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Abstract: Human masks are considered the mainstay in air filtration and purification technologies
and against the spreading of bacterial and viral infections. This paper introduces a novel design of
a human mask to increase the ultraviolet germicidal irradiation effect on pathogens. The proposed
design consists of a tube with an annular photonic crystal (APC) attached to the mask’s orifice, and
a UV source is located in the tube’s center. The main role of this study is the enhancement of UV
doses based on the reflectivity of the proposed APC. Therefore, increasing pathogens’ inactivation
level in the incoming air to the mask’s orifice could be investigated. The numerical investigations
demonstrated that the proposed APC could provide a complete photonic bandgap with a high
reflectivity in the wavelength regime from 207 to 230 nm. In addition, we have considered the roles of
the thickness of layers, inner core radius, and the azimuthal number. Meanwhile, the results showed
the ability to use a wide range of core radius values without almost any variations in the optical
properties of the proposed design. Such results could grant the advantage of using this design by
the manufacturing of human masks with different sizes besides the inclusions in other ultraviolet
germicidal irradiation applications.

Keywords: human masks; annular photonic crystals; photonic band gaps; transfer matrix method

1. Introduction

The spread of airborne-transmitted infections, such as the SARS-CoV-2 (COVID-19)
outbreak, urgently highlights the need for personal protective equipment (PPE) to elim-
inate such biological hazards. One of the essential PPE is the human mask, as it can
effectively prevent transferring aerosol pathogens via the respiratory route [1]. Masks
contain spreading contaminated respiratory droplets generated through coughing and
sneezing even through speaking [2]. In addition, they represent a physical barrier be-
tween aerosolized pathogens and the human respiratory system with various levels of
protection [3]. Ultraviolet germicidal irradiation (UVGI) can be used to disinfect medical
equipment and surgical masks. UVGI can effectively inactivate pathogens, as it destroys
their genetic materials [4–7]. The level of inactivation depends on the type of the pathogen
and ultraviolet (UV) doses as well. According to the FDA guidance, three log levels or more
are required to accomplish an optimal inactivation dose [8]. The level of single-stranded
RNA viruses reduces with the increase of UV dose [9]. UVGI devices, such as medical
disinfectors, usually use 254 nm UV light, which has health hazards on the skin and eyes.
An alternative approach to building UVGI could be obtained by using UV light in the range
from 207 up to 222 nm, which efficiently inactivates pathogens, without damaging human
tissues or cells [10,11]. An optimal dose is required to achieve a sufficient inactivation level,
which can be accomplished by a longer exposure time or a stronger UV source.
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Another way to increase UV dose with the same UV source and exposure time is
to use an effective reflector. In this regard, photonic crystals (PCs) receive considerable
attention due to its high reflectivity [12,13]. PCs are periodic arrangement structures
with periodic refractive index functions that represent a building block in many optical,
physical, and biomedical applications [14]. A range of electromagnetic frequencies is
prohibited from propagating through PCs; this range is called the photonic bandgap
(PBG) [15,16]. Bragg scattering at the interfaces of these periodic arrangements explains the
physical interpretation of the PBG’s appearance. PCs can be classified into one-dimensional,
two-dimensional, and three-dimensional based on the structure periodicity, which leads
to the formation of a PBG in a certain direction [17,18]. Although three-dimensional PCs
express a complete PBG capable of reflecting electromagnetic waves in any direction,
one-dimensional PCs are researched extensively with numerous designs due to the ease of
fabrication [19,20].

In this regard, researchers have used numerous methods to fabricate PCs, such as
atomic layer deposition (ALD), chemical vapor deposition (CVD), and different litho-
graphic techniques [12,21]. Recently, new methods for building PCs have been explored,
for example, the self-assembly of nanoparticles to form colloidal PCs [22,23]. In particular,
the ability of photon localization has been explored as a significant property of PCs. Such
a property is promising in the design and experimental verifications of many technological
applications in many different aspects. In this context, photon localization is formed by
introducing a defect in this periodic arrangement, which causes a high transmittance peak
inside the PBG [24,25]. Such a defect peak is sensitive to the change in the refractive
index of the defect layer [26,27]. By using this feature, numerous sensors are designed
to measure various conditions based on the changes in the refractive index under these
conditions [28–33].

An alternative method to build two-dimensions PCs with a one-dimension periodicity
is verified by using concentric cylindrical quarter-wavelength periodic structures. Such
structures are known as annular photonic crystals (APCs), circular photonic crystals,
or cylindrical Bragg reflectors [34,35]. APCs have attracted significant interest, since
Kaliteevski et al., adopted the transfer matrix method (TMM) in cylindrical coordinates [36].
APCs offer low-loss (high Q-factor) resonators, making them suitable for chemical and
biological sensing applications [37]. One of APCs’ prime applications is the annular
Bragg lasers, which can be integrated into optical fibers or other optical components for
optoelectronics and optical communications [38]. APCs’ desired properties, such as small
modal volume, offer strong atom–photon interaction with applications including cavity
quantum electrodynamics (QED) [39].

In this paper, we introduce a novel design based on APCs with high reflectivity or
almost near-zero transmissivity in the wavelengths ranging from 207 to 222 nm. The ability
to investigate a PBG with high reflectivity in this range of wavelengths could efficiently
inactivate pathogens without damaging human tissues or cells. Moreover, we choose
polycarbonates as the material of the mask’s tube, which is one of the most common
materials for face mask production. Combining our structure with an active UV source for
the disinfection of the proposed mask eliminates the need for disposable (single-use) face
masks. Thus, the proposed design is eco-friendly, as it reduces plastic pollution coming
from disposable masks. In this regard, such a design could be of interest to improve the
performance of human masks against viral and bacterial infections. Our theoretical and
numerical investigations are mainly based on the fundamentals of the TMM in cylindrical
coordinates. Moreover, the effects of the periodicity number, the core radius, the thickness
of constituent materials, and the azimuthal number are considered in detail.

2. Theoretical Analysis

In this section, we present an overview of the proposed mask and the basis of our
theoretical modeling. The proposed mask consists of two parts: conventional parts like the
mask’s body, the rim that seals to the patient face, and the orifice. Non-conventional part:
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a tube attached to the mask’s orifice coated by co-centric cylindrical multi-layers materials
that form APC and UV source in its center as illustrated in Figure 1a. The incoming air
enters the mask through the open end of a tube. As the air flows in the tube, it exposes
to a suitable UV dose by the UV source and its reflection by the APC. The main purpose
of APCs is to achieve a PBG in the wavelengths of interest with high reflectivity. Thus,
an effective UV dose can be achieved without the need for a more powerful UV source
that requires large-energy sources. Each unit cell in the proposed APCs consists of two
cylindrical layers with refractive indices n1 and n2, respectively, and thicknesses d1 and d2,
respectively, as shown in Figure 1b. The distance from the center of APC and j-th layer is
defined as:

ρj = ρ0 + ∑j
h=1 dh where, j = 1 , . . . , n , (1)

where ρ0 is the radius of the air core layer with refractive index n0 = 1. Here, each unit cell
is repeated for a period number N = n

2 , and the outer medium has a refractive index n f .
Our modeling is essentially based on the TMM in the cylindrical coordinates [36]. The two
possible polarization modes for cylindrical Bragg waves are TE and TM polarizations. The
non-zero fields at TE polarization modes are Ez, Hφ, and Hρ. The electric field Ez and the
magnetic field Hφ can be expressed as:

Ez(ρ, φ) = V(ρ)ϕ(φ) = [A Jm(kρ) + B Ym(kρ)]exp(imφ) , (2)

Hφ(ρ, φ) = U(ρ)ϕ(φ) = −ip [A J′m(kρ) + B Y′m(kρ)]exp(imφ) , (3)

where Jm and Ym are Bessel function and Numann function, respectively, and J′m, and
Y′m are their respective derivatives; the intrinsic admittance of the material is given as
p =

√
µ/ε , while the wave number inside the material is described as k = ω

√
µε; A and

B are constants, and m is the azimuthal number. Then, the connection between U(ρ) and
V(ρ) functions at the interface between two adjacent layers, such that jth and (j− 1)th
layers can be described by the following expression:[

V
(
ρj
)

U
(
ρj
) ] = Mj

[
V
(
ρj−1

)
U
(
ρj−1

) ] , (4)

where the matrix Mj is given as:

Mj =
π

2
k jρj−1

[
m11 m12
m21 m22

]
, (5)

where the elements of the matrix Mj can be described as:

m11 = Y′m
(
qj−1

)
Jm
(
qj
)
− J′m

(
qj−1

)
Ym
(
qj
)
, (6)

m12 =
i
pj

[
Jm
(
qj−1

)
Ym
(
qj
)
−Ym

(
qj−1

)
Jm
(
qj
)]

, (7)

m21 = −ipj
[
Y′m
(
qj−1

)
J′m
(
qj
)
− J′m

(
qj−1

)
Y′m
(
qj
)]

, (8)

m22 = Jm
(
qj−1

)
Y′m
(
qj
)
−Ym

(
qj−1

)
J′m
(
qj
)
. (9)

In the above expression, we have qj−1 = k jρj−1 and qj = k jρj. The whole APC
structure can be described by matrix M, which relates the fields at the inner core interface
with radius ρ0 to the outer medium ρ f . Such matrix M could be described as: V

(
ρ f

)
U
(

ρ f

)  = M
[

V(ρ0)
U(ρ0)

]
, (10)
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where matrix M is the product of the individual layers matrix, which can be written as:

M = M2N M2N−1 . . . M1 =

[
M11 M12
M21 M22

]
. (11)

Therefore, the reflectance of the proposed structure can be calculated in the vicinity of
Equation (11) as following:

R =

∣∣∣∣∣∣
(

M21 + i p0C(2)
m0 M11

)
− i p f C(2)

m f

(
M22 + i p0C(2)

m0 M12

)
(
−ip0C(1)

m0 M11 −M21

)
− i p f C(2)

m f

(
−jp0C(1)

m0 M12 −M22

)
∣∣∣∣∣∣
2

, (12)

where M11, M11, M12, M21, and M22 are the elements of the APC’s matrix M, and p =
√

εhµh,

and h = 0 and f are for the inner core and the final media, respectively; C(1,2)
ml is obtained

by the following equation:

C(1,2)
ml =

H′(1,2)
m (klρl)

H(1,2)
m (klρl)

, l = 0, f , (13)

where H(1)
m and H(2)

m are the first and the second kinds of Hankel function, respectively.
The equations for TM polarization mode can be acquired by replacing every ε↔ µ and
i↔ −i in all equations of TE polarization mode.
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Figure 1. Schematic diagram of the proposed design including: (a) the mask design where the mask’s
body is sealed to the face; and (b) diagram of a planer view of the annular photonic crystal (APC)
inside the mask with an internal radius ρ0 where air enters the tube and concentric periodic cylinders
with radii ρi.

3. Results and Discussions

In this section, we present the results of our modeling of the proposed APC with
a UV source in the center of the mask. The proposed APC structure is embedded into
a polycarbonates tube, with a real refractive index n f taken from reference [40] and an inner
air core with refractive index n0 = 1, as shown in Figure 1a. Polycarbonate is selected, due
to its wide use in face masks, light weight, and reasonable cost [41]. The APC consists
of a bi-layer unit cell repeated for periodicity number N, as illustrated in Figure 1b. The
first layer in each unit cell is an Al2O3 layer with thickness d1 and refractive index n1
which is taken form reference [42]. The second layer is composed of a SiO2 layer with
thickness d2 and refractive index n2, taken from reference [43]. The initial parameters for
the proposed APC are d1 = 29 nm, d2 = 33.5 nm, N = 20, m = 0, and ρ0 = 5 cm. Frist,
we studied the reflectance of our structure for TE polarization, as illustrated in Figure 2.
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The reflectance spectrum shows the appearance of the PBG between 207.7 and 229.6 nm
with an average reflectance intensity around 94% and a central wavelength of 218 nm.
Moreover, the reflectivity at the center of the PBG reaches 99%. The high reflectance
promises a significant increase in UV dose without the need of more powerful UV sources
or longer exposure time. Here, the location of the PBG covers the entire far-UVC light range
of 207–222 nm, which efficiently inactivates pathogens without harmful effects on human
tissues or cells [44]. Moreover, the harmful ozone production by UV light is deficient, as the
absorption of UV light by oxygen in the chosen UV range is very low [45]. In this regard,
the incident UV radiation could interact with the proposed design with its full intensity
and almost no dissipation due to the production of the harmful Ozone. In particular, the
mainstay of our study depends on the presence of an optimal dose to achieve a sufficient
inactivation level.
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Figure 2. The reflectance of the proposed APC with air core radius ρ0 = 5 cm and unit cell layers’
thicknesses d1 = 29 nm, d2 = 33.5 nm, and periodicity number N = 20.

We considered the effects of altering the azimuthal number on the reflectance prop-
erties and the PBG of the proposed structure for both TE and TM polarizations. Figure 3
shows the reflectance of the APC structure, as the azimuthal number changes from 1 up
to 20. The reflectance was calculated at an inner core radius ρ0 = 5 cm for both TE polar-
ization (left) and TM polarization (right) with unit cell layer thicknesses d1 = 29 nm and
d2 = 33.5 nm and periodicity number N = 20. The reflectivity of our structure and the prop-
erties of its PBG are almost unaffected by the changes in the values of the azimuthal number
for both TE and TM polarizations, as shown in Figure 3a–c. Therefore, the investigated
result could grant our design another advantage over traditional multilayer structures. In
particular, the optical properties of the traditional one-dimensional PCs are significantly
affected with the changes in the values the angle of incidence, especially in reducing the
PBG width for TM polarization. Here, we could avoid such a problem. In particular, the
changes in the values of the azimuthal number have no effects on the optical properties
of our design, especially at large values of the core inner radius. Therefore, the choice of
APCs in the designs and fabrications of the human masks could be of increased concern.
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Figure 3. The effects of the azimuthal number for TE and TM polarizations on the reflectance of the
proposed design (a), the edges and the central wavelength of the photonic bandgap (PBG) (b), and
the average intensity IPEG and the width WPEG of the PBG (c).

Next, we discussed the effect of changing the thicknesses of the constituent materials
on the reflectivity of our APCs, as shown in Figure 4. Here, the values of other related
parameters are as following: the inner core radius ρ0 = 5 cm, azimuthal number m = 0,
and periodicity number N = 20. Figure 4a illustrates the reflectance of the suggested APC
structure as the thickness of Al2O3 layer d1 changes from 29 up to 35 nm and the thickness
of the SiO2 layer is fixed at 33.5 nm. The increase of the Al2O3 layer thickness leads to
a significant shift in the position of the PBG towards the longer wavelengths with a little
increase in its width. However, the average intensity declines slightly with increasing the
value of d1. The left and the right edges of the PBG also shift towards longer wavelengths
as well as the PBG’s central wavelength. Then, we considered the effect of changing the
thickness of the SiO2 layer d2 on the reflectance of the proposed structure, as illustrated in
Figure 4b. Thickness d2 varies from 31 to 37 nm, while the thickness of Al2O3 layer d1 is
fixed at 29 nm. Similar to the effect of d1, the PBG is shifted towards the longer wavelengths
with the increase in the value of d2. Thus, the effect of thickness could be of interest in
providing the different regions of UV sources with high reflectivity.
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Then, we analyzed the effects of varying d1 and d2 on the PBG’s width. The simulation
data, which describe the relationship between the width and thicknesses d1 and d2, can be
fitted as following:

WPBG = 0.41 d1 + 0.35 d2 − 2.03, (14)

where WPBG is the width of the PBG in nanometers at Al2O3 layer thickness d1 in nanome-
ters and SiO2 layer thickness d2 in nanometers. Equation (14) shows that the PBG’s
width grows with increasing either the values of d1 or d2 and the increase in the PBG’s
width becomes more prominent with increasing d1 and d2 simultaneously. Addition-
ally, the PBG’s central wavelength versus the thicknesses of the unit cell are fitted to the
following equation:

λ0 = 3.2 d1 + 2.8 d2 + 27.9, (15)

where λ0 is the PBG’s central wavelength, and d1 and d2 are the unit cell layer’s thick-
nesses. Equation (15) shows that the central wavelength of the PBG moves towards longer
wavelengths with increasing both d1 and d2 or either of them; however, the shift in the PBG
becomes larger with rising both d1 and d2 concurrently. Such effects, including the width of
the PBG and its central wavelength, are as a result of the change in the optical path length
of the incident radiation. In other words, the changes in the thicknesses of the constituent
materials require a similar change in the position, width, and central wavelength of the
PBG to verify the condition of the constant phase [45].

In addition, we investigated the effects of the number of periods on the reflectivity of
our design for both TE and TM polarizations, as demonstrated in Figure 5. At low values of
the number of periods especially smaller than 5, the PBG is not formed due to the limited
chances of Bragg’s scattering at the interfaces, as shown in Figure 5a. As the number of
periods increases to 7, the PBG with little sharp edges begins to appear between 205 and
234 nm, as shown in Figure 5a,b. For further increase in the number of periods, the edges of
the PBG become sharper, and its width slightly decreases. At periodicity number N = 8 for
TE polarization, the PBG appears between 204.5 and 233.8 nm with a central wavelength
of 219.17 nm. Thus, the PBG’s width equals 29.3 nm, and its average intensity is 71.1%.
The PBG’s width shrinks to 26 nm with an average intensity of 82%, as the periodicity
number reaches N = 11. The PBG’s intensity is approximately 98% with a width of 19 nm,
as the periodicity number increases to 40; meanwhile, the PBG central wavelength is almost
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stable at 218 nm. Besides, the PBG parameters for TM polarization are almost identical to
their values TE polarization, as shown in Figure 5b,c. Moreover, the peaks around the PBG
become more intense and less wide, with a shift in their position towards the PBG as the
periodicity number increases. Additionally, there is no significant difference between the
reflectance in TE polarization and that in TM polarization with increasing the periodicity
number. Then, the PBG’s parameters were evaluated as written in Table 1. The PBG’s left
edge λle f t is shifted towards the longer wavelengths while the right edge λright moves to
shorter wavelengths, as the periodicity number increases. The PBG’s right and left edges
were calculated when the reflectance’s intensity reaches 50% of the maximum intensity in
the PBG, while the PBG average intensity IPEG was calculated by the normalized sum of
all simulation points between the right and left edges of the PBG. Therefore, the periodicity
number can be adjusted to optimize the intensity of reflectance and the ease of fabrication.
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Table 1. The impact of the periodicity number on the PBG parameters.

N λleft (nm) λright (nm) λ0 (nm) IPBG WPEG (nm)

15 206.9 230.6 218.8 0.89 23.6

20 207.7 229.6 218.69 0.94 21.8

25 208.2 229.0 218.63 0.96 20.7
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Finally, we have investigated the effect of inner core radius on the characteristics of
the PBG and the reflectivity of our design for both TE and TM polarizations. Here, we have
considered that, N = 20, d1 = 29 nm d2 = 33.5 nm and azimuthal number m = 0. Figure 6
describes the effect of the inner core radius on the properties of the PBG and its reflectivity.
Figure 6a illustrates the reflectance of the proposed APC at TE and TM polarizations with
varying the inner core radius from 1 cm up to 30 cm. The reflectance has no apparent
changes, which adds more flexibility and simplicity from the fabrication point of view
of human faces with different sizes. As the inner core radius changes from 1 cm up to
30 cm, the structure reflectivity, width, and position of the PBG are almost unaffected, as
shown in Figure 6b,c. Meanwhile, the PBG’s central wavelength is located at 218.6 nm for
both TE and TM polarizations and is almost unaffected by the increase in the values of
the core radius. In particular, the increase in the core radius over a few micrometers is not
almost effecting on the reflectivity of APC because the structure behaves like planer PCs
and the intensity no longer depends on radius [35,46–48]. Thus, the reflectivity and the
characteristic of the PBG of our structure provide a significant stability with the variations
in the values of the inner core radius. Such result could be of potential interest from the
experimental point of view in the manufacturing of human masks with different sizes to be
compatible with the different faces. In addition, this result could open the way towards the
inclusions of such design in many different applications that concern ultraviolet germicidal
irradiation applications.
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4. Conclusions

To sum up, we have introduced, in this research paper, a novel design of APCs
with a high reflectivity in the wavelengths ranging from 207 to 230 nm and an average
reflectance intensity of around 94%. The proposed structure could be useful in producing
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an effective UV dose without the need for a more powerful UV source that requires high-
energy sources. Therefore, the inclusion of such a design with human masks could leads
to a significant improvement against viral and bacterial infections. In this context, the
numerical results showed the appearance of a complete PBG with reflectivity is more than
99% at the center of the PBG. Moreover, the reflectivity and the PBG of the proposed design
are almost unaffected by the azimuthal number change from 1 up to 20. Additionally, the
effects of the core radius on the reflectivity and the PBG are negligible, as the inner core
radius changes from 1 to 30 cm. Therefore, the flexibility of using this structure through
the different sizes of human masks is applicable. Moreover, the PBG could be easily shifted
based on the variations of the thicknesses of the constituent materials, which allows the
production of the different types of UV sources.
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