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Abstract: Fourier single-pixel imaging (FSI) is a branch of single-pixel imaging techniques. It allows
any image to be reconstructed by acquiring its Fourier spectrum by using a single-pixel detector. FSI
uses Fourier basis patterns for structured illumination or structured detection to acquire the Fourier
spectrum of image. However, the spatial resolution of the reconstructed image mainly depends on
the number of Fourier coefficients sampled. The reconstruction of a high-resolution image typically
requires a number of Fourier coefficients to be sampled. Consequently, a large number of single-
pixel measurements lead to a long data acquisition time, resulting in imaging of a dynamic scene
challenging. Here we propose a new sampling strategy for FSI. It allows FSI to reconstruct a clear and
sharp image with a reduced number of measurements. The key to the proposed sampling strategy is
to perform a density-varying sampling in the Fourier space and, more importantly, the density with
respect to the importance of Fourier coefficients is subject to a one-dimensional Gaussian function.
The final image is reconstructed from the undersampled Fourier spectrum through compressive
sensing. We experimentally demonstrate the proposed method is able to reconstruct a sharp and
clear image of 256 × 256 pixels with a sampling ratio of 10%. The proposed method enables fast
single-pixel imaging and provides a new approach for efficient spatial information acquisition.

Keywords: computational imaging; single-pixel imaging; sampling strategy; compressive sens-
ing; optimization

1. Introduction

Single-pixel imaging [1–8] is a computational imaging technique that allows images to
be acquired by using a spatially unresolvable detector, namely, single-pixel detector (such
as, photodiode, solar cell, and photomultiplier tube). Compared with typical pixelated
detectors (such as, CCD and CMOS), single-pixel detectors can work at a wide waveband,
especially at the wavebands where pixelated detectors are expensive or even technically
unavailable (such as infrared, deep ultraviolet, X-ray, or terahertz). Thus, single-pixel
imaging has been considered as a potential solution for imaging at special wavebands and
attracted a lot of attention in the last decade [9–16].

The key to single-pixel imaging is spatial light modulation. Spatial light modulation
allows the spatial information of the target object to be encoded into a 1-D light signal
sequence, which is suitable for single-pixel detection. The desired object image can be
retrieved by decoding the spatial information from the resulting single-pixel measurements
through the image reconstruction algorithm corresponding to the spatial light modula-
tion strategy.
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Fourier single-pixel imaging (FSI) [17–22] is a branch of basis-scan single-pixel imaging
techniques. It uses Fourier basis patterns for spatial light modulation. Fourier basis patterns
are also known as sinusoidal intensity patterns. The Fourier spectrum of the desired
object image can be acquired by using Fourier basis patterns for structured illumination
or structured detection. Compared with other basis-scan single-pixel imaging methods
(such as, Hadamard [23–27], DCT [28]), FSI has been proven more data-efficient when the
differential method of measurement is employed [29]. Specifically, FSI with 3-step phase
shifting can reconstruct a lossless image in a differential-measurement manner taking
as many measurements as 1.5 times the number of image pixels. For other basis-scan
single-pixel imaging methods, differential measurement will result in the single-pixel
measurements being doubled. Moreover, the generation of Fourier basis patterns is flexible.
The basis patterns of FSI can be generated by the interference of two plane waves [30], which
potentially allows FSI to be implemented without using a pixelated spatial light modulator.
Such a property benefits imaging at the wavebands where spatial light modulators are
not available.

However, as other single-pixel imaging methods do, FSI suffers from the tradeoff
between imaging quality and imaging time. The spatial resolution of the image recon-
structed by FSI mainly depends on the number of Fourier coefficients sampled. Specifically,
it requires more spatial information to reconstruct an image with finer details. The more
spatial information implies more single-pixel measurements, and consequently, longer data
acquisition time. However, the data acquisition time is crucial for fast imaging, especially
when imaging a dynamic scene. Thus, it is worth exploring how to improve the data
efficiency in FSI.

Initially, FSI was proposed with the spiral sampling strategy [17]. The sampling strat-
egy exploits the prior knowledge that most information of natural images is concentrated
in low-frequency bands of the Fourier space. According to the spiral sampling strategy,
only low-frequency Fourier coefficients will be sampled with high-frequency coefficients
discarded. However, the lack of high-frequency components could result in severe ringing
artifacts in the reconstructed images, especially when the sampling ratio is low. Later, sev-
eral sampling strategies were reported, such as statistical-importance [18], diamond [31],
circular [31], and polynomial [32]. Different sampling strategies are referred to different
sub-sets and different orderings of the Fourier basis patterns used for spatial light mod-
ulation. We note that the research on basis patterns ordering is a hot spot in single-pixel
imaging, because an optimal sampling strategy enables images of unchanged quality to be
reconstructed from the least single-pixel measurements and therefore shortest data acquisi-
tion time. For example, Russian doll [23], cake-cutting [24], origami [25], and total variation
ascending orderings [26] were recently proposed for Hadamard single-pixel imaging.

Here we propose a sampling strategy for FSI termed Gaussian random sampling.
The core of the proposed sampling strategy is to perform a variable density sampling
in the Fourier space and the density is based on the importance of Fourier coefficients.
Specifically, the sampling density with respect to the importance of Fourier coefficients is
subject to a 1-D Gaussian function. The importance of a Fourier coefficient is referred to
the magnitude of the modulus of the coefficient. In other words, the larger the modulus of
a Fourier coefficient is, the more important this coefficient is. Combined with compressive
sensing (CS), the proposed method is able to reconstruct a clear and sharp image from
far fewer single-pixel measurements than image pixels. We experimentally demonstrate
the proposed method is able to reconstruct a high-quality image of 256 × 256 pixels with
a sampling ratio of 10%. The proposed method enables fast single-pixel imaging and
provides a new approach for efficient spatial information acquisition.
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2. Principle

A schematic diagram of structured illumination-based FSI set-up is shown in Figure 1a.
As the figure shows, a digital micro-mirror device (DMD) is used as the spatial light
modulator to generate Fourier basis patterns. Each Fourier basis pattern can be expressed as

P(x, y) =
1
2
+

1
2
· cos

[
2π
(

fxx + fyy
)
+ ϕ

]
, (1)

where (x, y) denotes the coordinate in the spatial domain, ϕ denotes the initial phase,
and fx and fy are spatial frequency corresponding to x and y direction, respectively. As
DMDs are capable of high-speed binary patterns generation, Fourier basis patterns are
generally binarized through dithering [33], as the inset in Figure 1a shows. A photodiode
amplifier (PDA) is used as the single-pixel detector to collect the back-scattered light from
the object under structured illumination. The Fourier spectrum of the desired object image
can be acquired by using the three-step phase-shifting strategy, as Figure 1b shows. Each
Fourier coefficient, Ĩ

(
fx, fy

)
, is acquired by using a set of three Fourier basis patterns of the

same spatial frequency pair but a different initial phase. The initial phase, ϕi, of the i-th
step pattern is 2(i− 1)π/3. The Fourier coefficient Ĩ associated with the spatial frequency(

fx, fy
)

can be calculated through

Ĩ
(

fx, fy
)
= (2D1 − D2 − D3) +

√
3j(D2 − D3), (2)

where j is the imaginary unit, and Di denotes the single-pixel measurement correspond-
ing to the i-th step pattern. As Figure 1b shows, the Fourier spectrum of a real-valued
image is conjugate symmetric. Thus, the symmetric coefficients need not be sampled. To
reconstruct a lossless image by FSI, the number of Fourier coefficients acquired is one half
of the number of image pixels. If the three-step phase shifting strategy is employed for
differential measurement, the number of single-pixel measurements will be 1.5-fold the
number of image pixels. The object image can be reconstructed from the Fourier spectrum
acquired through a 2-D inversed Fourier transform or CS. The proposed method uses CS
for image reconstruction.
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Figure 1. Illustration of three-step phase shifting FSI. (a) In a structured illumination-based setup, the
object is under illumination of Fourier basis patterns generated by a DMD. The Fourier basis patterns
are dithered. (b) The object image is retrieved by acquiring the Fourier spectrum of the image. Each
complex-valued Fourier coefficient can be acquired by using a set of three-step phase-shifting Fourier
basis patterns where the phase shift is 2π/3. The conjugate symmetry of the Fourier spectrum allows
a lossless image to be retrieved with only one half of the Fourier coefficients acquired.

The reconstruction of a large-size image requires a large number of single-pixel mea-
surements, resulting in a long data acquisition time. Undersampling is a typically used
strategy to reconstruct an image of satisfactory quality with a reduced number of measure-
ments. In the context of FSI, undersampling means only a portion of the Fourier spectrum
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is sampled. Inspired by the work by W. Meng et al. [32], we propose a Gaussian random
sampling strategy for FSI. The key to the proposed sampling strategy is to perform a
variable density sampling in the Fourier space and, more importantly, the density with
respect to the importance of Fourier coefficients is subject to a 1-D Gaussian function.
In other words, the more important the Fourier coefficient is, the higher probability the
coefficient is to be sampled with. The final image is reconstructed from the under-sampled
Fourier spectrum through CS. CS is referred to algorithms that can recover certain sparse or
compressible signals or images (the length of the signals is M× N) from far fewer samples
or measurements (the length of the measurements is n and n << M× N) than traditional
methods (according with Shannon’s theorem) use. How to retrieve the signals from a far
small number of sampled data is an ill-posed and under-determined problem. However,
CS algorithms can recover sparse solutions by imposing a series of convex-optimization
constraints, such as lp–norm minimization, greedy algorithm, minimum total variation, etc.

However, it is difficult to predict which Fourier coefficients are important for any
object or scene to be imaged. Here we adopt a statistics method reported by Bian et al. [18]
to derive the importance distribution of coefficients in the Fourier space for reference.
Specifically, we use DIV2K database [34], which provides hundreds of high-quality natural
images. As Figure 2a shows, we use all 800 natural images from the database and each high-
resolution full-color image first is converted into grayscale and segmented to a number of
M× N-pixel sub images, where M× N is the size of the reconstructed image. Then we
apply a 2-D Fourier transform to every single sub image and sum up the moduli at the
corresponding locations of all resulting Fourier spectra. Lastly, the Fourier coefficients of
the summed Fourier spectrum in a size of M× N pixels are sorted in a descending order
of magnitude. Please note that the conjugate symmetric coefficients are discarded. In our
case, M = 256 and N = 256. The number of sorted coefficients is 32,770.

Each sorted coefficient has its own index, k, which indicates the importance of the
coefficient. The smaller the index is, the higher the importance of the coefficient. Next, as
Figure 2b shows, we generate a uniformly distributed random function r(k) whose range
is from 0 to 1. We also generate a Gaussian function

g(k) = exp
{
−[(k− 1)/kmax]

2/σ
}

, (3)

where k is a positive integer denoting the index with descending order of importance,
kmax = 32, 770 when M = 256 and N = 256, and σ is the standard deviation of the
Gaussian function. The value of σ depends on the sampling ratio η. Here, the sampling
ratio is defined as twice the number of sampled Fourier coefficients to the number of total
Fourier coefficient in the Fourier spectrum, where “twice” is for the conjugate symmetry.
When η < 0.5, there is a simple relation between the standard deviation and the sampling
ratio, that is, σ = (2η)2/π. As indicated by the red lines in Figure 2b, the maxima of the
1-D Gaussian function is at k = 1. If g(k) > r(k), then the k-th Fourier coefficient is marked
to be sampled, and vice versa. The resulting sampling masks for different sampling ratios
are shown in Figure 2c. Please note that white pixels in the masks indicate the Fourier
coefficients at the corresponding locations are to be sampled.

We note that such a sampling strategy would result in a few high-importance coef-
ficients not being sampled, but adopting a CS algorithm for image reconstruction allows
those un-sampled high-importance coefficients to be recovered through optimization.
It is because high-importance coefficients are sampled with a high density, which im-
poses a strong constraint to find the globally optimized solution for the un-sampled
high-importance coefficients. As such, more single-pixel measurements can be spent in
sampling the remaining low-importance coefficients and those low-importance coefficients
mainly contribute to high-frequency information. Consequently, the spatial resolution of
the resulting image is improved.
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Figure 2. The generation of Gaussian random sampling mask by the proposed method. In the first
step (a), the important distribution of coefficients in the Fourier domain is obtained through statistics.
Images from a database are decolorized and segmented to M×N pixels. Fourier transform is applied
to each segmented sub image and the moduli at the corresponding locations of the resulting Fourier
spectra are summed up. Discarding the conjugate symmetric coefficients in the summed spectrum,
the remaining coefficients are sorted in a descending order. Each sorted coefficient has its own
index k, which indicates the importance of the coefficient. The smaller the index is, the higher the
importance of the coefficient. In the second step (b), a uniformly distributed random function r(k)
and a Gaussian function g(k) with a specific sampling ratio, η, are generated. In the third step (c), all
Fourier coefficients, whose index k satisfies g(k) > r(k), are marked as ‘to be sampled’ (white pixel)
in the sampling mask. Filling factor is defined as the ratio of marked coefficients to all coefficients in
the Fourier space, which is also one half of the sampling ratio (due to the conjugate symmetry).

3. Simulation

The proposed method is first validated by numerical simulations. The simulations
are conducted on a desktop computer equipped with an Intel(R) Core(TM) i7-8700K CPU,
16 GB RAM, Windows 10 operating system, and MATLAB 2019a. The CS algorithm we
employ for image reconstruction is L1-Magic [35].

To demonstrate the advantages of the proposed sampling strategy, we compare it
with another three methods, including radial sampling strategy [36], circular sampling
strategy [31], and polynomial sampling [32]. The methods in comparison are either typ-
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ically used or recently proposed. Figure 3 shows the sampling masks generated by the
aforementioned strategies for different sampling ratios. In particular, the polynomial
sampling strategy requires two user-defined parameters, ρ and R. The combination of the
two parameters, (ρ, R) is set to be (18, 0.05), (9, 0.05), (7, 0.1), and (5, 0.18) for sampling
ratios 1%, 3%, 5%, and 10%, respectively. These parameters settings guarantee the best
performance of the polynomial sampling strategy in our case.
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Figure 3. Sampling masks used in the simulations and the experiments.

In the first simulation, a USAF-1951 resolution chart pattern is used as the test image.
The image is with 256 × 256 pixels. As the results show in Figure 4, the radial sampling
strategy is not able to reconstruct any bars, when the sampling ratio is below 10%. Even
when the sampling ratio is 10%, the finest resolvable bars are Group-2 Element 5. In
addition, the circular sampling strategy can successfully reconstruct Group-2 Element
6, when the sampling ratio is 3%. The polynomial sampling strategy and the proposed
sampling strategy can even reconstruct Group-1 Element 1 when the sampling ratio is
3%, but the image reconstructed by the polynomial sampling strategy appears blurred
and smeared. When the sampling ratio is 5%, the circular sampling strategy can only
reconstruct Group-1 Element 2, while the polynomial sampling strategy and the proposed
sampling strategy can well reconstruct Group-1 Element 4, but the image reconstructed
by the polynomial sampling strategy appears a little bit noisy. When the sampling ratio is
10%, the circular sampling strategy can reconstruct Group-1 Element 5. The polynomial
sampling strategy and the proposed sampling strategy can well reconstruct Group 0
Element 2.
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Figure 4. Comparison of the reconstruction results of USAF-1951 resolution test chart for different
sampling strategies and sampling ratios. The SSIM, RMSE, and image reconstruction time (denoted
by S, R, and T, respectively) are given in the inset of each reconstruction.

We also quantitatively evaluate the reconstruction quality by using structural similar-
ity index (SSIM) [37] and root-mean-square error (RMSE). The SSIM, RMSE, and image
reconstruction time (denoted by S, R, and T, respectively) are given in the inset of each re-
construction. The quantitative measures also demonstrate the proposed sampling strategy
has better performance than the other sampling strategies in comparison.

In the second simulation, we use a natural image—“Cameraman”—for testing. The
size of the test image is also 256 × 256 pixels. As the results show in Figure 5, the images
reconstructed by the radial sampling strategy turn out to be the worst, especially when the
sampling ratio is lower than 10%. The polynomial, the circular, and the proposed sampling
strategies are capable of reconstructing recognizable contents when the sampling ratio is
3%. The image reconstructed by the proposed method appears clearer, which is evident by
the details (the cameraman’s face, the camera, and the buildings) that are reconstructed.
Both the SSIMs and RMSEs demonstrate the advantage of the proposed method.
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4. Experiment

The proposed method is also demonstrated with real experiments. The schematic
diagram of the experimental set-up is shown in Figure 1a. The set-up consists of a 12-watt
white-light LED, a DMD (ViALUX V-7001), an imaging lens, a target object, a collecting
lens, and a PDA (Thorlabs PDA101A). Note that we binarize the Fourier basis patterns with
the upsample-and-dither strategy [29], so as to take advantage of the high-speed binary
pattern generation offered by the DMD. The patterns are initially with 256 × 256 pixels.
The patterns are upsampled with a ratio of 2 through the bicubic interpolation and then
binarized using the Floyd–Steinberg algorithm [33]. We use two different scenes for the
experiment. The one scene is a USAF-1951 resolution target printed on a piece of A4 paper.
The other scene consists of a pair of china dolls as foreground and the printed resolution
target pattern as background.

Similarly, we compare the proposed Gaussian random sampling strategy with the
radial, the circular, and the polynomial sampling strategies in the experiments. As the
reconstructed images show in Figure 6, the experimental results coincide with the simula-
tion results, demonstrating that the proposed sampling strategy allows for better imaging
quality especially when the sampling ratio is low. Please note that the reconstructed images
presented in Figure 6 are acquired at the DMD rate of 50 Hz.
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In order to demonstrate the proposed fast single-pixel imaging, we test the proposed
method with different DMD refreshing rates. In this test, the sampling ratio is set to 10%,
and therefore, the number of single-pixel measurements is 9831. As the results show
in Figure 7, the reconstructions for 50 Hz and 200 Hz are clear and without noticeable
noise. In other words, the proposed method is able to capture a high-quality image of
256 × 256 pixels within 50 s. As the DMD refreshing rate increases, the noise becomes
obvious and the signal-noise ratio (SNR) decreases. The image for 2000 Hz is slightly noisy,
but the data acquisition time can be reduced down to 5 s. When the DMD refreshing rate is
20,000 Hz, the image appears noisy, but the objects in the image are still recognizable.
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5. Discussion

The total imaging time in single-pixel imaging includes data acquisition time and the
image reconstruction time. This work aims at improving the sampling efficiency in FSI
to reduce the data acquisition time. For the purpose of imaging a dynamic scene, a short
data acquisition time is desirable, because the data acquisition time in single-pixel imaging
is like the exposure time in conventional photography. Severe blur might be caused by
the motion of objects if the data acquisition time is long. We note that the proposed
sampling strategy requires CS for image reconstruction and CS algorithms are commonly
computationally exhausted. In our future work, we consider using deep learning [38–45]
to reconstruct the final image from the undersampled Fourier spectrum so as to reduce the
image reconstruction time.

In this paper, we demonstrate that the proposed Gaussian random sampling strategy
can effectively improve the sampling efficiency of FSI. We consider that the proposed
sampling strategy is applicable to other basis-scan single-pixel methods. The core of the
proposed sampling strategy is to conduct density-varying sampling in an orthogonal
transform domain so as to improve sampling efficiency for fast single-pixel imaging. The
proposed sampling strategy utilizes the fact that the energy of any natural image concen-
trates at the low-frequency band of a certain transform domain. It is such ununiformity of
energy distribution that enables density varying sampling. Natural images have sparse rep-
resentation in DCT, Hadamard transform, and wavelet transform domains. We therefore
consider that the reported sampling strategy can be applied in DCT single-pixel imaging,
Hadamard single-pixel imaging, and other basis scan single-pixel imaging methods.

In comparison with the polynomial sampling strategy, the proposed method can
reproduce better images when the sampling ratio is low. In addition, the proposed method
requires no user-defined parameters, which adds flexibility to the method in practical use.

6. Conclusions

We propose the Gaussian random sampling strategy to achieve efficient FSI. The
key to the proposed sampling strategy is to conduct density-varying sampling in the
Fourier domain so as to improve sampling efficiency for fast single-pixel imaging. As is
demonstrated by the simulations and the experiments, the proposed method is able to
reproduce a sharp and clear image of 256 × 256 pixels with a sampling ratio of 10%. This
work benefits fast single-pixel imaging and provides a new approach for efficient spatial
information acquisition.
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