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Abstract: Digital holography is a very efficient technique for 3D imaging and the characterization
of changes at the surfaces of objects. However, during the process of holographic interferometry,
the reconstructed phase images suffer from speckle noise. In this paper, de-noising is addressed
with phase images corrupted with speckle noise. To do so, DnCNN residual networks with different
depths were built and trained with various holographic noisy phase data. The possibility of using
a network pre-trained on natural images with Gaussian noise is also investigated. All models are
evaluated in terms of phase error with HOLODEEP benchmark data and with three unseen images
corresponding to different experimental conditions. The best results are obtained using a network
with only four convolutional blocks and trained with a wide range of noisy phase patterns.

Keywords: digital holography; image de-noising; deep learning; DnCNN; fine-tuning

1. Introduction

Digital holography and related speckle-based methods are very efficient techniques
for the measurement of displacement fields and surface shape [1]. Due to contactless
measurements, characterization of objects can be obtained with very good accuracy with
speckle patterns. Numerical back propagation yields the reconstruction of amplitude and
phase images of an object. Although this speckle pattern is quite useful for encoding, its
drawback is that the reconstructed amplitude image suffers from speckle noise. Speckle
noise in holographic phase data is very particular because it has non-Gaussian statistics
and exhibits non-stationary properties, whereas generally, in amplitude images, this noise
is considered multiplicative noise. Digital holography is based on coherent mixing of
a reference wave and an object wave that results from light diffraction from an object.
When the object surface is rough, speckles are included in the digital hologram. In the
case of digital holographic microscopy, objects are generally transparent, and thus, there
are no speckles in the phase images. In this paper, the case of a rough object surface
producing speckles in phases extracted from holograms is considered. Metrological ap-
plications require the use of optical phases, so this paper focuses on phase changes over
time. The quantity of interest is a phase difference between two instances, allowing us to
follow the evolution of a phenomenon over time. Taking into account the Doppler effect,
the phase difference is proportional to the displacement field of the object between the
two instances. As the optical phase is calculated from the arctangent function, it is then
wrapped. Phases must be unwrapped in order to access the physical kinematic quantities
of an object [2]. For example, digital holography permits us to investigate complex acoustic
phenomena by using the method of ultra-fast digital holography with a sampling rate up
to 100 kHz [3–5]. Regarding image de-noising, algorithms are generally designed with
the assumption of additive Gaussian noise and there is a real need for new de-noising
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approaches able to cope with speckle noise and complex fringe patterns. For a decade,
the reference algorithms were related to non-local patch-based methods such as BM3D [6],
wavelet-based methods such as DTDWT [7], and short-term Fourier transform algorithms
such as the WFT2F [8].

Machine learning algorithms has shown a growing interest in signal and image pro-
cessing within the most recent decade. In particular, neural networks are able to learn very
complex functions from databases. In contrast with these traditional approaches, machine
learning-based solutions such as convolutional neural networks (CNNs) use dataset exam-
ples and are able to learn how to invert very complex degradation functions [9]. They have
been used to simulate wavelets and multiresolution analysis, shrinking and thresholding
algorithms, sparse representations, block matching, and dictionary learning [10,11]. Many
neural architectures have been developed for Gaussian noise such as residual learning for
image recognition [12] and generative adversarial networks (GANs) [13]. Note that, in the
field of digital holography and digital holography microscopy, several papers related to
applications of CNN were published [14–16]. Currently, state-of-the-art image de-noising
systems are dominated by DnCNN [17] and its recent modifications such as hierarchical
residual learning HRLNet [18]. Residual networks learn to predict the residual image
between clean and noisy inputs. It includes skip connections that consist of an identity
mapping placed between two non-adjacent layers and helps to avoid the vanishing gra-
dient problem when the network depth is high [12]. With residual learning very deep
networks can be easily trained and an improved accuracy has been achieved for image
classification and object detection. Several approaches were proposed in optical coherence
tomography [19], in hyperspectral imaging [20], or using multiscale decompositions [21].
The problem of speckle decorrelation has also been approached using deep learning net-
works with conditional GANs [22]. While the amount and the diversity of natural images
are huge and thus allow us to train deep networks with many parameters, when moving
to phase data processing in digital holography, the quantity and the diversity are clearly
reduced. Indeed, there is currently no way to obtain experimental phase data with speckle
noise together with its clean version. That is the reason why simulated data is required.
Image de-speckling ground-truth clean images have been generated from outputs of com-
mercial optical coherent tomography scanners [22]. In [23], a database including 25 fringe
patterns divided into 5 patterns and 5 different signal-to-noise ratios was generated with a
realistic noise simulator [24] to foster the diversity of phase fringe patterns.

To improve de-noising performances, one solution is to go deeper, i.e., to add more
layers to the network. However, with a higher capacity, two problems emerge: overfitting
and vanishing or exploding gradients. The latter can be controlled by batch normalization
and the use of skip connections such as in residual networks. However, the amount of
data is crucial to avoid overfitting even with regularization techniques. The use of data
augmentation usually helps in artificially increasing the amount of training data [25].
While it is known that a relation does exist between the network depth and the size of the
convolutional filters (and consequently the receptive field) [26], the question of the necessity
of depth has not been investigated much. In [27], the authors proposed quantification of
the correspondence between features learnt by the network and its depth. DnCNN [12]
has been designed following this approach.

The generalization power of machine learning algorithms is the “ability to perform
well on previously unobserved inputs” [28]. To do so, data are usually split into training,
development, and test sets, with the reminder consisting of unobserved inputs.

In previous work, the authors trained a DnCNN for holographic phase data with
speckle de-noising [29]. This network reaches good performances with the benchmark
data in comparison to other de-noising techniques such as BM3D or WFT2F on most of the
evaluated phase images. In the present paper, networks are evaluated in terms of phase
errors and generalization power defined as the “ability to perform well on previously
unobserved inputs” [28]. The aim is to reduce the training time while reaching similar
performances. To do so, databases for development and validation are presented in
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Section 2. The baseline de-noising algorithms and results are summarized in Section 3.
The training protocols include networks with different depths on various phase image data
(Section 4). With the advantage of fine-tuning using phase data corrupted with speckle
noise, a network previously trained on natural noisy images is also investigated. The
experimental results are discussed in Section 5.

2. Databases
2.1. HOLODEEP Database

This database consists of five different types of noise-free phase fringe patterns and
was used to train the models and for development purposes. Each pattern was degraded
with realistic speckle decorrelation noise with statistics described in [23]. From each noise-
free fringe pattern, five noisy fringe patterns controlled with a parameter, namely ∆, were
generated with the simulator presented in [23], corresponding to different signal-to-noise-
ratios (SNR) in the range [3 dB–12 dB]. The parameter ∆ was used to mimic strongly
degraded experimental phase data. The higher ∆, the smaller the SNR. In real conditions,
there are several degradation sources that may induce more decorrelation noise than
expected if all is perfect. As examples, the reconstruction of holographic data might not be
perfectly in focus [30], the pixels could have a large active surface [3], the recording could
have a low number of pixels or saturated pixels [31], the number of useful quantization bits
could be insufficient [32], or there also could be wavelength changes between exposures [33].
As a consequence, all of these degradation sources have an increase in speckle decorrelation
and then an increase in noise. Thus, using ∆ is a useful way to obtain data with more noise
in order to mimic possible experimental conditions. In the simulator described in [23],
∆ corresponds to small changes in the wavelength between the two exposures. Therefore,
adjusting ∆ is useful to increase speckle decorrelation and thus to decrease the SNR in
phase data. The simulated images, sized 1024× 1024 pixels, were generated using Matlab
and are available in the Matlab mat format or as tiff images. The 25 images used for
training the models are shown in Figure 1.

2.2. DATAEVAL Database

This validation database consists of three images used for testing the model with
images that have not been seen during the training or development processes. Two phase
images, namely Test1 and Test2, were simulated using the simulator in Reference [23],
similar to that for simulating the HOLODEEP database. The SNR of the two phases are
respectively 3.05 dB (see Figure 2b) and 1.26 dB (see Figure 2e). These phase maps are not
included in the HOLODEEP database. The last phase is an experimental noisy phase from
vibration measured at 17 512 Hz, named Test3 with an SNR = 2.52 dB. The clean phase is
shown in Figure 2g, the noisy phase is shown in Figure 2h, and the noisy phase obtained is
shown in Figure 2i. The experimental setup and methodology to obtain such phase images
is described in References [3,4]. The reader is invited to have a look at these papers for
further details.
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Reference ∆ = 0 ∆ = 1 ∆ = 1.5 ∆ = 2 ∆ = 2.5

Figure 1. HOLODEEP training phase images: five patterns (in lines) with simulated speckle noise
with five values of ∆ (in columns).

(a) noise-free Test1 phase (b) noisy Test1 phase (c) de-noised Test1 phase

Figure 2. Cont.
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(d) noise-free Test2 phase (e) noisy Test2 phase (f) de-noised Test2 phase

(g) noise-free Test3 phase (h) noisy Test3 phase (i) de-noised Test3 phase

Figure 2. Noise-free (left), noisy (middle), and de-noised (right) phase images from DATAEVAL. De-noising was performed
using the DL-Py-1.5-4 model.

2.3. NATURAL Database

This database is generally used for natural gray-level image Gaussian de-noising. It con-
sists of 400 images of size 180× 180. The RGB images are available at the link http://www.
eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz (accessed
on 2 June 2021). Noisy images were obtained by adding Gaussian noise with different SNR
values (over 13 dB) directly to the clean images.

3. Baseline Approaches

The baseline results from the state-of-the-art are presented in Table 1. Phase error in
radians was obtained from the HOLODEEP benchmark database and DATAEVAL images.

3.1. Signal Processing Approaches for Speckle De-Noising

Following the protocol described in [23], three algorithms from signal processing were
tested: WFT2F, BM3D, and DtDWT. The results are given in terms of the standard deviation
∆φ of the phase error eij defined in Equation (1), where N is the total number of pixels and
eij = φdenoised(i, j)− φnoise f ree(i, j) is the difference between the de-noised phase φdenoised
and the noise-free phase φnoise f ree at pixel (i, j),

∆φ2 =
1
N ∑

i,j

(
eij −me

)2, (1)

where me is the average of e(i, j) over the set of pixels. Note that, since φdenoised and φnoise f ree
are calculated modulo 2π, the difference eij has to also be computed modulo 2π according
to eij = arg[exp(i eij)].

The baseline results are given in terms of the average of ∆φ over the whole HOLODEEP
database (i.e., 25 images sized 1024× 1024) and with the three images of the DATAEVAL
database. The results for the phase error ∆φ are summarized in Table 1.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz
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Table 1. Baseline standard deviation of the phase errors (∆φ in rad) obtained on the 25 images from
the HOLODEEP database (in average) and individual images from DATAEVAL. Iter is the number of
times that the image passes through the de-noiser.

Method # iter HOLODEEP DATAEVAL
25 Images Test1Test1Test1 Test2Test2Test2 Test3Test3Test3

WFT2F 1 0.026 0.044 0.164 0.105
DtDWT 1–3 0.046 0.078 0.519 0.214
BM3D 1–3 0.068 0.113 0.580 0.094

ine DL-3 1 0.041 0.107 0.585 0.105
DL-3 3 0.031 0.078 0.559 0.077

The iteration number corresponds to how many times the noisy image has been
processed by the de-noiser. From Table 1, one can be observed that only one iteration
is required using WFT2F to obtain the best error at ∆φ = 0.026 rad with HOLODEEP
because WTF2F uses a threshold on the decomposition 2D waveforms and the process
ends after one iteration. Even with three iterations, the two other methods only reach
∆φ = 0.046 rad (DtDWT) and ∆φ = 0.068 rad (BM3D), thus confirming the best perfor-
mance for WFT2F.

3.2. Deep Learning Approach for Speckle De-Noising
3.2.1. Data Augmentation

Since the training database might be not sufficiently extended, signal processing is
used to increase it. For each original phase image, its cosine and sine versions (×2) are
considered together with their transposed and phase shifted version (π/4 phase shift).
This operation helps increase the number of original images by 8.

3.2.2. Baseline Implementation

The starting network considered in this section is the one proposed in [17], called
DnCNN. It includes 59 layers organized upon a first input layer (3 × 3 convolutional
layer and rectified linear units ReLU), 16 intermediate convolutional blocks (ConvBlocks:
3 × 3 × 64 convolutional layer, batch normalization and ReLU), and one output layer
(3× 3× 64 convolutional layer), which is used to reconstruct the output noise. The de-
noised image is the subtraction of the noisy image and the ouput noise. The loss function
is an L2 loss between the reference and the predicted pixel values. The parameters of the
training process are summarized in Table 2.

Table 2. Parameters used to train the networks. ∆ lies for the simulated speckle noise.

DnCNN [17] DL-3 [29] DL-Py

original size 180× 180 1024× 1024 1024× 1024
patch size 50× 50 50× 50 50× 50
batch size 128 128 128

learning rate 0.1 to 0.001 0.0006 0.001; 0.0005
# epochs 50 1920 <200

noise type Gaussian Gauss+speckle speckle
noise σ ∈ [0; 55], µ = 0 ∆ = 0 ∆ = 0 ∆ = 0− 1.5 ∆ = 0− 2.5

SNR (dB) range >13 7.32 − 11.46 7.32 − 11.46 5.08 − 11.46 3.10 − 11.46
# train images 400 5× 8 = 40 5× 8 = 40 5× 3× 8 = 120 5× 5× 8 = 200

# patches 128× 3000 = 384k 384× 40 = 15.3k 384× 40 = 15.3k 384× 120 = 46.1k 384× 200 = 76.8k

DnCNN network was pre-trained with 400 grey natural images sized 80× 80 from
the NATURAL database and optimized with the Adam algorithm. The blind Gaussian
de-noiser was trained with a large set of noise levels, and a patch size of 50× 50. In the
end, 128× 3000 patches were cropped to train the model.
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DL-3 [29] uses a pre-trained network https://www.mathworks.com/help/images/
ref/dncnnlayers.html (accessed on 2 June 2021), which is then fine-tuned with data coming
from the five fringe patterns, and a noise level fixed to two pixels per speckle grain in the
simulator (∆ = 0). The model was optimized using the stochastic gradient descent (SGD)
algorithm. This situation corresponds to realistic digital online holographic recording
conditions. Each phase image is then augmented eight times; thus, a total of 40 images
sized 1024× 1024 are used to adapt the model.

3.2.3. Baseline Results

The results obtained with DL-3 are reported in Table 1. The aforementioned deep
learning model is compared to the signal processing approaches.

The results show that the DL-3 model slightly underperforms WFT2F on HOLODEEP
with three iterations; however, the computation time is more interesting in the case of deep
learning [34]. The addition of a noise estimator can further improve the performances. To
be comparable with the baseline of de-noising algorithms, only one iteration is taken into
account in the following experiments. From Table 1, with DL-3 and three iterations, the
results are in the range of those from DtDWT and better than BM3D for phase maps Test1
and Test2 (speckle size at 4 pixels per grain). DL-3 was trained with only speckle grain at
size 2, so this shows that the neural network can generalize with phase maps, which do
not exactly correspond to the same trained speckle size.

4. Experimental Protocols

The global framework is presented in Figure 3, where the HOLODEEP database is
used to train the networks. The evaluation metric is the phase error ∆φ computed between
the predicted noise-free image and the noise-free reference (refer to Equation (1)).

4.1. Data Pre-Processing and Implementation

The following experiments consider two independent parameters: the type of phase
pattern (five patterns in the HOLODEEP database) and the level of speckle noise. For each
original image sized 1024× 1024, candidate patches are extracted. These patches are sized
50× 50 without any overlap. A random selection aims at extracting 384 patches per image.
The seed is fixed once for all experiments in order to have reproducible patch selection.
The whole patches are then shuffled in order to remove their dependency to a specific
image. The cosine and sine input patches are normalized between 0 and 1.

Patching +	
Data	

augmentation
DL-Py-X-D

HOLODEEP
Noisy	phases

HOLODEEP
Predicted phases

Phase	error
Δ𝜙

𝜙
Cos(𝜙)	x	4
Sin(𝜙)	x	4

Evaluation
Δ (increasing noise	level)

Figure 3. Global overview of the training stage of the system

A Tensorflow implementation was used as the starting point https://github.com/
wbhu/DnCNN-tensorflow (accessed on 2 June 2021) and adapted with Matlab matrices as
inputs https://git-lium.univ-lemans.fr/tahon/dncnn-tensorflow-holography/ (accessed
on 2 June 2021). DL-Py is the Python implementation used in this paper. The architecture
is described in Figure 4, where tf denotes the tensorflow library and D is the number of
ConvBlocks. During the training step, the convergence is very fast in the first 10 epochs

https://www.mathworks.com/help/images/ref/dncnnlayers.html
https://www.mathworks.com/help/images/ref/dncnnlayers.html
https://github.com/wbhu/DnCNN-tensorflow
https://github.com/wbhu/DnCNN-tensorflow
https://git-lium.univ-lemans.fr/tahon/dncnn-tensorflow-holography/
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and then the loss function decreases continuously and slowly. The maximum number
of epochs was fixed to 200 as the performances do not increase significantly with more
epochs. However, due to cluster usage constraints, the training has to be stopped before
the computing time overpasses a limit of 20 days. The number of epochs corresponding to
the best phase error is included in Table 3. The final model is the one that reaches the best
results with the development set. All models are trained on a cluster server with GPUs.

def dncnn(input, D, is_training=True, output_channels=1): #D: number of
ConvBlocks.

with tf.variable_scope(’input’):
output = tf.layers.conv2d(input, 64, 3, padding=’same’, activation=tf.nn.relu)
for layers in range(2, D + 1):
with tf.variable_scope(’block%d’ % layers):
output = tf.layers.conv2d(output, 64, 3, padding=’same’, name=’conv%d’ % layers,

use_bias=False)
output = tf.nn.relu(tf.layers.batch_normalization(output, training=is_training))
with tf.variable_scope(’output’):
output = tf.layers.conv2d(output, output_channels, 3, padding=’same’)
return input−output

Figure 4. Python code with tensorflow framework (as tf), which defines the model architecture.

Table 3. Phase errors (∆φ in rad), obtained with one iteration on HOLODEEP. The best configurations
are presented in bold font. Three training sets are used, each corresponding to a larger diversity of
noise, and the number of patches used to train the model in each case is given. The model names are
given for each configuration. The best epoch is given relative to the total number of epochs used to
train the model.

Trained on HOLODEEP Pre-Trained
∆ (#patch) D 16 4 4

0 (15.3k) model DL-Py-0-16 DL-Py-0-4 DL-Py-0-4-pt
BestEpoch/Max 195/200 200/200 190/200

∆φ 0.057 0.058 0.055
ine 0–1.5 (46.1k) model DL-Py-1.5-16 DL-Py-1.5-4 DL-Py-1.5-4-pt

BestEpoch/Max 70/70 140/150 85/95
∆φ 0.042 0.040 0.045

ine 0–2.5 (76.8k) model DL-Py-2.5-16 DL-Py-2.5-4 DL-Py-2.5-4-pt
BestEpoch/Max 40/50 90/95 50/55

∆φ 0.038 0.035 0.048

4.2. Evaluation Network Depth and Architecture

The network architecture slightly differs from the one proposed in the previous section.
The model can be trained with different levels of noise (from ∆ = 0 to 2.5), different noise-
free phase fringe patterns (from 1 to 5), and different depths, i.e., different number of
ConvBlocks (D = 4 or 16). The following experiments intend to evaluate the influence of
these factors on the de-noising performances of the deep learning models. The number
of data and parameters used for training and evaluating the DL-Py networks are given in
Table 2. The learning rate is set to LR = 0.001, as it has been shown that this parameter has
a large impact on the training duration and the results, with an Adam optimizer.

Depth of the network: Due to the high specificity of phase images, the goal is to
ensure that the network does not overfit the training data. To do so, two different networks
are trained, one with the original 16 ConvBlocks and the other with only 4 ConvBlocks.
With the choice of four ConvBlocks as small model, training can be carried out rapidly
while maintaining a certain level of complexity.

Noise level for training: Additionally, the network is supposed to be able to de-noise
images that have a wide range of noise levels. Therefore, including various level of noise
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in the training data could help the network to do it. To do so, three networks are trained on
different noise ranges.

4.3. Evaluation of a Pre-Trained Network

In a second step, how the network pre-trained on natural images with additional
Gaussian noise can be better is estimated. Then, it is adapted to holographic phase images
or to the direct use of a network trained entirely with holographic phase images.

Four hundred images of the NATURAL database are used to pre-train the network
with the best architecture obtained in the previous section, i.e., four ConvBlocks (see
Section 5). Once the network is pre-trained, a second fine-tuning stage is carried out
using holographic images following the aforementioned protocol. The DL-nat-pt model
corresponds to the model trained with natural images during 75 epochs, which seems
reasonable regarding the 50 epochs used to train the original DnCNN [10]. Without fine-
tuning, this model reaches ∆φ = 0.380 rad with the development set, which is not suitable
at all for holographic images. The fine-tuning results are presented in the next section.

5. Results and Discussion
5.1. Network Depth and Architecture

The results obtained with HOLODEEP are summarized in Table 3. To help the reader,
the model names the different parameters explicitly: DL-Py-X-D-z, with X being the
maximum ∆ in the training data, D being the depth of the model (D = 4 or D = 16), and
the optional z indicating if the model has been previously trained on natural images (pt).

When the training noise is ∆ = 0, the best results are obtained with a complex network
(DL-Py-0-16, ∆φ = 0.057 rad). However, overall, the best results are obtained with only
four ConvBlocks and a large range of training noise (DL-Py-2.5-4, ∆φ = 0.035 rad).

Introducing noise level diversity allows for drastically reducing the average phase
error for all configurations. Especially the best configuration (D = 4 ConvBlocks) lowers
∆φ from 0.058 rad (∆ = 0) to 0.035 rad (∆ = 0–2.5). This suggests that a reduced network
trained with a large diversity is probably more generalizable than a deep network trained
with very few data. One point remains uncertain: we are not sure whether the improvement
observed on de-noising is due to the diversity of noise or to the larger amount of data
used to train the network. The advantage of using a smaller number of layers is that the
computation time is more than two times less.

An investigation of the results according to speckle noise level in the HOLODEEP
images confirms that the higher the noise level, the higher the error in the restored phase
map. Figure 5 details the values obtained during an evaluation on HOLODEEP according
to their level of noise (parameter ∆) with the three best models DL-Py-0-4 (train noise
level ∆ = 0), DL-Py-1.5-4 (train noise level ∆ = 0–1.5), and DL-Py-2.5-4 (train noise level
∆ = 0–2.5).

As aforementioned, DL-Py-2.5-4 is better on average than DL-Py-0-4 on HOLODEEP.
However, the additional experiments show that this performance improvement is signifi-
cantly more important on images with high noise level (−49% of relative reduction with
∆ = 2.5) than with images with low noise (−31% with ∆ = 0). These results underline the
relevance of introducing a large diversity of patterns and noise levels during the training
step if the application images to be processed also have high noise levels.
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∆ - AVG ∆ = 0 ∆ = 1 ∆ = 1.5 ∆ = 2 ∆ = 2.5

0.02

0.04

0.06

0.08

0.1

∆
φ

DL-Py-0-4 DL-Py-0-4-pt DL-Py-1.5-4 DL-Py-1.5-4-pt DL-Py-2.5-4 DL-Py-2.5-4-pt

Figure 5. ∆φ (rad) obtained on HOLODEEP with best model (D = 4). ∆-AVG indicates the error averaged on the 25 images,
∆ = X indicates the error averaged on the noisy images obtained with ∆ = X.

5.2. Pre-Training

Table 3 shows that the pre-trained model outperforms the initial models only when
a small level of noise (∆ = 0) is used for fine-tuning. This leads to the conclusion that
pre-training the network on natural images helps to compensate for the lack of diversity
in the specific training data and the relatively small amount of training data. Thse results
confirm the advantage of using pre-trained models when the amount of specific target data
is low [35].

Two hypotheses may explain the poor performances reached by the pre-trained model.
The NATURAL and HOLODEEP databases differ on many points: additive Gaussian vs.
multiplicative speckle noise and natural vs. wrapped phase images. Such a data difference
could explain the poor performances obtained with pre-training: training a network with
phase images using an initialization obtained on NATURAL database does not seem worthy
in the present case. Therefore, training a network with phase data corrupted with speckle
noise requires deeper investigated. The second hypothesis concerns the performance of
the model trained on NATURAL data. Due to cluster usage constraints, the total number
of epochs to train this model is 75 epochs. It aims to obtain a model performed on natural
images. However, this number is higher than the 50 epochs used to train the original
DnCNN model mentioned in [17] and the model might be too specific for natural images.
As such models require a lot of resources to be trained, we did not have the opportunity to
train it on a higher number of epochs. However, it is worth considering this aspect.

5.3. Evaluation on Target Images

Table 4 summarizes the performances obtained with the development and validation
images. DL-Py-2.5-4 performs better on the training data HOLODEEP (∆φ = 0.035 rad)
and on Test1 (∆φ = 0.072 rad). However, the performance is degraded when testing
with Test2, which has a high level of noise, and with Test3, which is the phase image
from vibration experiments. No clear answer can be given here. DL-Py-2.5-4 model is
trained on a large number of data and noise; thus, it should be able to deal with a high
level of noise. However, from the construction of the HOLODEEP database, there are a
few redundancies in the phase images, and Test1 appears relatively similar to those in
HOLODEEP while Test2 and Test3 are not. Therefore, the model might not be easily
generalizeable to unseen images. Another hypothesis is that the structure of the model
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implies additive noise, which could be relevant for a small SNR but not for a high SNR
where speckle noise is clearly multiplicative. The model that best generalized on test2
and Test3 is the one trained on a medium range of speckle noise (DL-Py-1.5-4). This model
is even able to outperform the baseline WFT2F on the experimental vibration map Test3
phase image. Figure 2 shows how these images from DATAEVAL are de-noised by the best
model. Therefore, the proposed networks are able to reach interesting performances in
comparison to WFT2F, especially for some specific experimental images. These networks
have the advantage of being faster to train than the DL-3 network as they only contains
four ConvBlocks.

Table 4. ∆φ (rad) obtained on the HOLODEEP database (in average) and individual images from
DATAEVAL with one iteration. The best epochs for the pre-trained and trained models on the
HOLODEEP validation database.

Method HOLODEEP DATAEVAL
25 Images Test1Test1Test1 Test2Test2Test2 Test3Test3Test3

WFT2F 0.026 0.044 0.163 0.105
DL-3 0.041 0.107 0.585 0.105

DL-Py-0-4 0.058 0.142 0.629 0.117
DL-Py-0-4-pt 0.055 0.146 0.629 0.105

DL-Py-1.5-4 0.040 0.095 0.593 0.103
DL-Py-1.5-4-pt 0.045 0.112 0.609 0.111

DL-Py-2.5-4 0.035 0.072 0.597 0.109
DL-Py-2.5-4-pt 0.048 0.097 0.660 0.134

Regarding pre-trained models, it seems that they are not generalizable on unseen
images except DL-Py-0-4-pt, which obtains ∆φ = 0.105 rad with Test3. Additional ex-
periments show that models trained with more epochs can improve the performances on
Test1 but degrade on Test2 and Test3.

6. Conclusions

This paper discusses holographic phase images de-noising and presents an alternative
approach that is specific for speckle noise. The results show that a pre-trained model is
not useful except when the amount and diversity of simulated data are low. In this case,
the pre-training compensates for the lack of data. The experiments also demonstrate that
the use of very deep networks is not necessary and that the use of four ConvBlocks yields
reliable performances in comparison to WFT2F. Reduced networks also have the advantage
of being faster to train. This study also addresses the issue of the generalization of the
networks. It appears that WFT2F remains the best algorithm for phase images with a
high level of noise (Test2). However, the best model is able to outperform the baseline of
WFT2F with experimental data (Test3). The poor performance of DL-Py models with phase
images with a high level of noise may be related to the additive hypothesis implemented
in the network itself. A multiplicative model will be investigated in the future. Further
work intends to improve speckle de-noising by combining the advantages of the two
approaches following preliminary works on the addition of a noise estimator [34]. Other
data augmentation functions will be implemented in order to increase the amount of
training data. In addition, the construction of a new database with an increased diversity of
fringe images would be of interest to train the networks with a high diversity of patterns.
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