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Abstract: A silicon photomultiplier (SiPM) LiDAR with photon threshold detection can achieve
high dynamic performance. However, the number fluctuations of echo signal photons lead to the
range walk error (RWE) in SiPM LIDARs. This paper derives the RWE model of SiPM LiDAR by
using the LiDAR equation and statistical property of SiPM’s response. Based on the LiDAR system
parameters and the echo signal intensity, which is obtained through the SiPM’s photon-number-
resolving capability, the RWE is calculated through the proposed model. After that, we carry out
experiments to verify its effectiveness. The result shows that the method reduces the RWE in TOF
measurements using photon threshold detection from 36.57 cm to the mean deviation of 1.95 cm,
with the number of detected photons fluctuating from 1.3 to 46.5.

Keywords: LiDAR; SiPM; TOF; range walk error; threshold detection

1. Introduction

A single-photon avalanche diode (SPAD) has been widely used in remote laser ranging
systems due to its single-photon detection sensitivity and high time resolution [1–3]. SPAD
functions as a binary device with a deadtime [4]. The time-to-digital converter (TDC) for
TOF computation can only timestamp the first detected photon in a SPAD pixel. Therefore,
a SPAD LiDAR system encounters the problem of a high false alarm rate, which becomes
prominent when the background light is strong. To solve this problem, References [5–7]
utilize the time-correlated single-photon counting (TCSPC) technique to calculate the flight
time by counting the trigger time distribution. However, TCSPC requires thousands of
successive measurements to improve the signal-to-noise ratio (SNR) and calculate the time
of flight (TOF). The long acquisition time restricts the application of SPAD LiDAR in areas
such as autonomous driving, given the requirements for high frame rate imaging and
fast-moving target tracking [8].

SiPMs are large photosensitive area detectors that consist of parallel SPAD pixels, and
each pixel has an independent quenching circuit [9]. In analog SiPM, the summation of
each pixel’s response constitutes the analog output signal of SiPM [10–12]. As a result, the
signal of SiPM is proportional to the number of incident photons. In digital SiPM, the SPAD
frontend is an active circuit that sets a fixed and well-defined deadtime after each ignition
and provides a digital pulse when a photon is detected. The output of all microcells is
combined through logic gates. The digital output is directly the number of fired cells [11,12].
Regarding SiPM’s photon-number-resolving capability, compared to SPAD LiDAR, SiPM
LiDAR can utilize the photon threshold to filter out low photon numbers. The threshold
can lower the false alarm rate and improve the SNR of the LiDAR system [13]. In addition
to this, setting the photon threshold helps suppress the ranging uncertainty caused by the
pulse width of the laser. These advantages help the SiPM LiDAR system achieve a better
dynamic range.
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For wide-dynamic-range applications, SiPM LiDAR requires high accuracy when
measuring targets with extreme variations in reflectivity and angles. Moreover, the RWE
caused by the number fluctuation of the received photons is the dominating influential
factor for accurate ranging. References [14–17] establish several methods to reduce RWE
emerging in SPAD LiDAR systems. Reference [18] proposes a correction method for RWE in
LiDAR with a photomultiplier tube. References [19–21] discuss the accuracy of linear APD
LiDAR using a fixed threshold discriminator, the constant fraction discriminator (CFD)
method and the peak detection method (PKD). However, to date, there have been few
related studies focusing on the RWE reduction in SiPM LiDAR with threshold detection.

In this article, an RWE correction method of an SiPM LiDAR system with threshold
detection is proposed. First, we establish a theoretical RWE model containing the response
characteristics of SiPM and the photon threshold method. Thereafter, the RWE is calculated
through the above model. In the proposed RWE model using the photon threshold method,
we derive the relationship between RWE and the number of detected photons, which can
be obtained via either analog SiPM or digital SiPM. Therefore, the proposed method is
available in the two types of SiPM LiDAR systems. Groups of experiments with different
echo light intensities are performed to measure the distance to a fixed target. In each
group, we conduct the correction method to offset the RWE emerging in the result of the
fixed photon threshold detection. Meanwhile, the CFD and PKD methods are utilized
for comparison with the proposed method. Finally, we develop a method that utilizes
the detection probability of the photon threshold detection to estimate the mean number
of detected photons instead of using the signal of SiPM, which may simplify the system.
As proved by the experiments, this method can work at the few-photon level.

2. Theoretical Analysis
2.1. Laser Propagation Equation

The D-TOF LiDAR system delivers a narrow-width laser pulse to the target. The
power of an emitted Gaussian pulse [22] can be described with the average single-pulse
energy ET as follows:

PEmit(t) = ET
1√

2πσf
e
− t2

2σ2
f (1)

where PEmit(t) is the power of the emitted pulse, and σf is the emitted pulse width. When the
pulse is scattered from a Lambertian target at distance R, the received number of photons,
NPhoton(t), can be derived from Equation (1) [16] as

NPhoton(t) = NS
1√

2πσS
e
− t2

2σ2
S + NNoise (2)

where NNoise is the background noise rate, and σS is the received pulse width. We assume
σS ≈ σf in this manuscript because the transmitted pulse width is in the order of nanosec-
onds [23]; NS is the mean number of received signal photons, which can be calculated
as [24]

NS =
ETηTηRη2

AρAR

πR2hv
(3)

where ηT is the transmission of the transmitter; ηR is the transmission of the receiver optic;
ηA is the one-way transmission of the atmosphere; ρ is the reflectivity of the target; AR is
the area of the aperture of the receiver; h is the Plank constant; and v is the frequency of
the laser.
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2.2. SiPM Response Model

Assuming that the number of arriving photons on each pixel is evenly distributed,
then, in any time interval (t1, t2), the mean number of photons hitting each pixel, N, can be
derived from Equation (2) as

N(t1, t2) =

t2∫
t1

NPhoton(t)dt

NCell
(4)

where NCell is the number of pixels in SiPM. Poisson distribution is an appropriate model
to describe the response of a pixel [25]. The probability that a pixel responds in the ith time
bin is derived from Equation (4) [26]:

PD_bin(i− 1, i) = 1− e−N(τbin·(i−1),τbin·i)·ηq (5)

where ηq is the photon detection efficiency of SiPM; i is an integer larger than 0; and τbin is
the length of a time bin, which corresponds to the timing resolution of the TDC. Therefore,
the mean number of fired pixels in one measurement, ND, can be calculated as

ND = NCell

(
1− e

(− NTotal ·ηq
NCell

)
)

(6)

here,

NTotal =
∫ 0.5TSignal

−0.5TSignal

NPhoton(t)dt = NS + NNoise · TSignal (7)

Therefore, NS can also be calculated through Equations (6) and (7) as

NS =
NCell

ηq
· ln
(

NCell
NCell − ND

)
− NNoise · TSignal (8)

where NTotal is the number of arrived photons (including ambient noise) in a signal dura-
tion. TSignal is the effective signal duration, usually TSignal > 6σS. As seen in Equation (3),
environment parameters, such as the one-way transmission of the atmosphere and the
reflectivity of the target, are needed to calculate Ns. However, according to Equation (8),
we can estimate NS by the number of fired pixels, which can be obtained from the signal of
SiPM. ND has a linear relation with Ns when NCell >> ND as seen in Figure 1.
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Considering that the response of each pixel is independent and that the probability
of k pixel responses in a time interval PCell obeys the binomial distribution [25], then the
probability is derived from Equation (5) as

PCell((i− 1, i), k) =
(

NCell
k

)
Pk

D_bin(i− 1, i)(1− PD_bin(i− 1, i))NCell−k (9)

In fact, if more than one photon hits a pixel, only one can be detected, which causes
non-linear loss. In Equation (9), the nonlinear loss is not considered, because we limited
our signal to a few photons where nonlinear loss has a low effect on the results [13]. This is
due to the relatively low photon number compared to the number of pixels, which is about
two orders of magnitude less in the experiment.

For light detection at the few-photon level, the number of fired pixels is very small
compared to thousands or even tens of thousands of pixels in the SiPM. Meanwhile, the
probability of detecting a photon in a single pixel is minimal; therefore, Equation (9) can be
approximated as a Poisson distribution [27]:

PCell((i− 1, i), k) =
(NCell · PD_bin(i− 1, i))k · e−NCell ·PD_bin(i−1,i)

k!
(10)

In the fixed threshold detection method for APD LiDAR, the arrival time of the light is
determined when the voltage of the detector reaches a given voltage amplitude. The method
for the SiPM LiDAR is similar. After the light is detected by SiPM, the photon number is
then thresholded by a one-bit comparator, which stops the timer when the voltage of SiPM,
caused by the detection of the arriving photons, exceeds the given threshold. The threshold
detection probability in the ith time bin P(i) is calculated by summing the probability of
all possible events that the accumulative number of fired pixels exceeds as the threshold
photon number k in the ith time bin. Therefore, P(i) can be derived from Equation (10) as

P(i) =
k−1

∑
u=0

(
PCell((0, i− 1), u) ·

(
1−

k−u−1

∑
v=0

PCell((i− 1, i), v)

))
(11)

where u is the number of fired pixels before the ith time bin, and v is the fired pixels within
the ith time bin. The event where the accumulative number of fired pixels exceeds k in the
ith time bin must satisfy that u + v ≥ k and v ≥ 1. Then, the whole detection probability PD
of one shot can be obtained from Equation (11) as

PD = ∑
signalbins

P(i) (12)

where signalbins is a collection of intervals (−0.5TSignal, 0.5TSignal) divided into cells with a
length of τbin.

Figure 2 is the simulation result based on Equation (11). The time bin is of the interval
(−0.5TSignal, 0.5TSignal). The origin of the time axis is the center of the echo signal. The
photon threshold k = 3. The σS is 1.02 ns, the number of pixels of SiPM is NCell = 2688,
and the mean number of fired pixels is ND = 7, 5, 3, 2, 1. Figure 2a shows the detection
probability based on Equation (11) under different echo light intensities. It indicates that, as
the intensity of the echo decreases, the center of the detection probability distribution shifts
to the right, and the full width at half maximum (FWHM) increases. Figure 2b shows the
detection probability under different laser pulses (ND = 7, FWHM = 1, 2, 3, 5 ns). Figure 2b
indicates that, as the FWHM increases, the probability distribution center shifts to the right,
and the ranging uncertainty increases. The centroid algorithm can calculate the triggered
time using the following equation:
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TSim =

∑
signalbins

P(i) · i · τbin

∑
signalbins

P(i)
(13)
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of the laser pulse.

Therefore, the range walk error can be calculated using the following equation:

RWE =
c
2
(TSim − TRe f ) (14)

where TRef is the reference time of flight. In the following experiment, TSim (ND = 46.5) is
recognized as TRef because the experimental ND varies from 1.3 to 46.5, and RWE is almost
unchanged when ND becomes large. Figure 3 depicts the simulation between RWE, the
detection probability and ND with a different photon threshold k. Figure 3a shows that the
RWE is large when ND varies from 1 and 10, while the rate of change in RWE is small when
ND becomes larger than 10. We also find that setting a higher threshold fails to improve
measurement accuracy, although it may help reduce false alarms and improve system
precision. In addition, as seen in Figure 3b, setting the photon threshold may lower the
detection probability when few photons are received, as the threshold may filter out some
signal photons, thus causing a loss in detection.
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3. Experiments and Analysis

Figure 4 shows the system structure diagram and the experimental platform. The MCU
generates the trigger signal divided into two channels. One channel triggers the laser
driver to generate the pulsed laser, and the other one is transmitted to the oscilloscope.
The emitted laser with a certain divergence angle is diffusely reflected by the flat target,
and, finally, only the reflected light in a specific direction is received by the detector. Then,
the SiPM signal is transmitted to the oscilloscope, and functions are utilized to measure
the time interval between the trigger and the echo signal. A multimode semiconductor
fiber laser (LSPLD905-50W) with a wavelength center of 905 nm is used as the light source.
The FWHM of the laser pulse is 2.40 ns, and the peak power is adjustable within 50 W.
The laser pulse emitted by the fiber passes through the collimating lens and is reflected
by the target. Thereafter, it hits the detector through the attenuator, the receiving lens
and the 905 nm narrowband filter. The analog SiPM detector used is the MPPC module
(C14193-1325SA, Hamamatsu) with 2668 Si-APD pixel SiPM (S13720-1325CS, Hamamatsu)
inside. The PDE (photon detection efficiency) of 7% is used for photons with a wavelength
of 905 nm. The oscilloscope used is the Infinium (DSO90604A, Angilent) with a 6 GHz
bandwidth and 20 GSa/s, which means that the time resolution is 50 ps. The power meter
used is PM101 from Thorlabs.

3.1. SiPM Response Measurement

The voltage of the analog SiPM signal is proportional to the number of fired pixels.
Figure 5 is obtained by setting the oscilloscope to the glow mode under the condition
that the echo signal is a few photons. The brighter the color, the higher the frequency
of the signal voltage distribution in the area. This indicates that the voltage of SiPM is
discontinuous but discrete. The voltage difference between adjacent bright lines VCell is
the peak voltage of the signal that a fired pixel generates. The mean number of fired
pixels ND, therefore, can be measured through the peak voltage VPeak generated by SiPM
as ND = VPeak/VCell. Then, NS is calculated based on Equation (8). The background noise
rate NNoise in the experiment is about 0.005 counts/ns. The noise level is measured in the
environment only with background noise. The statistic function of the oscilloscope can
count the number of pulses on the screen. By using this function, we count the mean
number of false alarm pulses appearing on the screen N. Then, the noise rate is calculated
as N/T, where T is the time span of the screen. By adjusting the laser power, the echo
light is attenuated to the order of a few photons, and the voltage of SiPM is measured by
the oscilloscope.
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3.2. Background Noise Measurement

As the SiPM’s signal is the summation of each pixel, an appropriate photon threshold
can effectively avoid the false alarms caused by ambient photons and dark counts. The
threshold voltage determines the number of photons that activate the TDC. Figure 6a shows
the triggered time tag distribution when setting the detection threshold to one-photon and
three-photon levels in the laboratory environment. Compared with Figure 6a, the false
alarm rate of Figure 6b is significantly reduced, as the background noise mainly causes
<3 pixels response [28]. Figure 6c shows that the detection precision is positively correlated
with the threshold. However, in practice, choosing the threshold photon number creates a
trade-off, with a higher threshold improving the SNR while lowering the probability of
successful detection [13]. In the following experiment, we set the threshold photon number
as 3 to avoid most of the false alarms and to guarantee the detection probability.
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3.3. TOF Measurement

The SiPM LiDAR using photon threshold detection suffers from RWE when the
number of received photons fluctuates as seen in Figure 3. Experiments are performed to
verify the effectiveness of the RWE correction method we proposed.

Fourteen groups of distance measurement data are obtained under different echo
signal intensities, with the ND varying from 1.30 to 46.45. Here, we adjust the power of the
semiconductor laser diode to achieve the number fluctuation of the received photons. The
experiments are performed for the attenuation rates of 1/1000. The distance between the
target and the system is 5.61 m, measured by a phase laser rangefinder (GLM-25, Bosch
Shanghai, China) with a precision of 1.5 mm.

In each group, the fixed threshold with k = 3, the CFD method and the PKD method
are separately utilized to measure the distance to the same target. As seen in Figure 7a, the
three methods are realized through the measurement functions in the oscilloscope, which
is controlled by python script through VISA COM [29]. The flight time using the threshold
method, TTH, is obtained through the function TVOLT, which measures the time interval
between the trigger event and the 2.5 p.e. voltage level on the SiPM signal. The flight time
using the CFD method, TCFD, is obtained through the function DELTatime, which measures
the time interval from the first specified edge on the trigger event to the next specified
edge on the SiPM signal. The flight time using the PKD method, TPKD, is obtained through
the function TMAX, which measures the first time at which the maximum voltage of the
source waveform occurs. The distance is calculated by aggregating 8000 measurements
for each method. Meanwhile, within the measurement using the fixed threshold method,
the peak voltage of SiPM is measured, and the detection probability PD is calculated. The
relationship between the peak voltage, detection probability and the power of the laser is
shown in Figure 7b. It indicates that the detection probability is positively correlated with
the emitted power of the laser. Moreover, the peak voltage of SiPM has an approximately
linear relationship with the laser power, which is consistent with Equations (3) and (8).
When the optical power continues to increase, the detection probability approaches 1. ND
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is calculated through the peak voltage of SiPM as ND = VPeak/VCell. Then, NS is obtained
through Equation (8).
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After obtaining the value of ND, a theoretical RWE based on Equation (14) is calculated
with TRef = TSim (ND = 46.5). Figure 7c shows the overall RWE correction process. Figure 8
shows the experiment and simulation results of the 14 groups. The results indicate that
the RWE between ND = 1.30 and ND = 46.45 is 36.57 cm using the fixed threshold method.
As the triggered time of ND = 46.45 is chosen as the reference time, the measurements with
a weaker echo signal have a longer triggered time. Therefore, the RWE is positive using the
fixed threshold method. By subtracting the simulation results from the experimental results
using the fixed threshold method, the RWE is reduced as presented in Figure 9c. The mean
RWE after correction is 1.95 cm compared with 7.91 cm using the CFD method and 18.91 cm
using the PKD method. As seen in Table 1 below, the proposed RWE correction method
shows better performance in improving system accuracy compared with the CFD method
and the PKD method. To verify that the proposed technique is valid with different types of
SiPMs, the Appendix A includes a set of TOF measurement experiments using the latest
detector with high PDE.
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Table 1. Accuracy result and precision of different echo signal intensities with 100 repetitive measure-
ments (part of).

ND 2.88 4.79 7.98 18.14 33.65

ETH (cm) 31.52 26.86 16.45 5.65 0.97
ECFD (cm) 15.74 17.21 12.80 5.83 0.79
EPKD (cm) −19.54 −13.44 −15.83 −16.23 −9.02
ETHC (cm) 4.34 5.30 0.51 −1.85 −0.91

Precision (cm) 1.19 1.11 1.31 0.27 0.21
ETH: RWE of threshold method. ECFD: RWE of CFD method. EPKD: RWE of PKD method. ETHC: Corrected RWE.

The precision in Table 1 shows that the precision of ND with aggregate 100 repetitive
measurements is within 0.25 counts, and the ranging precision with aggregate 100 repetitive
measurements is within 1.4 cm at the few-photon level. The results indicate that the
method does not require thousands of repeated measurements. Therefore, the method
is available in wide dynamic LIDAR applications, such as autonomous driving and fast-
moving target detection.

Moreover, as the peak voltage measurement requires an extra circuit, considering the
simplicity of the LiDAR system, there is another method to calculate ND with no extra
system design required. According to Equation (12), the whole detection probability of one
shot with the threshold photon number k can be calculated. The detection probability PD is
only related to the intensity of echo signal photons under certain instrument parameters.
The simulation between ND and PD is performed based on Equation (12) with the same
parameters of the above experiments. Meanwhile, we calculate the PD of the above 14 group
measurements using the fixed threshold method. PD is the ratio of the number of successful
detections to the number of total measurements. The result is as shown in Figure 5. The
black dots are the experiment results. It indicates that the simulation can predict the
relationship between ND and PD well. Then, ND can be estimated by the simulation
function we obtained in Figure 8a. The ND obtained from SiPM’s peak voltage is expressed
as NDP, and the ND obtained from the detection probability based on Equation (12) is NDR.
Figure 8a depicts the trend of NDP and NDR with the optical power. As seen in Figure 8b,
when the ND is less than 12, the result of NDR is close to that of NDP. However, when ND
becomes larger, the PD approaches 1 according to Figure 8a. The ∆NDR/∆PD in Figure 8a
becomes very large, which means that the error when measuring PD may induce a huge
error when estimating NDR. Considering the restriction of the number of times repeated
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measurements can be taken, the experimental PD may deviate from the true PD; thus, it is
not appropriate to estimate ND when the number of echo photons is large. As a result, ND
can be calculated through PD in few-photon detection.
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Figure 9. (a) Triggered time tag distribution using fixed threshold method with different mean
number of fired pixels, ND (left), and triggered time tag distribution using three methods with
ND = 2.48 (right). (b) Experiment and simulation result of RWE. The dashed line is the simulation
result; the blue triangles are the experiment results of fixed threshold method. (c) Correction results
of the three methods. The blue triangles are the error after applying the correction method; the black
squares are the CFD results; the red spots are the PKD results.

4. Conclusions

For the challenge of RWE, which SiPM LiDAR encounters in wide-dynamic-range
measurement applications, we propose an RWE correction method based on the Poisson
distribution of arrival photons and the photon number resolvability of SiPM. The only
input parameter of this method is the mean number of fired pixels, ND, which can be
obtained from the signal of SiPM or the detection probability. Experiments are carried out
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to verify our method. According to the experiment result, the RWE is almost 37 cm when
ND varies from 1.3 to 46.5. The mean residual RWE after complementing the correction
method is 1.95 cm, which shows better performance compared with the CFD method and
the PKD method. The ranging precision with aggregate 100 repetitive measurements is
within 1.2 cm at the few-photon level. The above result indicates that the method enables
RWE correction in photon threshold LiDAR systems based on SiPM.

In practice, the peak voltage measurement for the picosecond width pulse generated
from SiPM requires a complex system design. Considering the simplicity of the correction
method, the method based on detection probability to estimate the light intensity requires
no additional measuring system and can improve the accuracy within 4 cm when the
mean number of fired pixels fluctuates from 1.31 to 11.22. Therefore, this method may be
applicable in LiDAR for detection at the few-photon level.
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Appendix A

TOF Measurement with 9% PDE (Photon Detection Efficiency) SiPM

To verify that the proposed technique is valid with different types of SiPMs, the
Appendix Section includes a set of TOF measurement experiments using the latest detector
with high PDE. We change the detector from SiPM (S13720-1325SA, HAMAMATSU) to
SiPM (S15639-1325PS, HAMAMATSU, SiPM module from Gudatek, Hefei, China). The
comparison of the two types of SiPM is as shown in Table A1, and their photos are included
in Figure A1a.

Table A1. Comparison of the two types of SiPM.

Parameter S15639-1325PS S13720-1325CS

PDE (905 nm) 9% 7%

Dark count rate 0.7 MHz 0.5 MHz

Crosstalk probability 6% 6%

Rise time 500 ps 500 ps

Gain 1.7 × 106 1.1 × 106

Number of microcells 2120 2668

The experimental platform is as shown in Figure A1b. The schematic of the system
and the experimental devices is introduced in the manuscript. Eight groups of distance
measurement data are obtained under different echo signal intensities, with the ND varying
from 1.1 to 16.6. Here, we adjust the power of the semiconductor laser diode from 0.63 W to
13.83 W to achieve the number fluctuation of received photons. Meanwhile, within the mea-
surement using the fixed threshold method, the peak voltage of SiPM is measured as seen
in Figure A2a. After obtaining the value of ND, a theoretical RWE based on Equation (14)
is calculated, with NCell = 2120, ηq = 9% and TRef = TSim (ND = 16.68). Figure A2b shows the
experiment and simulation results of RWE.
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In our current work, the proposed RWE models take the PDE of the detector into
account according to Equations (5) and (6). The result of the TOF measurements using the
9% PDE SiPM in Table A2 shows that the method reduces the RWE from 29.07 cm to the
mean deviation of 2.33 cm, with the number of detected photons fluctuating from 1.1 to
16.6. Therefore, the method is proved to be effective for reducing the RWE emerging in the
SiPM LiDAR with 9% PDE, and the proposed model can accurately predict the response
characteristics of different SiPMs.

Table A2. Accuracy results with different echo signal intensities.

ND 1.13 1.91 4.88 7.72 8.40 11.00 14.22

ETH (cm) 29.07 26.00 18.03 11.43 9.81 6.26 2.42

ETHC (cm) 4.07 2.86 2.54 2.15 1.84 1.75 1.08
ETH: RWE of threshold method. ETHC: Corrected RWE.
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