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Abstract: To meet the ground test requirements of star sensors, we establish the star map simulation
algorithm and the interactive interface in multiple scenarios. The combination of the degradation
model of star points, the imaging noise model, and the attitude disturbance model is introduced to
solve the problem of different patterns of noise existing in the actual measurement, improving the
traditional simulation model. In addition, a user-friendly interface design makes it easier for both
scholars and average individuals to understand the parameters and then generate static single-frame
star maps—or a series of dynamic sequence star maps—under various conditions. The results of the
proposed star map simulation method are highly comparable to the actual captured star images, and
this method can be applied for the tests and calibrations of star sensors.

Keywords: star map; image degradation; dynamic environment; aerospace; noise model

1. Introduction

Star sensors play an essential role in aerospace attitude detection. Star sensors need to
undergo rigorous performance tests before the engineering of applications. Generally, there
are three ways to calibrate star sensors with high accuracy: numerical simulation, hardware
simulation, and outfield observation experiments. Outfield observation experiments are
conducted by placing a star sensor in an open area with low atmospheric turbulence and
relatively weak stray light. Such an approach is costly and time-consuming and is usually
only used as the last step in a star sensor validation experiment. Hardware simulation refers
to utilizing a starfield simulator in a laboratory environment to simulate an infinity star
point. The star sensor carries out identification and attitude calculation by observing the
simulated star images. The disadvantages of this method are that the starfield simulator is
expensive, and the parameters of the starfield simulator, such as field of view and aperture—
which are difficult to match precisely with the star sensor—are not adjustable. Therefore,
the versatility of the hardware simulation is limited. Compared with these two methods,
numerical simulation is a highly flexible and the least resource-intensive approach. In
routine performance tuning or laboratory experiments, simulated star maps are widely
used because of their low cost and ease of use [1–4].

Many scholars have invested in studying the use of star sensors from digital simu-
lation, i.e., the study of star map simulation algorithms. In a star map simulation, the
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establishment of the noise model is essential. To solve this problem, some scholars simu-
lated the Gaussian grayscale distribution of star point images by considering the stellar
image shift caused by the satellite motion [5]. Some scholars have introduced new theories,
such as the effect of rotation around the optical axis on star point imaging, the star color
index, and the idea of black-body radiation, to evaluate the quality of star points in a simu-
lation result [6,7]. To enlarge the simulated scenarios in the simulation system, nebulae,
moonlight, and Earth-obscured background are added into the field of view in the star
sensors [8,9]. The literature [10] proposed a fast pixel-discretization algorithm based on the
convolutional surface model to simulate dynamic real-time star maps and established a
complete description of the star point motion trajectory model. However, the parameters
in this algorithm are difficult to understand, limiting its usage. Researchers [11] designed a
star map simulation algorithm for arbitrary exposure time length in a high-fidelity manner.
However, this method is performed in an ideal state, without incorporating various error
factors into the model.

Here, we design a set of algorithms and interfaces for simulating star maps in multiple
scenarios from a numerical simulation approach. The algorithm includes the simulation of
static single-frame star maps and dynamic sequence star maps, taking into account various
noise sources. The noise may come from the electronic noise caused by the imaging system,
the overall noise amplitude variation due to atmospheric condition or stray light, and the
attitude disturbance caused by the different motion states between the imaging platform
and the tracking star target. With various parameter inputs, noise levels and dynamic
trajectories are visualized, and star maps close to the actual images are generated, which
can provide a source of data for the parametric testing of the star sensor.

2. Motion Blur Degradation Model
2.1. The Process of Image Degradation

For a ground-based star sensor, during the process of image acquisition, there will be
many challenges, such as the shift and superposition of light beams. All these difficulties
can result in the degradation of image quality [12]. Figure 1 shows the general model of
image degradation.
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Figure 1. The general model of image degradation.

In Figure 1, if h (x, y) is a linear spatially invariant process, then the degraded image
in the spatial domain is represented as:

g (x, y) = h (x, y) × f (x, y) + n (x, y) (1)

in which f (x, y) represents a static, two-dimensional image, which degenerates to g (x, y)
under the interference of additive noise n (x, y) through blur kernel h (x, y). * denotes a
general convolution operator.
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2.2. Simulations of Defocus Factor

In general, h (x, y) in the degradation model includes defocus blur and motion blur.
To realize the out-of-focus impact more accurately, we use a point spread function model to
simulate the image degradation with the following formula [13,14]:

gij =
A

2πσ2

i+0.5∫
i−0.5

j+0.5∫
j−0.5

exp[−
(x i,j − xm

)2
+(y i,j − ym

)2

2σ2 ]dxdy (2)

where A denotes the energy grayscale coefficient, which is related to the total illumination,
i.e., magnitude, of the imaging point on the photosensitive surface of the star sensor. σ
denotes the Gaussian dispersion radius of the energy distribution in the star point region,
indicating the degree of defocusing. (xi,j, yi,j) is any pixel within the range of the diffuse
pixel point. (xm, ym) denotes the projected position of the star on the imaging plane of
the star sensor. We can evaluate a static star point in a simulation in terms of two key
parameters: the gray energy factor A and the Gaussian dispersion radius σ [15]. Table 1
lists the parameters of the simulated image in Figure 2, which shows the combination of
different values of A and σ, representing various results of image degradation that may
occur under real circumstances.

Table 1. Parameters of the simulated image.

Position A σx σy

(15, 15) 613 1.0 1.0
(30, 30) 2113 2.0 1.5
(40, 10) 4113 2.5 3.0
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2.3. Integrated Gaussian Noise Model

In addition to the simulation for the background star point and target star point, the
star sensor simulation also needs to simulate the effect of noise to improve the simulation’s
authenticity. The random noise contained in the star map is mainly ambient noise and
detector noise, such as dark current noise and output noise. These types of noise can be
defined as Gaussian noise, due to their randomness [16]. The literature [2,7] states that
the simulation of ground-based imaging systems must consider the effects of atmospheric
influences and uneven background illumination, such stray light, moonlight, and sunlight,
on the captured images. These effects will lead to a change in the overall brightness value
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of the image from weak to strong. Here, we use Equation (3) to represent the integrated
Gaussian noise model:

Nimg = f (x, y) × ψ× η (0, std), η~Gaussian (0, std) (3)

where f (x, y) is the original image. ψ is designed to control the shape of the noise area, and
it can be expressed by functions. Here is an example of a linear expression. If we set ψy
(w, k) = w × y + k, a mathematical model of monotonic increase or monotonic decrease,
the image result will have a gradient effect on the y-axis. That is, the magnitude of the
image will change from dark to light or from light to dark. ψ can also be expressed in
terms of other functions, such as polar coordinates. With the use of polar coordinates, a
circular, radial noise pattern can be clearly expressed. η (0, std) is the amount that controls
the magnitude of the noise, which follows a Gaussian distribution. The default mean of η
is 0, and std represents the standard deviation. The larger the value of std, the larger the
range of noise fluctuation.

Figure 3 shows the simulations of the integrated Gaussian noise model with different
inputs. The simulated image is 8 bits, and the image array is 512 × 512, where the Gaussian
dispersion radius of the star point is between 1 and 4. The star point circled in the figures is
the same star point (with the same A, σ, and location) in the three images.
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simulation result without the noise model; (b) the simulation result with Nimg = f (x, y) × 1 × η (20,
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3. Simulations for Dynamic Sequence Star Maps
3.1. The Energy Distribution Model of Trajectory

Because of the relative motion between the ground-based imaging system and the
celestial body, this study will complete a star map simulation in a dynamic environment.
In the dynamic environment, the target star point will be dragged to form a trajectory
on the imaging plane during the camera exposure time, which is called a “smearing star
point.” The length and direction of this trailing path can reflect the motion information of
the target star point [17]. To summarize, if there is a relative motion between the star point
and the ground-based imaging system, the target is in the form of a trajectory line segment.
Particularly if the imaging system has tracked and located a target object, the target star
point appears relatively stationary in the image.

To achieve a star streak quickly, the exposure time T is divided into N segments at equal
intervals. Accordingly, the trailing path of the star point is also divided into N segments.
When interval δ = T/N is short enough, each part of the trailing path can be approximated
as a point. Through such an approximation process, the dynamic trajectory of the star point
can be approximated as a superposition of N static points. We set the total energy during
the exposure time of the star point to E0 = ∑n=N

n=1 Ei,i+1, and the energy distribution of each
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static star point simulating the dynamic trajectory is shown in Equation (4). In the interval
from t = i to t = i + 1, the simulation formula for the energy of a star point is:

Ei(x, y) =
Ei,i+1

2πσ2

∫ ∫
exp[−

(x − x i)
2+(y − y i

)2

2σ2 ]dxdy (4)

Assuming that the dispersed spots of the above Gaussian distribution are equal in
radius, the energy distribution function of the star image in each small exposure time is
superimposed, and the total energy distribution function of the star image is as follows:

E(x, y) =∑n=N
n=1 Ei(x, y) (5)

3.2. Attitude Disturbance Model

When the ground-based imaging system tracks a moving target star point, there are
attitude disturbances between the measurement. The attitude disturbance mainly refers
to the jitter of the ground-based platform brought about by its working condition and
the motion lag of the camera system when it does not accurately track the motion of the
target object.

Figure 4 shows a schematic diagram of the projection trajectory of the projection of
the star point on the imaging plane under the influence of attitude disturbance. When
rotating in any direction within Osxsyszs, the coordinate system measured around the star
sensor, the angular velocity can be decomposed onto the 3 axes of Osxsyszs. By setting
the star image on the imaging plane Oy on the fixed axis of the uniform angular velocity
motion along the clockwise direction, the angular velocity is recorded asωz. By setting the

ith instant in time, the star point position vector Ri = (xi, yi), |Ri| =
√

xi
2+yi

2. The angle
between the Ri and the Oy axis is denoted θi, so the velocity of the star at the ith instant in
time can be expressed as:{

vix = ωz|Ri|cos θi + v0x = ωzyi + v0x
viy = −ωz|Ri|sin θi + v0y = −ωzxi + v0y

(6)
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Given the time elapsed from the ith instant in time to the i + 1st instant in time, the
amount of star point displacement [18] can be expressed as:{

∆xi= xi+1 − xi= vix · ∆t = (ω zyi+v0x) · ∆t
∆yii = yi+1 − yi= viy · ∆t = (−ω zxi+v0y) · ∆t

(7)

To achieve the effect of motion blur, we propose that N∆x be added as a blur factor to
the expression of the appropriate amount of the star position:{

xi + 1 = xi + ∆xi + N∆x, N∆x∼ Gaussian(0, n)
yi + 1 = yi + ∆yi + N∆y, N∆y∼ Gaussian(0, m)

(8)
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where the default mean of the Gaussian distributed random number is 0. n and m represent
the standard deviation of the set Gaussian random number. The values of n and m can be
same. The larger the n and m, the greater the deviation of the simulated star point from the
preset position.

In conclusion, the description of the star trajectory can be expressed by Equation (9):{
xi(t) = xi0 +

∫ t0+T
t0 vix(τ)dτ

yi(t) = yi0 +
∫ t0+T

t0 viy(τ)dτ
(9)

Therefore, we use the proposed methods to simulate the dynamic trajectory of a star
point. Figures 5–7 show the superposition of the different states when the simulated star

trajectory is a linear equation according to
{

xi+1 = xi + 1 + N∆x
yi+1 = yi + 1 + N∆y

. Figure 8 shows the

superposition of the different states when the simulated star trajectory is a curvilinear

equation according to
{

xi+1 = xi + 1 + N∆x
yi+1 = −0.006xi

2 + 2.7xi − 27 + N∆y
.
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(a) 2D; (b) 3D.
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Figure 8. Simulation results of simulating star point trajectories as curvilinear equations:
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sults with A = 2000, σ = 2, Nimg= f(x, y)× 1× η(0, 0), N∆x, N∆y∼ Gaussian(0, 2); (c) results with
A = 2000, σ = 2, Nimg= f(x, y)× 1× η(0, 40), N∆x, N∆y∼ Gaussian(0, 2).

4. Interface Function Description

The field of view of the simulated detector in the proposed method is 12◦ × 12◦,
and the size of its plane array is 512 pixels × 512 pixels. The magnitude sensitivity is 8.0
apparent magnitude, the simulated imaging system has a frame rate of 50 Hz, and the
exposure time for each frame is 20 ms. The interface uses the Tkinter module based on
Python 3.9.

There are two functions in the designed interface. First, it is the static single-frame
star map simulation. Figure 9 shows the initial interface of this function. In this state, the
default number of the target star point is 1. The adjustable parameters are the Gaussian
noise level of the image, the number of background stars, the maximum value of target
brightness, and the minimum value of target brightness. Users can generate single-frame
simulated star maps, with specified parameters, in this mode. Additionally, a function
to display images is added, which can also be used separately as a picture viewer. After
generating the simulated star maps, the primary information of the target star point, such
as brightness information, position coordinates, and Gaussian dispersion radius, can be
viewed in “Target Star Information.”
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The second function is the dynamic sequence star map simulation, and its user inter-
face is shown in Figure 10. In this mode, the simulation can provide two motion states for a
target star point. One of the states is that the ground-based camera system has followed
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the target point to be measured. Under this state, by default, the target in the first frame is
in the center of the image. In addition to the size and brightness of a star point, it is also
possible to simulate errors in the actual situation by inputting the magnitude of the attitude
disturbance of a target point and the average and standard deviation of Gaussian noise.
The default exposure time of each frame of the system is 20 ms. By adjusting the size of the
“Dynamic Frame Count,” users can input the imaging time of the simulated ground-based
camera system. The other state is that the ground-based camera system has not followed
the target point to be measured. Under this state, both the target and background star
points have different movement direction speed sizes, compared with the ground-based
camera system. The user must input the x-direction and y-direction offset to complete the
exact movement simulation of the target star point. Since it would take time to generate a
large number of background star points in real-time to meet the requirements, the way to
handle the background star points is by loading a pre-generated binary file. This file is the
sum of a specified number of star trajectories laid out according to a preset angle. The user
can also change this, according to specific requirements.
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5. Results
5.1. Image Quality Assessment

Figure 12 shows simulation results using the method proposed in this paper. Figure 12a,b
shows the static single-frame star map simulation results, and Figure 12c shows the dynamic
sequence star map. Figure 13 displays actual photos from the Shanghai Sheshan Observa-
tory and from astronomer Michael A. Earl. From the gray histograms of the two types of
images, we can determine that the actual photos have a broader gray distribution than that
of the simulation results. Furthermore, there are some stripes in the photos. These stripes
may come from the telescope lens.
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Figure 13. Real star map images: (a) taken by the Shanghai Sheshan Observatory; (b) taken by the
Shanghai Sheshan Observatory; (c) taken by Canadian astronomer Michael A. Earl with a ground-
based telescope (“Geostationary Satellite MSAT in Motion,” http://www.castor2.ca/14_Images/
Satellites/index.html accessed on 15 November 2021).

Here, we use two methods to evaluate the image similarity between the simulation
results and actual photos. Figure 14 demonstrates the gray histograms of the simulated
images in Figure 12. And Figure 15 demonstrates the gray histograms of the real images in
Figure 13. First, the Bhattacharyya coefficient which is based on the gray histogram is used
to indicate the color distribution of an image. The coefficient ranges from 0 to 1. The closer
to 1, the more similar the two images are proved to be in terms of color distribution. The
second standard is the cosine similarity, which changes an image into vectors by adding the
divided gray level area numbers [19]. The calculation results are shown in Table 2, which
point out that there is still a gap between the grayscale distribution of the simulated results
and the actual photos, but the overall character of both is very close.

http://www.castor2.ca/14_Images/Satellites/index.html
http://www.castor2.ca/14_Images/Satellites/index.html
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Table 2. Calculation results of image similarity.

Number Bhattacharyya Coefficient in Gray Histogram Cosine Similarity

Figure 12a vs. Figure 13a 0.778 0.977
Figure 12b vs. Figure 13b 0.639 0.992
Figure 12c vs. Figure 13c 0.639 0.893

Figure 12c shows the effect of a 2 s imaging time in a dynamic environment simu-
lated using the proposed method’s noise parameter Nimg= f(x, y)·1·η(0, 15), N∆x,N∆y,
∼ Gaussian(0, 3). Figure 13c shows an actual image taken by Canadian astronomer
Michael A. Earl with a ground-based telescope. These are some of the differences be-
tween Figures 12c and 13c and the main reasons behind them. Besides the direction of the
background trajectories, which depends on the movement states of the simulated condi-
tions, the trajectory style of the target is more noticeable in the actual photos. Because
the satellite tumbles at a regular interval within an extended period, the satellite’s orbit
produces a periodic flickering phenomenon, which is not addressed by the method in this
paper. Next, the noise distribution in Figure 13c is more complicated than in Figure 12c.
Figure 13c becomes brighter due to the height of the image, which means the average
of Gaussian noise becomes bigger. which means the average of Gaussian noise becomes
bigger. In addition, some black dots and black areas exist in the figure in a more obvious
way. It is necessary to determine different characteristics and modes of noise to improve
the quality of the simulation results.

5.2. Star Centroid Extraction

The centroid of stars is the most important factor in attitude determination. We
adopt the common centroid method to evaluate the accuracy of the simulation result of the
proposed method. Figure 16a shows an actual image taken by Michael A. Earl. Four distinct
targets are circled in the image, and the simulation result is shown in Figure 16b.
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Next, before we perform the star centroid extraction process, we need to implement
the Gaussian filter to reduce the interference from background noise in Figure 16a. The
Gaussian kernel size is 5 × 5 and the Gaussian kernel standard deviation is computed with
the formula provided by OpenCV (getGaussianKernel(), https://docs.opencv.org/4.0.0/
d4/d86/group__imgproc__filter.html#gac05a120c1ae92a6060dd0db190a61afa accessed on
15 November 2021). Finally, we adopt the common centroid method to extract the “center
of mass” as follows: 

x0 =
∑m

i=1 ∑n
j=1 xifij

∑m
i=1 ∑n

j=1 fij

y0 =
∑m

i=1 ∑n
j=1 yjfij

∑m
i=1 ∑n

j=1 fij

(10)

where fij denotes the value of the image after background noise reduction.
The same steps will apply to the detection of Figure 16b. The results for the two images

are shown in Table 3.

Table 3. Results of star centroid extraction in Figure 16a,b.

Figure 16a Figure 16b Error

No. x y x y ∆x ∆y

1. 7.329 121.973 7.498 121.983 0.169 0.01
2. 52.113 267.078 52.037 266.969 −0.076 −0.109
3. 163.037 187.762 162.989 187.964 −0.048 0.202
4. 248.171 220.978 247.978 220.970 −0.193 −0.008

Where the errors are calculated as the follow equation:{
∆x = xβ − xα
∆y = yβ − yα

(11)

where xβ and yβ denote the x and y coordinate values of the stars in Figure 16b. xα and
yα denote the x and y coordinate values of the stars in Figure 16a.

As we can see, because of the noise of figures, the accuracy is not perfect, but it is
acceptable for common use. If we perform the image processing in detail and apply a more
specific centroid extraction method, the error will be smaller.

https://docs.opencv.org/4.0.0/d4/d86/group__imgproc__filter.html#gac05a120c1ae92a6060dd0db190a61afa
https://docs.opencv.org/4.0.0/d4/d86/group__imgproc__filter.html#gac05a120c1ae92a6060dd0db190a61afa
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6. Conclusions

In summary, this paper carries out a simulation method for dynamic sequential star
maps of space targets in multiple scenarios with complex star backgrounds. Numerical
simulation provides a more convenient way to generate the abundant data of star maps to
promote the study of star sensors. A static star point model and a dynamic sequence star
map model are constructed, respectively. We take the random noises, such as detector noise
and dark current noise, and uneven environment illumination into account. Meanwhile,
the impact of the noise model analysis and platform motion disturbances on imaging will
also provide a reference for performance testing and verification of star sensors. In the next
stage of the work, we may consider the condition in which multiple interference target star
points exist. In addition, it is essential to continue to study the noise sources and patterns
in authentic images so that the parameters can be further optimized, making them more
similar to those in the actual scenario.
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