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Abstract: We demonstrate a pruned high-speed and energy-efficient optical backpropagation (BP)
neural network. The micro-ring resonator (MRR) banks, as the core of the weight matrix operation,
are used for large-scale weighted summation. We find that tuning a pruned MRR weight banks
model gives an equivalent performance in training with the model of random initialization. Results
show that the overall accuracy of the optical neural network on the MNIST dataset is 93.49% after
pruning six-layer MRR weight banks on the condition of low insertion loss. This work is scalable to
much more complex networks, such as convolutional neural networks and recurrent neural networks,
and provides a potential guide for truly large-scale optical neural networks.

Keywords: optical neural network; network pruning; BP neural network; MRR

1. Introduction

In the past twenty years, deep neural networks have become a milestone in artificial
intelligence for its superior performance in various fields, such as autonomous driving [1],
stock forecasting [2], intelligent translation [3], and image recognition [4]. However, for the
reason of enormous computation in matrix multiplication, traditional central processing
units are gradually becoming suboptimal for implementing deep learning algorithms.
Silicon photonics [5] provide superior performance in energy consumption [6,7] and com-
putational rate [8] over electronics, which has become an attractive platform. Photonic
integrated circuits can easily realize matrix multiplication with the coherence and su-
perposition of linear optics [9]. The advantages of photonics have promoted extensive
demonstrations of various high-performance optical functionalities, especially in pho-
ton computing [10–15]. The programmable Mach Zehnder interferometers realize optical
interference units for optical neural networks [11,16], and MRRs are used for optical matrix-
vector multipliers to implement neuromorphic photonic networks [17–19]. In addition,
diffractive optics [20–22], space-light modulators [23,24], semiconductor optical ampli-
fiers [25], optical modulators [26,27], and other related optical devices are used to achieve
powerful deep learning accelerators, which can perform machine learning tasks with
ultra-low energy consumption [28].

The realization of large-scale optical neural networks is still a challenge, though matrix
operations can be implemented with special optical components. Excessive integrated
optical elements not only increase the manufacturing cost and loss of photonic integrated
circuits but also make the adjustment of optical elements more complex [29]. Pruning
has been widely used to simplify the model of neural networks [30]. As a typical method
of model compression, it can solve the problem of over-parameterization effectively by
removing redundant parameters.

In this paper, we demonstrate an optical neural network based on a pruned BP model.
MRR banks are used for the matrix computing core can be pruned to the optimum size.
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Results indicate that the accuracy of the proposed algorithm is 93.48% in the MNIST
dataset with six-layer MRR weight banks pruned. Thus far, we have found that no one
has used network pruning to compress optical components. This work can be derived to
more complex networks and provides a feasible path toward truly large-scale all-optical
neural networks.

2. Materials and Methods
2.1. Backpropagation Neural Network

BP [31] neural network is widely used for strong nonlinear mapping ability in classifi-
cation. A typical BP neural network includes input layers, hidden layers and output layers.
The number of nodes in the input and output layers are always fixed, while the nodes in
hidden layers largely affect the performance of neural networks.

The training of a BP neural network includes two processes, forward propagation and
backpropagation. Input data are calculated to produce output in forward propagation,
which is similar to a typical neural network. The difference comes when expected outputs
differ from actual outputs. In backpropagation, deviation is transmitted backward and
forward and distributed to all nodes. Parameters of the network are corrected according
to the deviation information so that the deviation decreases along the fastest gradient
direction. The weights and biases of BP neural networks are updated as follows.

Output of layer L is defined by:

yL = f (xL) (1)

xL = wL ∗ yL−1 + bL (2)

where f is the activation function of neural networks, yL−1 represents the output of layer
L− 1, wL and bL are weight and bias of layer L.

The evaluation function is defined by:

EN =
N

∑
j=1

(
tj − yj

)2 (3)

where N represents the total number of samples, tj and yj represent actual and predictive
categories, respectively.

The iterative formulas of weights and biases based on the gradient descent method in
the BP model are given as:

WL
k = WL

k−1 − η
∂E

∂WL
k−1

(4)

bL
k = bL

k−1 − η
∂E

∂bL
k−1

(5)

where η is defined as learning rate, a parameter used to control the convergence rate. The
value of η is larger at the early stage of training, so weights and biases are updated at a
faster speed. Then η is gradually reduced, which is helpful for the convergence of training.

Despite the huge success, a BP neural network needs a lot of computing capacity
for its excess parameters. Therefore, network pruning and optical neural networks are
introduced to remove redundant parameters and speed up inference.

2.2. Network Pruning

Over-parameterization is widely recognized as one of the basic characteristics of deep
neural networks. It ensures that deep neural networks have strong nonlinear mapping
ability at the expense of high computational cost and memory occupation. Pruning has been
identified as an effective technique to solve this [32]. Weight-elimination [33] is a typical
pruning method. It introduces a regularization term to represent structural complexity in
network objective function, which can be used to make weights sparser.
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Reference [34] introduces the minimum description length (MDL) to describe the
complexity of machine learning. According to MDL, the error function is defined by:

Err = Err1 + Err2 (6)

Err1 has been given in Equation (3).
Err2 is as follows:

Err2 = λ∑
j

w2
j /w2

0

1 + ω2
j /w2

0
(7)

where w0 is called base weight with fixed value, λ is a dynamical parameter that can
be adjusted.

Different from the training of the BP model, regularization is introduced into weight
adjustment in pruning, which is defined by:

wj(k) = wj(k− 1) +∆w1
j + λ∆w2

j (8)

where
∆w1

j = −η
∂Err1

∂W j
(9)

∆w2
j = −η

∂Err2

∂W j
= −

2wj/w2
0(

1 + ω2
j /w2

0

)2 (10)

Redundant weight decreases continuously until it is small enough to be deleted in
training. A hidden node will be deleted when all of its output weight values are close to
zero and incorporated into the offset node when all of its input weights are close to zero.
Then, we get a simplified model, as shown in Figure 1.

Figure 1. Illustration of pruning: The red node is pruned for all its input weight values that are close
to zero with its bias transmitted to the next layer.

2.3. Optical Components and Silicon Photonic Architecture

The MRR banks are the core of the matrix computing. An add-drop MRR consists of
two straight waveguides and a circular waveguide, and the straight waveguide at the drop
end is set in a curved shape in order to reduce crosstalk sometimes [35]. It has four ports,
which are, respectively, called input, through, upload and drop port, as shown in Figure 2a,
and z1 and z2 serve as coupling regions. Such a silicon waveguide can be fabricated by
nanophotonic processing technology, which is compatible with standard complementary
metal oxide semiconductor (CMOS) fabrication [36,37]. The add-drop MRR resonance
condition is described by:

θ = βL =
4π2ne f f r

λ
(11)

The parameter θ represents the phase biases through a circular waveguide, and β
as the propagation constant of light, which is mainly affected by wavelength λ and the
effective index of refraction between the ring and waveguide ne f f . The parameters L and r
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represent the circumference and radius of the MRR, respectively. Mapping a current in an
MRR can change the value of ne f f , yielding a shift of the resonance peak [38].

The transfer function of optical intensity going to the drop port from the input is
represented by:

Td =
k1

2 k2
2α

1− 2αt1t2cos(ϕ) + α2t2
1t2

2

(12)

The transfer function of the through port light intensity with respect to the input light is

Tp =
t2
1 − 2αt1t2cos(ϕ)− α2t2

2

1− 2αt1t2cos(ϕ) + α2t2
1t2

2

(13)

where parameters t1 and t2 represent the transmission coefficients of z1 and z2, k1 and
k2 represent the mutual coupling factors, respectively. The parameter α defines the loss
coefficient in the ring waveguide. Figure 2c shows an MRR without resonance, and the
light is all of the output to the through port. Figure 2d shows an MRR in the resonant state,
and the light from the straight waveguide is transmitted to the ring. The effective refractive
index between the waveguide and the MRR circle causes the phase shift of the light, which
interferes with the intensity of the original light and finally outputs to the drop port.

(a) (b)

(c) (d)
Figure 2. (a) An add-drop MRR, which includes two coupling regions and four ports. (b) The transfer function of Td-Tp.
The light has five resonances in different wavelengths, and the red curve represents the through port, and the blue one is the
drop port. (c) The state of add-drop MRR without resonance, light is transmitted from the input to the through port. (d) The
state of resonance. The light from the straight waveguide is transferred into the ring, and the effective index of refraction
between the waveguide and the MRR and the circumference of the MRR cause the light to have a phase shift, thereby the
intensity of the original light is interfered and finally outputs from the drop port.
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Assuming that the input light has an amplitude of E0, and the coupling losses are
negligible, we can derive the following formulas for the light intensity of the drop and
through ports:

Id = (Td)|E0|2 (14)

Ip =
(
Tp

)
|E0|2 (15)

Figure 2b gives the transfer function of MRR with a radius of 5 µm , and the parameters
of the coupling region are identical (k1 = k2 = 0.18). Different wavelengths of light have
different resonance conditions, and the red curve represents the through port, and the blue
one is the drop port.

In this work, we demonstrate the matrix operation of BP with MRR banks. Figure 3
illustrates an optical backpropagation network architecture. Suppose we handle two-
dimensional matrices D × R, we need R lasers with generating M wavelengths, where M
is the type of pixel. We use R modulators to represent the value of each pixel, each of which
keeps the light intensity of the corresponding carrier proportional to the serialized input
pixel value [27]. Then, WDM will multiplex the R lasers and split them into D separate
lines. There are D MRR-arrays, where each array has R MRRs on every line, and we can
get a D × R weight matrix. Thus, the standard form of multiplication and accumulation in
BP is represented by:

yd =
k

∑
i=1

AiFi +
k

∑
i=1

E0Fi (16)

where y is the output of layer d, Ai is the light intensity of line i after modulating and
multiplexing, Fi, as a particular weight according to MRR weight banks and balanced
photodiodes, can be described by:

F = g
(
Td − Tp

)
(17)

where g is the gain of an amplifier (TIA) to ensure that Td − Tp is not limited in the range
−1 to +1 [19]. The sum of E0Fi is a predictable bias.

Figure 3. The optical backpropagation network architecture. λ represents different wavelengths. EO
represents electro-optic modulators. WDM, wavelength division multiplexing. MRR banks consist of
multiple add-drop MRRs in parallel. PD, detector. TIA, amplification. PC, digital computer.
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2.4. Photonic Pruning Neural Network

In this work, we trained a neural network based on a pruned BP model to perform
image recognition on the MNIST dataset, and Figure 4 depicts this model in detail.

Figure 4. Diagram of the three-ply optical neural network solving MNIST. The two-dimensional images of 8 × 8 are
converted into a one-dimensional image of 64 × 1, and they are put into the photoelectric modulators and modulated with
64 optical carrier signals.

The pruned BP model parameters are pretrained in a digital computer (PC). An
optical neural network is used to perform matrix multiplication in inference. First, we
prune the model during training based on weight-elimination, and weights with biases of
the pruned model are uploaded to the optical neural network to calculate optical device
parameters. The two-dimensional images of 8 × 8 in the MNIST dataset are converted
into a one-dimensional image of 64 × 1, which are put into the photoelectric modulators
and modulated with 64 optical carrier signals. When 64 multiplexed optical signals are
transmitted through 50 wave wires to an array with 64 MRRs, the signal from the weight
banks is output to the digital computer for nonlinear activation. Finally, the transformed
vector is fed to the full connection layer with 10 nodes, where the result of the MNIST
classification appears.

3. Results and Discussion

In the pruning experiments, we count the error and regularization coefficient of each
training during pruning, as shown in Figure 5a,b. It is obvious that the error curve in
the training process is relatively smooth, while the regularization coefficient is not, which
means the process of weight differentiation does not lead to sharp fluctuations in training
and has little effect on pruning results. However, we find that the pruning of small-scale
neural networks is not always stable. The data of the experiment shows that the accuracy
of the pruned model can still reach 85.25% with half of the original information retained. A
small-scale neural network model is easy to fall into local extremum, which means that
it is difficult to guarantee its global convergence in training. Although small-scale model
compression for neural networks is feasible, the compression performance is not obvious
compared with large-scale deep neural networks for the lack of redundant parameters.
Figure 6 depicts the prediction accuracy of the BP network through pruning different nodes,
and we can find, when 6 neurons are trimmed in the hidden layer with 50, the prediction
accuracy is the best, reaching 95.39%.
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(a) (b)
Figure 5. (a) Variation of error curve during pruning. (b) Variation of regularity coefficients dur-
ing pruning.

Figure 6. Prediction accuracy of BP network through pruning different nodes. The horizontal
ordinate represents the layers of pruned MRRs, and the ordinate represents the prediction accuracy.

Then, we demonstrate a three-layer optical backpropagation network architecture by
pruning six layers of MRR banks. In general, the bits number in the simulator impacts the
capabilities of the network to recognize new input data, and the performance of the optical
neural network designed with equal or less than 4-bits is significantly diminished [19].
Hence, we use a 5-bit architecture and set the modulation rate to 5 GHz, and the running
time of the input data is 320 ns without considering other power consumptions. Figure 7a
shows the serialized input images (numbers 5, 3 and 1, respectively). Through the mul-
tiplication and accumulation of the optical architecture, the results of the MNIST dataset
recognition based on the optical neural network of the pruned BP model are shown in
Figure 7b. For the test of 1797 images, the overall recognition accuracy of the optical neural
network is 93.49%.

This demonstration does not realize the training process of parameters and nonlinear
activation operation on the optical structure, which are also two challenges to implement
for all-optical neural networks. Consequently, we will consider using nonlinear units or
other optical materials to realize on-chip training and nonlinear activation. For example,
using the transpose matrix operation of the MRR crossbar arrays [39] to implement the
on-chip training of the optical neural networks and building an electro-optic hardware
platform [40] to implement nonlinear activation functions. It is noteworthy that the optical-
to-optical nonlinearity is realized by converting a small portion of the input optical signal
into an analog electric signal, which is used to modulate the intensity of original optical
signal with no reduction in speed of processing. This activation function is reconfigurable
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via electrical bias, which allows it to be programmed or trained to synthesize a variety
of nonlinear responses. Furthermore, passive optical elements [41] achieve the backprop-
agation gradients required in the training process by using saturable absorption for the
nonlinear units. Thus, we are expected to implement a completely pruned optical BP
neural network in the next work.

Future work is likely to extend to optical quantum neural networks, as many features
of quantum optics can be directly mapping to neural networks [42], and technological
advances driven by the trends of the photon quantum computing and optoelectronic
industry provide possible venues for the large-scale and high bandwidth localization of
quantum optical neural networks. Programmable silicon photonic devices can simulate the
quantum walking dynamics of relevant particles, and all important parameters can be fully
controlled, including the hamiltonian structure, evolution time, particle resolution and
exchange symmetry [43]. Removing redundant photon devices in the universal unitary
process by weight-elimination can facilitate the construction of large-scale and low-cost
optical quantum neural networks.

(a)

(b)
Figure 7. (a) The input images are serialized. The red signal is digit 5, the black signal is digit 3 and
the blue one is digit 1. (b) Results of the MNIST task when pruning 6 layers of MRR banks in an
optical backpropagation network with an overall accuracy of 93.49%.
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4. Conclusions

In this paper, we demonstrate a three-ply optical neural network based on a pruned
BP model. Through pruning the model in training based on weight-elimination, an optical
neural network is used to perform matrix multiplication in inference. The prediction
accuracy is the best when six nodes are pruned in a hidden layer by comparing different
pruned MRR banks. Furthermore, results show that the prediction accuracy of a pruned
model can reach 93.49% in the MNIST dataset. In terms of energy efficiency, when pruning
multiple MRR weight banks, the photonic integrated circuits become more streamlined and
energy-efficient. Although the training process of parameters and nonlinear activation op-
eration are currently incomplete on the optical structure, all of these problems are expected
to be solved in the future with the development of nonlinear units and further research
on optical materials, such as an MRR crossbar array [39], an electro-optic architecture for
synthesizing optical-to-optical nonlinearities [40] and passive optical elements [41].

In summary, pruning different nodes has important guiding significance for optical
matrix components of all-optical neural networks. Significantly, this work is scalable to
much more complex networks and suitable for different optical devices, and it offers a
feasible path toward truly large-scale optical neural networks.
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