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Abstract: Spiral pattern is formed for coaxial interference between two vortex beams with different
radii of wavefront curvatures and different topological charges (TCs). A theoretical model considering
various parameters (such as phase difference, radius of wavefront curvature, and TCs) is established
to predict all kinds of interference patterns. An improved Mach-Zehnder interferometer is set up in
an experiment to generate different kinds of spiral patterns and verify the theoretical model. The
number of spiral lobes is determined by the absolute value of TCs’ difference between two vortex
beams, and the twist direction relates to the sign of TCs’ difference and the difference of reciprocals
for the radii of wavefront curvature, clockwise for the same sign, and counterclockwise for the
opposite signs. The twist direction of the spiral pattern reverses and the lobes direction near the core
of the pattern changes obviously when the spherical wave changes from convergence to divergence.

Keywords: Laguerre-Gaussian vortex beam; topological charge; radius of wavefront curvature;
coaxial interference; Mach-Zehnder interferometer; spiral pattern

1. Introduction

The Laguerre-Gaussian (LG) vortex beam with an exp(ilϕ) azimuthal phase, where l is
called topological charge (TC), has a doughnut intensity distribution and carries an orbital
angular momentum (OAM) of lh̄ (h̄ is the reduced Planck’s constant) per photon [1]. It is
widely applied in realms such as optical communications [2–4], trapping, and manipulating
micrometer-sized particles [5,6], measuring the rotational speed of a rotating object [7],
fabricating chiral nanostructures [8–10], and atomic optics and spectroscopy [11], etc. The
phase structure of a vortex beam presents l intertwined helical phase fronts. According
to the sign of TC l, the vortex beam can be divided into two types, the left-hand vortex
beam (positive l) and the right-hand vortex beam (negative l). Although the phase changes
in different directions (counterclockwise and clockwise) and surround the singularity for
left- and right-hand vortex beams with the same TC value and the opposite sign, their
beam patterns show the same annulus structure, and we cannot distinguish them from
each other simply by the beam pattern [12]. The determination of TC carried by the vortex
beam has become a popular research topic in recent years, and various techniques based on
the interference and diffraction characteristics of vortex beams have been proposed [12–38].
The most commonly used TC detection method is based on Mach-Zehnder interferometer
(MZI) [19–24], which uses beam splitters in combination with mirrors to interfere two
beams passing through two arms of different paths, and allows their phase structure to be
compared with each other. For off-axis interference between two plane wave vortex beams
of different TCs, fork-shaped fringes form, and the sign and magnitude of TCs’ difference
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can be determined by analyzing these interferograms and the orientation between two
vortex beams [13–21]. For coaxial interference between two plane wave vortex beams of
different TCs, a petal-shaped pattern forms, and the petal number is just the magnitude of
TCs’ difference [23–27]. For coaxial interference between a plane wave vortex beam and
a spherical wave beam, a spiral pattern forms, and it can be used to decide both the sign
and value of TCs [20,28–32]. Furthermore, the coaxial interference between a plane wave
vortex beam and a spherical beam also has significance application in fields such as optical
measurement [39] and the fabrication of chiral microstructures materials [9].

The coaxial interference of a wave possessing helical wavefront (vortex beam carrying
TC of l) with a reference wave of spherical wavefront (tightly focused TEM00 Gaussian
beam) produces the spiral pattern, exhibiting |l| fringes radiating from the center. The
number of spiral lobes reveals the value of TC, and the rotation direction of the spiral fringe
(twist direction) is determined by the sign of l and relative wavefronts curvature radii of
two beams. When the plane wave vortex beam is interfered by the copropagating diver-
gent spherical beam, the twist direction is clockwise for negative l and counterclockwise
for positive l. On the other hand, the opposite twist direction can be obtained when the
plane wave vortex beam is interfered with the copropagating converging spherical beam.
M. S. Soskin and coworkers studied the interference characteristics between the screw-
dislocation wave (vortex beam) and spherical wave systematically for the first time [28–30].
They showed a simple equation to describe the interference pattern produced by the usual
plane wave and the screw-dislocation wave (vortex wave) when both waves are propagated
in the same direction [28], and established important rules for the determination of the
TC value and helicity of screw-dislocations [29]. They also tested the spatial structure of
optical vortex helical wavefronts by using various interference arrangements and precise
measuring techniques and demonstrated that coaxial interference pattern contains the
data both on the phase difference of the reference and tested beams at each point of the
observation plane, as the parameters of the reference wave (such as amplitude distribution
and radius of curvature of the wavefront) are known [30]. In 2016, J. Jin et al. demon-
strated a metasurface composed of two sets of elliptical nanoholes to generate and detect
the OAM [32]. An array of elliptical nanoholes allow converting the circularly polarized
light into the cross-polarized vortex beam, and another elliptical nanoholes array allow
generating the spherical reference wave to interference with the vortex beam coaxially
and detect the OAM by the spiral pattern. The twist direction of spiral fringes for the
interference between the helical wavefront and the divergent wavefront is opposite to the
case of convergence wavefront interference [32]. Recent work by D. Yang et al. proposed
a new method for the radius of curvature of spherical wave measurement based on the
vortex beam interference and Fermat’s spiral fitting [40]. The interference model during
theoretical analysis considers the interference between the plane wave vortex light and the
spherical wave to describe the characteristics of spiral fringe, while in the actual experi-
ment the interference between a collimated vortex light and a convergent (or divergent)
fundamental Gaussian beam (tightly focused TEM00 Gaussian beam) is used [32]. There
exists an obvious difference between the spherical wave (the simply light field expression
is E = (A/r) exp

[
ikr2/(2R)

]
exp[ikz + iϕ1], where R denotes the radius of wavefront cur-

vature of the spherical wave) and the fundamental Gaussian beam (the simply light field

expression is E = [A2/
√

1 + (z/zR)
2] exp

[
−r2/w2] exp

[
ikr2/(2R)

]
exp[ikz + iϕ2], where

zR is Rayleigh length and w is the beam waist, and suppose that the minimum waist is
located at z = 0). This difference will lead to the deviation of experimental results from
the simulation ones. As far as we know, there is no quantitative study on the coaxial
interference between two actual vortex beams with different radii of wavefront curvature.
The aim of this article is to study the factors affecting the spiral pattern formed by coaxial
interference between two vortex beams with different radii of wavefront curvatures, both
theoretically and in experiment, and give a general rule for the determination of TCs carried
by an unknown vortex beam. The novelties are the establishment of a theoretical model
describing the coaxial interference of actual LG0l vortex beams, and the explanations why
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the twist direction reverses and why the lobes direction near the core of the pattern changes
obviously when the spherical wave changes from convergence to divergence.

In this paper, a systematic study on coaxial interference patterns between two vortex
beams with different radii of wavefront curvature is presented. Section 2 is devoted to
comprehensive description of the theoretical model about coaxial interference between
two vortex beams with different radii of wavefront curvature. Experimental procedures
to generate the coaxial interference patterns between two vortex beams of different TCs
are presented in Section 3. Experimental results and simulations, including effects of
phase difference, radii of wavefront curvature difference, and TCs difference between two
interference beams on the interference pattern, are discussed in Section 4. The article ends
with the conclusion in Section 5. These results not only broaden the understanding of the
interference between two vortex beams, but also provide guidelines for vortex beam-based
metrology and vortex beam diagnostics.

2. Theoretical Analysis

We use the LG vortex beam as an example of optical vortex during our study. In
cylindrical coordinates, the complex amplitude of the optical field for LG vortex beam LG0l
carrying TC l and oriented along z is expressed as [21]:

E0l(r, ϕ, z) =

√
Pl(|l|+ 1)

πncε0|l|!w2
0l(z)

[√
2(|l|+ 1)r
w0l(z)

]|l|
exp

[
− (|l|+ 1)r2

w2
0l(z)

]
exp[iψ0l(r, ϕ, z)] (1)

Here, Pl represents the power of the vortex beam, n is the refractive index of the
transmission medium for light at wavelength λ, ε0 is the permittivity of vacuum, and c is

the speed of light in vacuum. w0l(z) = w0l

√
1 + [(z− zl)/zRl ]

2 and w0l are the spot radius
and the waist radius of LG0l vortex beam, respectively. zl and zRl = πnw2

0l/[λ(|l|+ 1)]
are the beam waist′s position and Rayleigh length, respectively. The phase ψ0l(r, ϕ, z) is
given by

ψ0l(r, ϕ, z) = −(|l|+ 1)arctan[(z− zl)/zRl ] + kr2/[2Rl(z)] + lϕ + kz (2)

Here, Rl(z) = zRl [(z− zl)/zRl + zRl /(z− zl)] is the radius of wavefront curvature,
and k = 2πn/λ denotes the wave vector modulus.

To generate the spiral pattern, two LG vortex beams carrying TCs of l1 and l2 are
arranged to interfere coaxially. Here we consider |l1| ≤ |l2| for simplicity. When both two
vortex beams propagate in the same direction, they are superimposed to be:

Etotal(x, y, z) = E0l1(x, y, z) + E0l2(x, y, z) exp(iδ) (3)

The interference pattern is governed by the interference light intensity distribution on
a screen (z constant):

I(r, ϕ, z)= 2ncε0|Etotal(r, ϕ, z)|2= 2ncε0|E0l1(r, ϕ, z) + E0l2(r, ϕ, z) exp(iδ)|2

= 2P1(|l1|+1)
π|l1|!w2

0l1
(z)

[
2(|l1|+1)r2

w2
0l1

(z)

]|l1|
exp

[
− 2(|l1|+1)r2

w2
0l1

(z)

]
∗
{

1 + Q2(r) + 2Q(r) cos
[
ψ0l2(r, ϕ, z)− ψ0l1(r, ϕ, z)+δ

]} (4)

Here δ is the phase difference between two vortex beams. Q(r) is defined as

Q(r) =

√√√√ (|l2|+ 1)|l2|+1|l1|!P2

(|l1|+ 1)|l1|+1|l2|!P1

w|l1|+1
0l1

(z)

w|l2|+1
0l2

(z)

(√
2r
)|l2|−|l1|

exp

[
−
(|l2|+ 1)w2

0l1
(z)− (|l1|+ 1)w2

0l2
(z)

w2
0l1
(z) ∗ w2

0l2
(z)

r2

]
(5)

The spiral pattern is determined by the interference term cos
[
ψ0l2(r, ϕ, z)− ψ0l1(r, ϕ, z)+δ

]
.

Here, ψ0l2(r, ϕ, z)− ψ0l1(r, ϕ, z) can be specific expressed as
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ψ0l2(r, ϕ, z)− ψ0l1
(
r, ϕ, z) = (|l1|+1)arctan[(z− zl1)/zRl1 ]−

(
|l2|+1)arctan[(z− zl2)/zRl2 ]

+[1/Rl2(z)− 1/Rl1(z)]kr2/2 + (l2 − l1)ϕ
(6)

The interference term on the detector can be further expressed as:

cos
[
ψ0l2(r, ϕ, z)− ψ0l1(r, ϕ, z)+δ

]
= cos

{[
1/Rl2(z)− 1/Rl1(z)

]
kr2/2 + (l2 − l1)ϕ + δ′

}
(7)

Here, δ′ = (|l1|+ 1)arctan[(z− zl1)/zRl1 ]−
(
|l2|+1)arctan[(z− zl2)/zRl2 ] + δ is the

effective phase difference. The equation for the maximum distribution of the interference
light intensity (the bright fringe) will have the form:[

1/Rl2(z)− 1/Rl1(z)
]
kr2/2 + (l2 − l1)ϕ + δ′ = 2mπ, (m = 0,±1,±2 · · · ) (8)

Here, m relates to the number of cycles in the interferogram. The curve plotted by the
maximum light intensity governed by Equation (8) represents a Fermat’s spiral [40]. The
Fermat’s spiral relates to both 1/Rl2(z)− 1/Rl1(z) and the difference of TCs l2 − l1. At the
beam center (r = 0), the interference term shown by Equation (8) becomes cos[(l2− l1)ϕ+ δ′],
thus resulting in the phenomenon that |l2 − l1| fringes are born or vanished from the beam
center. At other regions, with the increase of r from 0, the interference pattern presents as a
spiral pattern for Rl1(z) 6= Rl2(z). The number of spiral lobes is just |l2 − l1|. Equation (8)
also indicates that the smaller the difference of reciprocals for wavefront curvature radii
1/Rl2(z)− 1/Rl1(z), the larger the radical coordinate r under the same ϕ, and the smaller
the number of cycles (m) in the interferogram. Further, the larger the number of cycles (m)
in the interferogram, the denser the spiral will be. When ϕ is fixed, bright and dark fringes
appear alternately with the increase of r. The space ∆r between adjacent fringes satisfies
[1/Rl2(z)− 1/Rl1(z)]k(r + ∆r/2)∆r = 2π.

Compare the following two cases. (i) Fix the wavefront curvature radii Rl (z) and
exchange the TCs of two vortex beams, the interference term shown in Equation (7) be-
comes cos{[1/Rl2(z)− 1/Rl1(z)

]
kr2/2 + (l1 − l2)ϕ + δ′

}
; (ii) Fix the TCs and exchange

the wavefront curvatures Rl (z) of two vortex beams, the interference term becomes
cos
{
[1/Rl2(z)− 1/Rl1(z)]kr2/2 + (l1 − l2)ϕ− δ′

}
. Except for the effective phase differ-

ence ± δ′, the interferograms for the two cases above are similar. We conclude that the
twist direction of the interferograms between two vortex beams depends on both the sign
of TCs’ difference (l2 − l1) and the difference of reciprocals for wavefront curvature radii
[1/Rl2(z)− 1/Rl1(z)]. If 1/Rl2(z) > 1/Rl1(z), the twist direction is clockwise for l2 > l1,
while counterclockwise for l2 < l1. If 1/Rl2(z) < 1/Rl1(z), the twist direction is clockwise
for l2 < l1 and vice versa.

3. Experiment Setup

The schematic of experimental setup is similar to our previous work [21] and shown in
Figure 1. Firstly, the continuous-wave, single-frequency (line width of <100 kHz) 1064 nm
laser from the collimator of Yb-fiber laser and amplifier (NKT Photonics, Koheras Y10)
passes through the optical isolator and power-control system, which is composed of a half-
wave plate (HWP) and a polarizing beam splitter (PBS). Then, the transmitted laser beam
is recollimated again by using a plano-convex lens f 0 with a focal length of 500 mm. After
that, the collimated laser beam is used as the fundamental Gaussian beam in the following
experiment. Secondly, two spiral phase plates (SPPs, UPO Labs) of winding number
corresponding to vortex orders, l = 1 and 2, allow converting the Gaussian beam (|l= 0〉) to
the vortex beam of |l = ±1,± 2,±3〉 [12,41,42]. A dove prism is used to convert the vortex
beam of |l〉 to |−l〉. The MZI, composed of M1, M2, BS1, and BS2 (non-polarizing), is used to
realize the coaxial interference of two vortex beams. The dove prism and SPPs are inserted
in the MZI to generate vortex beams with different TCs required. The beam expander
composed of two lenses f 3 and f 4 is inserted in one arm of the MZI. Two lenses with
different focal lengths of f 1 and f 2 are inserted into two different arms of MZI, respectively,
so that the two interference beams possess different radii of curvature at the detected plane.
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The position of mirror M1, which is mounted on a translation stage, is carefully adjusted to
control the relative phase difference δ between two vortex beams. Finally, the interference
patterns are recorded using the CMOS camera (CinCam, CMOS-1202).

Figure 1. Schematic of the experimental setup; (inset); typical intensity distribution of the beams
in the experiment. M1 and M2, high reflection mirrors; f 0–f 4, lens; HWP: half-phase plate; PBS,
polarizing beam splitter; BS, 50/50 non-polarizing beam splitter.

Detail experimental procedures are as follows. (1) Although the lens f 0 with a focal
length of 500 mm is used to collimate the laser beam output from the laser, the collimated
beam is still slightly focused with beam waist of~800 µm at the position 1 m after lens f 0.
The CMOS camera is placed at the waist position for the first time. The MZI is inserted
between the lens f 0 and the camera. Since the dove prism and spiral phase plates are
inserted into two arms of MZI, respectively, the optical paths of two arms of MZI are
unequal; (2) Block the optical path of BS1-M1-BS2, and tune the position of camera slightly
for the second time to make the camera at the waist of the beam pass the BS1-M2-BS2 path
(zl2). Block the optical path of BS1-M2-BS2, focus the beam passing BS1-M1-BS2 path with
the lens f 1 (focal length of 50 mm), and adjust the position of f 1 carefully to make the beam
waist (zl1 ) right at the position of the camera. The waist positions of two interfering beams
now coincide (zl1 = zl2). The camera is changed for the third time to the new position,
where the spot radii of two beams are the same after the position of the beam waist (z > zl1 ).
Experimental results for effects of phase difference between two interference beams on
spiral patterns and spiral patterns formed by coaxial interference between two vortex
beams are measured; The steps (3) and (4) shown below are performed to study on effects
of wavefront curvature radii relations between two interference beams on spiral patterns.
(3) The beam expander is inserted in the BS1-M1-BS2 arm of the MZI to enlarge the beam
radii to twice that of its original size (the spot radii ratio of two collimated beams w01:w02 is
1:2). Follow the procedure shown above to coincide the waist positions of two interference
beams (zl1 = zl2) (except that the beam passing BS1-M1-BS2 is focused by lens f 1 with
a focal length of 200 mm). The camera is detected at different propagation distance z to
record the interference pattern; (4) Two collimated beams with different ratios of spot
radii w01:w02 = 1:2 (2:1) are focused with lenses f 1 and f 2, respectively, so that different
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relations for radii of wavefront curvature between two interference beams are realized at
the measurement position, where the spot radii of two beams are the same.

4. Results and Discussion

The coaxial interference patterns of two beams under different experimental conditions
(such as the effective phase difference δ′, different radii of wavefront curvature Rl(z), and
TCs) are investigated experimentally and theoretically. The results will be presented one
by one below.

4.1. Effects of Phase Difference between Two Interference Beams on Spiral Patterns

Effect of effective phase difference δ′ between a TEM00 Gaussian beam and a vortex
beam carrying TC of l2 = 1 on the lobe direction in the spiral pattern is studied and shown in
Figure 2a,b. Figure 2c presents the beam radii of two interference beams versus propagation
distance z. Since the interferograms are detected at the position where the beam spots of
two interference beams are the same, the radii of wavefront curvature satisfy the relation:
1/Rl1 > 1/Rl2 . The origination or vanishing of one interference fringe takes place at
the center (exhibiting one lobe), and the twist direction rotates counterclockwise. With a
gradual increase of the effective phase difference δ′ from 0 to 3π/2 (2π) (corresponding to
Figure 2(a1–a4)) respectively, the lobe direction rotates 270◦ (a circle) clockwise around the
core of the vortex beam.

Figure 2. Effect of the effective phase difference δ′ between the Gaussian beam (|l1= 0〉) and the vortex
beam (|l2 = 1〉) on the lobe direction. Images (a,b) show interference patterns; Row (a) shows the
experimental results, and row (b) shows the simulation results. The color bar is shown for numerical
simulation. (c) shows the beam radii of two interference beams versus the propagation distance.

From the expression of the effective phase difference δ′, we can infer that δ′ affects
both the direction of the spiral lobes and the fringe brightness near the core of the beam. In
order to illustrate the effect of δ′ on the fringe brightness at the beam center, the interference
pattern between two TEM00 Gaussian beams are considered. The relationship of their radii
of wavefront curvature is similar to that shown in Figure 2c (1/Rl1 > 1/Rl2). Figure 3
shows the change of interference light intensity at the beam center versus the effective
phase difference δ′. Coaxial interference between two TEM00 gaussian beams with different
radii of wavefront curvature results in Fresnel rings (concentric rings). When δ′ increases
from 0 to π, and then to 7π/4, (corresponding to Figure 3(a1–a6)), the brightness at the
beam center changes from the brightest to the darkest and then gradually brighter. The
running out of the rings from the center (or running them to the center), as δ′ changes by
2π. This is similar to Newton’s rings.
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Figure 3. Effect of the effective phase difference δ′ between two Gaussian beams (|l1= 0〉) on the
interference light intensity at the beam center. Row (a) shows the experimental results, and row
(b) shows the numerical simulation results.

4.2. Effects of Wavefront Curvature Radii Relations between Two Interference Beams on
Spiral Patterns

Coaxial interference characteristics between a TEM00 Gaussian beam and a vortex
beam (|l = ±2〉) with different radii of wavefront curvature are studied in this part.

We consider the interference between a focused TEM00 Gaussian beam (focusing by a
lens f 1 with a focal length of 200 mm) and a collimated vortex beam (|l2 = 2〉) first. The
camera is detected at a different propagation distance z to record the interference pattern
under the different differences of reciprocals for wavefront curvature radii. Figure 4a,b
shows the spiral pattern measured by camera and the simulated results. The beam radii
of two interference beams at different propagation distance z are shown in Figure 4c. As
shown in Figure 4a,b, the interference pattern exhibits a spiral pattern with two lobes, and
the experimentally recorded patterns are in good agreement with the theoretical expected
profiles. Taking z = 0 as the reference position of the beam waist (zl1 = zl2 = 0). At the
focusing plane (z = 0), we can observe a spot image as shown in Figure 4 (a5,b5) because
the intensity of the focal spot is much larger than the intensity of the vortex beam. For
the image plane before the focusing plane (z < 0), the twist direction for the spiral fringe
for interference between the helical wavefront and the convergence wavefront comes into
clockwise, while the twist direction of spiral fringes for interference between the divergence
TEM00 Gaussian beam and the collimated vortex Gaussian beam (z > 0) is opposite to the
case of convergence wavefront interference. This is because the relation between the radii of
wavefront curve for two interference beams changes from 1/Rl1 < 1/Rl2 to 1/Rl1 > 1/Rl2
for the propagation distance z changing from negative to positive (as shown by the black
solid line in Figure 4d). Meanwhile, we also notice that the direction of the lobes near the
core of the pattern changes with the propagation distance z. This is due to the Gouy phase
shifts [43,44] for two interference beams undergoing different degrees of change with z,
thus resulting in the effective phase difference δ′ changing with the propagation distance z
(as shown by the red dash line in Figure 4d).

We then consider the interference between a TEM00 Gaussian beam and a vortex beam
with different wavefront curvature radii. The CMOS camera is detected at the position
where two interference beams have the same spot radius. Figure 5 presents the spiral
patterns measured by camera and the corresponding simulations. The interference pattern
between a TEM00 Gaussian beam and a vortex beam of |l2 = ±2〉 exhibits a spiral pattern
with two lobes. When the interference occurs between |l1 = 0〉 and |l2 = −2〉, the twist
direction is clockwise for 1/Rl1 > 1/Rl2 , and counterclockwise for 1/Rl1 < 1/Rl2 . When
the interference occurs between |l1 = 0〉 and |l2 = 2〉, the twist direction is clockwise for
1/Rl1 < 1/Rl2 , and counterclockwise for 1/Rl1 > 1/Rl2 . Although the sign of vortex TCs
in Figure 5(a2,a5), and in Figure 5(a3,a4) are opposite, the interference patterns are similar
and the twist direction is counterclockwise. Thus, for a correct determination of the TC, it
is necessary to know the relation of the wavefront curvature radii between two beams.
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Figure 4. Coaxial interference characteristics between a focused TEM00 Gaussian beam and a
collimated vortex beam (|l2= 2〉). Images (a1–a9) show the experimentally measured spiral pattern,
and images (b1–b9) correspond to the numerical simulations. (c,d) are the calculated spot radii and
wavefront curvature radii (difference of Gouy phase shifts) of two interference beams versus the
propagation distance z, respectively.

Figure 5. Interferograms of a focused TEM00 Gaussian beam and a focused vortex beam (|l2 = ±2〉)
with different wavefront curvature radii; (a1–a6) the experimentally measured spiral pattern;
(b1–b6) the numerical simulations.

4.3. Spiral Patterns Formed by Coaxial Interference between Two Vortex Beams

In this part, the interference characteristics for two vortex beams are studied. The
interference between two vortex beams with a TCs’ difference of 0 and 2 is considered first.
The camera is detected at the position where the spot radius of parallel vortex beam |l2〉 is
the same as that of the divergent vortex beam |l1〉, so that the relation: 1/Rl1 > 1/Rl2 holds.
The interference patterns are shown in Figure 6. As shown by Figure 6a–c, the interference
pattern for TCs’ difference of 0 exhibits concentric rings, and the radius of the inner ring
increases with the increase of the TCs value. As shown by Figure 6d–g, the interference
pattern for the module of TCs’ difference of 2 exhibits a spiral pattern with two lobes, and
the twist direction is clockwise. The interference patterns are similar for the fixed TC’s
difference, except a slight difference of fringes near the center position. Numerical results
agree well with the experimental ones.
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Figure 6. Coaxial interference characteristics between two vortex beams with TCs’ difference of
0 (columns (a–c)) and 2 (columns (d–g)). Row 1 shows the experimentally measured interference
patterns, and row 2 corresponds to the simulation ones.

Comparing different images shown above, we can draw the following conclusions:
(i) The spiral lobes N equals to the module of the TCs’ difference (N = |l1 − l2|); (ii) The
twist direction (clockwise or counterclockwise) depends on both the sign of l1 − l2 and
1/Rl1 − 1/Rl2 , clockwise for the same sign, and vice versa. (iii) The spiral pattern dis-
appears and becomes to concentric rings, when the TCs of two interference beams are
the same.

Interference pattern formed by coaxial interference between two vortex beams carrying
a large number of TCs is also studied numerically. Due to lack of SPPs with TCs of large
value, we did not perform the experiment in this part. During the calculations below,
we suppose both beams have a waist at z = 0, and choose w1 = 1 mm, and w2 = 0.8 mm,
respectively. The interference pattern is detected at the position where two interference
beams have the same beam spots at z > 0, thus resulting in 1/Rl1 < 1/Rl2 . During the
simulations, l2 is kept fixed at 100, and l1 is changed from 0 to 200. As shown in Figure 7,
the spiral lobe number is equal to |l1 − l2|, the twist direction is clockwise for l1 < l2,
and counterclockwise for l1 > l2. Although the TCs of vortex beam is as high as 100, the
conclusions mentioned above still hold. The interference pattern for coaxial superposition
between a Gaussian beam and a vortex beam with large value TCs is shown in Figure 7a1,
the interference fringes show exactly 100 clockwise spiral fringes from the singularity. The
spiral lobes are so dense that it is difficult to count them clearly. It also shows that the
traditional method of coaxial interference between a Gaussian beam and a vortex beam is
not suitable for measuring the large value TCs carried by the vortex beam. As shown in
Figure 7a2–e2, the spiral pattern will be clear to distinguish, if the TCs of the two vortex
beams are close to each other. These results indicate that the vortex beam of unknown TCs
can be detected by coaxial interfering it with a reference vortex beam of known TCs.
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Figure 7. Numerical calculations of coaxial interference patterns between two vortex beams carrying
TCs of large number. Row 1 shows the interference patterns between |l1= 0, 50, 80, 90, 95〉 and
|l2 = 100〉, row 2 shows the interference patterns between |l1 = 98, 99, 100, 101, 102〉 and |l2 = 100〉,
and row 3 shows the interference patterns between |l1 = 105, 110, 120, 150, 200〉 and |l2 = 100〉.

5. Conclusions

In summary, a systematic study of coaxial interference patterns between two vortex
beams was carried out. Three important conclusions were obtained. (i) The phase difference
between two interference beams affects both the direction of the spiral lobes and the fringe
brightness at the beam center; (ii) For coaxial interference between a plane wave and a
spherical wave, when the spherical wave changes from convergence to divergence, the
twist direction of spiral pattern will be reversed; (iii) For spiral pattern, the number of spiral
lobes is determined by the absolute value of TCs’ difference between two vortex beams
(|l1 − l2|), while the twist direction depends on the sign of TCs’ difference (l1 – l2) and
difference of reciprocals for wavefront curvature radii (1/Rl1 − 1/Rl2), clockwise for the
same sign, and counterclockwise for opposite signs. The results deepen the understanding
of coaxial interference between two vortex beams. The spiral pattern can be used in a
variety of fields, such as detecting the sign and value of the TCs carried by an unknown
vortex beam, measuring the curvature radius (or focal length) of the concave mirror (lens)
and fabricating the chiral microstructures of materials.
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