[78]BP1 chloroform 20 ps 16.5 ns ~200%

BP2 chloroform 220 ps 270 ns ~200%

FL-PD toluene 7.14 ± 0.3 ps 186.67 ± 4.5 ps 197.8 ± 5%
[83]MBP-PD toluene — ~147.05 ns 16 ± 2%

DPA-PD toluene 10.71 ± 0.5 ps 1.09 ± 0.05 ns 185.12 ± 6%

Heterodimers
PA chloroform (S1 lifetime = 11.5 ns) — —

[84]PT chloroform 0.83 ps 2.4 ns —
PH chloroform 1.2 ps 0.21 ns —
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Through-bond coupling. Pentacene dimers are linked via a phenylene spacer in
an ortho-, meta- and para-arrangement (Figure 5 4–6) exhibit different iSF efficiencies in
solution. In the ortho-isomer, through-space coupling should dominate due to the unique
spatial proximity of the pentacenes. On the contrary, the electronic coupling element, which
governs SF and TTA process, is mediated through-bond in the meta- and para-isomers, and
the meta-isomer reaches a triplet quantum yield as high as 156 ± 5% [82].

The above materials adjust the coupling strength between chromophores through
the substitution of molecular spacers at different positions, so as to achieve the purpose
of regulating SF efficiency. In addition, it can also be adjusted by changing the length
of molecular spacer. The dimer is obtained by para-linking of triisopropylsilylethynyl-
modified pentacene through phenylene (Figure 5 13), and the length of the spacer is
variable [78]. This linking makes the through-bond coupling between two chromophores
dominant and avoids the influence of spatial coupling. With the increase in spacer, it
was found that the lifetime of triplet pair is extended from 0.5 to 270 ns, because the
distance between the two triplet chromophores in the molecule increases, the coupling
effect weakens, and the rate of TTA decreases.

The planarity and length of the bridges in the pentacene dimer also affect the efficiency
of the SF process. Paul synthesized different pentacene dimers: FL–PD, DPA–PD (which
had planar structures), and MBP-PD (which possessed a twisted bridge) (Figure 5 7–9) [83].
Through their femtosecond TA spectra (Figure 7a–c), it was found that FL–PD have a faster
iSF rate (187 ps) and exhibit higher efficiency (198%), compared to MBP–PD which shows
a low efficiency of ∼16%. However, the DPA–PD with a longer bridge length shows a
slower iSF process (1.09 ns), compared to FL–PD, and the efficiency reaches 185%. From
this, it can be inferred that the flatness of the pentacene dimer bridge should be maintained
and the distorted structure should be avoided when designing efficient SF materials for
photovoltaic devices.

Photonics 2022, 9, x FOR PEER REVIEW 11 of 23 
 

 

Through-bond coupling. Pentacene dimers are linked via a phenylene spacer in an 
ortho-, meta- and para-arrangement (Figure 5 4–6) exhibit different iSF efficiencies in so-
lution. In the ortho-isomer, through-space coupling should dominate due to the unique 
spatial proximity of the pentacenes. On the contrary, the electronic coupling element, 
which governs SF and TTA process, is mediated through-bond in the meta- and para-
isomers, and the meta-isomer reaches a triplet quantum yield as high as 156 ± 5% [82]. 

The above materials adjust the coupling strength between chromophores through the 
substitution of molecular spacers at different positions, so as to achieve the purpose of 
regulating SF efficiency. In addition, it can also be adjusted by changing the length of mo-
lecular spacer. The dimer is obtained by para-linking of triisopropylsilylethynyl-modified 
pentacene through phenylene (Figure 513), and the length of the spacer is variable[78]. 

This linking makes the through-bond coupling between two chromophores dominant and 
avoids the influence of spatial coupling. With the increase in spacer, it was found that the 
lifetime of triplet pair is extended from 0.5 to 270 ns, because the distance between the two 
triplet chromophores in the molecule increases, the coupling effect weakens, and the rate 
of TTA decreases. 

The planarity and length of the bridges in the pentacene dimer also affect the effi-
ciency of the SF process. Paul synthesized different pentacene dimers: FL−PD, DPA−PD 
(which had planar structures), and MBP-PD (which possessed a twisted bridge) (Figure 5 
7–9) [83]. Through their femtosecond TA spectra (Figure 7a–c), it was found that FL−PD 
have a faster iSF rate (187 ps) and exhibit higher efficiency (198%), compared to MBP−PD 
which shows a low efficiency of ∼16%. However, the DPA−PD with a longer bridge length 
shows a slower iSF process (1.09 ns), compared to FL−PD, and the efficiency reaches 185%. 
From this, it can be inferred that the flatness of the pentacene dimer bridge should be 
maintained and the distorted structure should be avoided when designing efficient SF 
materials for photovoltaic devices. 

 
Figure 7. Femtosecond transient absorption spectra of (a) FL-PD, (b) MBP−PD, and (c) DPA−PD in 
toluene obtained upon excitation at 600 nm. The delay times are given and the arrows show the 
spectral evolution. Kinetic profiles of (d) FL−PD, (e) MBP−PD, and (f) DPA−PD probed at the max-
imum of singlet, triplet state absorption, and ground-state bleach are given. Reprinted with permis-
sion from Ref. [83]. Copyright 2021, American Chemical Society. 

Chromophore influence. The dimer formed by the same type of chromophore can 
basically meet the requirements of energy matching, and its SF efficiency mainly depends 
on the electronic coupling between the chromophores. However, if it is a heterodimer 

Figure 7. Femtosecond transient absorption spectra of (a) FL-PD, (b) MBP–PD, and (c) DPA–PD
in toluene obtained upon excitation at 600 nm. The delay times are given and the arrows show
the spectral evolution. Kinetic profiles of (d) FL–PD, (e) MBP–PD, and (f) DPA–PD probed at the
maximum of singlet, triplet state absorption, and ground-state bleach are given. Reprinted with
permission from Ref. [83]. Copyright 2021, American Chemical Society.
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Chromophore influence. The dimer formed by the same type of chromophore can
basically meet the requirements of energy matching, and its SF efficiency mainly depends on
the electronic coupling between the chromophores. However, if it is a heterodimer formed
by different types of chromophores, whether the SF process can occur, the energy matching
relationship must first be considered. The SF process is different when the TIPS–modified
pentacene is linked with TIPS–modified anthracene, tetracene or hexacene through covalent
bonds to form oligoacene heterodimers (Figure 5 10–12 [84]. The energy of the associated
triplet exciton pair of the heterodimer is the sum of the energies of the two monomers, while
the energy of the singlet state is determined by the lower-energy chromophore. Therefore,
in theory, the dimer formed by pentacene and anthracene cannot occur SF phenomenon,
and the experimental results also prove this point. In these heterodimeric systems, the
formation of related triplet pairs is not affected by the driving force, and the SF-related
mechanism remains to be further revealed.

3.3. Trimers and Tetramers

The pentacene dimer exhibits a high iSF rate in both solution and thin film. In
contrast, it is difficult for tetracene to achieve an efficient iSF process. The higher the rate
of the iSF process and triplet yields were displayed in a linear tetracene trimer, compared
with its dimers, indicating that exciton delocalization was an important factor driving
the SF process [53]. However, the triplet quantum yield of the tetracene trimer (~96%)
is smaller than that of the pentacene dimer (~200%). To improve the iSF efficiency of
tetracene compounds, Li synthesized a novel covalently linked tetracene tetramer (Figure 8
1) [85]. Compared with the trimer, the triplet quantum yield of the tetracene tetramer is
significantly increased (128%) and the lifetime of most free triplet excitons exceeds 100 µs.
This is the first time that a triplet quantum yield of more than 100% has been obtained in
solution of tetracene compounds. Sakai first synthesized a cyclic pentacene trimer with a
tubular conformation, with a cylindrical hollow cavity of 1.5 nanometer in length and a sub-
nanopore. The nanotubes undergo space-type iSF via effective intramolecular interactions,
with up to 180% triplet quantum yield and long free triplet state lifetime (80 µs) [86].
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Xia designed three different terphenyl-bridged TIPS–pentacene tetramers (Figure 8 2–
4). Changing the bonding position of the TIPS–pentacene chromophore along the triphenyl
ring can control the degree of steric hindrance within individual tetramer, which in turn
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can determine the degree of intermolecular coupling in the solid state [87]. If the coupling
between the chromophores of the tetramer is strong, the fast iSF process can occur in the
case of weak intermolecular coupling. The rapid occurrence and slow decay of the iSF
process can be controlled with adjusting the degree of molecular steric hindrance, high yield
and long life of triplet state can be obtained (Figure 9). Different geometries of molecules
have different effective triplet transport efficiencies. How to control local molecular packing
to combine iSF and intermolecular SF (xSF) process to maintain a fast formation rate of
triplets and achieve high quantum transfer efficiency, are important for future exploration
about the design of device structures.
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pounds. Solid blue lines correspond to through-bond interactions, and dashed orange lines denote
through-space interactions. (a) Typical solution-phase intramolecular SF dynamics. (b) Film dynam-
ics for monomer and dimer materials. (c) The design strategy based on TPTPn compounds. Reprinted
with permission from Ref. [87]. Copyright 2019, Elsevier Inc.

In summary, acenes and their derivatives are ideal SF materials. Although scientists
have made many progress in their research, there are still some shortcomings. For example,
the mechanism of SF occurrence in different types is still unclear. It is clear that if we can
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further understand the occurrence mechanism, it will be of great help to design acene and
its derivative materials and put them into practical application in the future.

4. Device Applications

In theory, an organic molecule can absorb a photon and convert it into two triplet
excitons through the SF process, but this is only the first step in completing the photovoltaic
conversion. Applying SF materials to construct photovoltaic devices that excitons can
become free charges and complete the conversion from light energy to electrical energy is
the fundamental driving force for the research and development of the SF process. This
section describes the application of acene materials in photovoltaic devices, including
organic photovoltaic devices and inorganic solar cells.

4.1. Organic Photovoltaic Devices

Pentacene is first put into practical applications due to its ultrafast fission properties.
Lee constructed a pentacene/C60 heterojunction organic multilayer photodetector. The
experiment measures an exciton multiplication factor of 145 ± 7%, and it proves that the
quantum efficiency of organic photodetectors can be improved by utilizing the SF process
in pentacene [88]. Congreve introduced a poly (3-hexylthiophene) exciton confinement
layer in a conventional pentacene/C60 heterojunction device and placed it between the
pentacene and the anode. This structure increases the external quantum efficiency of the
device to 109% for the first time [89]. Thompson then exploited a distributed Bragg reflector
(Figure 10) to make the external quantum efficiency of this kind of device increase to
126% [90].

Photonics 2022, 9, x FOR PEER REVIEW 14 of 23 
 

 

In theory, an organic molecule can absorb a photon and convert it into two triplet 

excitons through the SF process, but this is only the first step in completing the photovol-

taic conversion. Applying SF materials to construct photovoltaic devices that excitons can 

become free charges and complete the conversion from light energy to electrical energy is 

the fundamental driving force for the research and development of the SF process. This 

section describes the application of acene materials in photovoltaic devices, including or-

ganic photovoltaic devices and inorganic solar cells. 

4.1. Organic Photovoltaic Devices 

Pentacene is first put into practical applications due to its ultrafast fission properties. 

Lee constructed a pentacene/C60 heterojunction organic multilayer photodetector. The ex-

periment measures an exciton multiplication factor of 145 ± 7%, and it proves that the 

quantum efficiency of organic photodetectors can be improved by utilizing the SF process 

in pentacene [88]. Congreve introduced a poly (3-hexylthiophene) exciton confinement 

layer in a conventional pentacene/C60 heterojunction device and placed it between the 

pentacene and the anode. This structure increases the external quantum efficiency of the 

device to 109% for the first time [89]. Thompson then exploited a distributed Bragg reflec-

tor (Figure 10) to make the external quantum efficiency of this kind of device increase to 

126% [90]. 

 

Figure 10. (a) Schematic diagram of distributed Bragg reflector light management system and or-

ganic solar cell and (b) device structure and energy levels of the pentacene solar cell with device 

thicknesses in nanometers. Reprinted with permission from Ref. [90]. Copyright 2013, AIP Publish-

ing. 

The thicker the pentacene film in the layered battery, the more photons are absorbed, 

but the distance of excitons diffusing to the boundary also increases, which hinders the 

separation of charges. Rao detected pentacene/C60 heterojunction (Figure 11) with no 

emission within 200 fs by using transient spectra and the formation of the charge was 

approximately 2–10 ns [91]. Chan observed a much faster charge generation process using 

time-resolved two-photon photoemission (TR-2PPE) spectra techniques [92]. Chan uses 

an almost monolayer of pentacene film, the thickness of the pentacene film used by Rao 

is approximately 150 nm, which makes the triplet excitons to diffuse slowly. So it can be 

seen that the film thickness has a great influence on the physical process in the device. 

Figure 10. (a) Schematic diagram of distributed Bragg reflector light management system and organic
solar cell and (b) device structure and energy levels of the pentacene solar cell with device thicknesses
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The thicker the pentacene film in the layered battery, the more photons are absorbed,
but the distance of excitons diffusing to the boundary also increases, which hinders the
separation of charges. Rao detected pentacene/C60 heterojunction (Figure 11) with no
emission within 200 fs by using transient spectra and the formation of the charge was
approximately 2–10 ns [91]. Chan observed a much faster charge generation process using
time-resolved two-photon photoemission (TR-2PPE) spectra techniques [92]. Chan uses
an almost monolayer of pentacene film, the thickness of the pentacene film used by Rao is
approximately 150 nm, which makes the triplet excitons to diffuse slowly. So it can be seen
that the film thickness has a great influence on the physical process in the device.
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To achieve high solar energy conversion efficiency, the ionization interface of the triplet
state should be composed of pentacene and a material with strong infrared absorption.
Wilson used the special pairing of pentacene and PbSe quantum dots to produce a device
with a power conversion efficiency as high as 4.7% (Figure 12), while the energy conversion
was only 1% after switching to PbS [73]. This is because PbSe has a lower ionization
potential, which is favorable for the separation of triplet excitons than PbS. Jadhav randomly
combined SF donors (such as pentacene, 6,13-diphenyl-pentacene) and acceptors (such as
fullerenes, perylene diimides, PbS and PbSe nanocrystals) to investigate triplet dissociation
processes at different energy levels [93]. It has been found experimentally that exciton
dissociation in heterojunctions is very sensitive to changes in the energy level structure
of the donor and acceptor, so it is important to select a suitable acceptor to meet the
requirements of efficient separation of triplet excitons in SF solar cells.
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lower limit on the energy of the ionizing exciton, and a schematic diagram of a pentacene/nanocrystal
hybrid solar cell. Reprinted with permission from Ref. [73]. Copyright 2013, American Chemical
Society.

Pure pentacene has poor photostability, many studies have designed functionalized
pentacene to form a bilayer solar cell with other materials. Ehrler constructed a bilayer
heterojunction architecture between TIPS–pentacene and PbSe and PbS nanocrystals, re-
spectively (Figure 13). These TIPS–pentacene devices show promising power conversion
efficiencies of more than 4.8% [94]. It is the first solution-processable SF system, and in the
TIPS–pentacene absorption range, the external quantum efficiency is as high as 60% and
the internal quantum efficiency reaches 170%.
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Tetracene can also participate in the construction of solar cells. Its splitting speed
is slower than that of pentacene, and singlet excitons are easily ionized directly at the
molecular interface to reduce its photovoltaic conversion efficiency, but the energy level
structure of tetracene is relatively ideal, its triplet exciton energy (1.2 eV) is close to the
energy 1 eV corresponding to the maximum value of the SQ limit of single-junction solar
cells. Jadhav inserted copper phthalocyanine (CuPC) into the structure of tetracene/C60 to
form a solar cell with three-layer film structure (Figure 14a) [95]. Tetracene absorbs light
below 550 nm, singlets and triplets from tetracene diffuse through CuPC to the CuPC-
C60 interface (Figure 14b). BCP acts as an exciton and hole blocker. CuPC absorbs light
below 700 nm and can provide extra triplet excitons in the long wavelength direction.
The experimental results show that the photovoltaic device with the tetracene/CuPC/C60
three-layer film structure exhibits higher external quantum efficiency and photovoltaic
conversion performance than the double-layer structure. At the same time, the diffusion
distance of triplet excitons is required to be longer.
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4.2. Inorganic Solar Cells

Traditional inorganic solar cells are still the leader in photovoltaic devices, and the
technology of single-junction silicon solar cells is increasingly perfected, with the highest
conversion efficiency reaching 26.6% [96]. The SF process, as one of the ways of exciton
multiplication, can theoretically further improve the photovoltaic conversion efficiency
of single-junction solar cells. The main advantage of SF silicon solar cells is that it will
make it easier to improve silicon solar cells that are already very efficient, which can greatly
reduce the cost of solar cells and make them easier to fabricate and implement. Ehrler
attempted to combine pentacene/PbSe heterojunction with undoped amorphous silicon to
obtain a pentacene/PbSe/silicon three-layer SF sensitized inorganic photovoltaic device
(Figure 15a). Visible range photons are absorbed by pentacene and split into pairs of
low-energy triplet excitons. IR photons are absorbed in silicon and the thin PbSe layer. The
total conversion rate reached 2% [97]. Subsequently, this group constructed an SF silicon-
pentacene tandem solar cell device (Figure 15b), which showed an efficient photocurrent
increase and an external quantum efficiency of over 100% for the main absorption peak of
pentacene [98].
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In 2020, Sundin studied the molecular SF dynamics of diphenylisobenzofuran deriv-
atives on the surfaces of three different conduction band metal oxides, and found that 
both the semiconductor substrate and the environment around the molecules can influ-
ence the SF process [99]. When in a nonpolar environment, the SF process occurs when it 
attaches to ZrO2, but when it is adsorbed on TiO2, triplet states occur through charge re-
combination in the conduction band of TiO2. In polar solvents, electron injection on TiO2 
surface outperforms the SF process. When the molecule is attached to SnO2, the SF process 
outperforms electron injection. Similarly, Ehrler calculated the efficiency potential of three 
technologically relevant SF silicon solar cell implementations (charge transfer, Dexter-
type triplet energy transfer and Förster resonance energy transfer), and found the higher 
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Figure 15. (a) Pentacene/PbSe/a–Si device structure and proposed working mechanism. (b) Device
architecture of the parallel tandem cell. Reprinted with permission from Ref. [97] and Ref. [98].
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In 2020, Sundin studied the molecular SF dynamics of diphenylisobenzofuran deriva-
tives on the surfaces of three different conduction band metal oxides, and found that both
the semiconductor substrate and the environment around the molecules can influence
the SF process [99]. When in a nonpolar environment, the SF process occurs when it
attaches to ZrO2, but when it is adsorbed on TiO2, triplet states occur through charge
recombination in the conduction band of TiO2. In polar solvents, electron injection on TiO2
surface outperforms the SF process. When the molecule is attached to SnO2, the SF process
outperforms electron injection. Similarly, Ehrler calculated the efficiency potential of three
technologically relevant SF silicon solar cell implementations (charge transfer, Dexter-type
triplet energy transfer and Förster resonance energy transfer), and found the higher the
efficiency of a silicon-based cell, the greater the efficiency gain of a singlet solar cell [100].

McQueen vapor-deposited tetracene on the surface of hydrogen-passivated crystalline
silicon, and the silicon substrate maintained good passivation under the tetracene film.
Pairs of triplet excitons generated in the SF layer diffuse to the silicon interface and transfer
energy or charge, doubling the photocurrent (Figure 16a). Additionally, there are two
exciton harvesting mechanisms being depicted at the organo-silicon interface: energy
transfer (ET), and CT [101]. However, the external quantum efficiency indicates that the
photocurrent contribution of the tetracene layer is very small, and the article does not
explain the specific pathways of CT or ET at the heterojunction of tetracene and crystalline
silicon. A double-heterojunction structure has been designed to overcome the effect of
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exciton binding energy on batteries by placing a thin semiconducting layer between the
SF material and the electron acceptor. With proper energy level arrangement, even in the
presence of 0.5 eV exciton binding energy, an efficiency of 40.9% can be achieved, which is
nearly 10% higher than that of a single heterojunction [102].
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by employing a matched SF layer (blue). The external quantum efficiency of the cell is drawn in black.
(c) Solar cell structure utilized in this work (not to scale). Reprinted with permission from Ref. [101].
Copyright 2018, The Royal Society of Chemistry.

Baldo believed that the intermediate layer important if the triplet excitons were to
be transferred to crystalline silicon without rapid recombination, so hafnium oxynitride,
which could be deposited into an atomic layer on the surface of crystalline silicon, was
selected as the intermediate layer. The power conversion efficiency of the silicon/hafnium
oxynitride/tetracene photovoltaic cell with back contact reaches 5.1%, and the triplet
exciton transfer rate reaches 76 ± 7% [103].

5. Conclusions and Outlook

In recent years, the field of the SF process has made great progress, which is inseparable
from the active exploration and research of scientists. In this paper, the development trend
of SF materials in recent years and the in-depth exploration of the mechanism of the SF
process were reviewed. Acenes and their derivatives are still the most powerful tools
for scientists to study the SF process. Their molecular structure, arrangement and state
of matter affect the degree of coupling between chromophores, which in turn affects the
rate of the SF process and the triplet yield. There are also some emerging materials such
as perylene diimide [35,38,104] and polymer [105–107], which have also been found to
have a higher triplet yield and a longer triplet lifetime. In addition, this review also
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introduced the application of the SF process in photovoltaic devices, among which there are
currently realized cell structures, such as pentacene/C60, pentacene/PbSe. Many attempts
on this basis have been made, and there are also relatively new battery structures, such as
double-heterojunction structure and cell structures combining pentacene and quantum dot.

With the research on SF materials, their applications are also developing at the same
time, but relatively slow. At present, photovoltaic devices have been prepared with mature
materials such as pentacene and tetracene, much progress has been made and a relatively
good photovoltaic conversion efficiency has been achieved. The diversity and utility of
new SF materials are the main drivers for future innovations in this field: First, developing
more SF materials with energy-stable triplet states will expand our understanding of SF
mechanisms, such as how to efficiently obtain triplet exciton energy, efficient triplet exciton
dissociation, and transfer processes. Second, more unknown SF materials may surpass
existing materials in improving the photovoltaic conversion efficiency of solar cells. Third,
more novel materials may solve the long-term stability mismatch between SF molecules
and conventional solar cell materials. Almost every published paper claims to study the SF
process in order to improve the efficiency of solar energy conversion, but this is still a huge
challenge in practice, and more studies will make efforts to this end.
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