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Abstract: Industrial processes involving thermal plasma such as cutting, welding, laser machining
with ultra-short laser pulses (nonequilibrium conditions), high temperature melting using electrical
discharge or ion-beams, etc., generate non-repeatable fast transient events which can reveal valuable
information about the processes. In such industrial environments containing high temperature and
radiation, it is often difficult to install conventional lens-based imaging windows and components to
observe such events. In this study, we compare imaging requirements and performances with invasive
and non-invasive modes when a fast transient event is occluded by a metal window consisting of
numerous holes punched through it. Simulation studies were carried out for metal windows with
different types of patterns, reconstructed for both invasive and non-invasive modes and compared.
Sparks were generated by rapid electrical discharge behind a metal window consisting of thousands
of punched through-holes and the time sequence was recorded using a high-speed camera. The
time sequence was reconstructed with and without the spatio-spectral point spread functions and
compared. Commented MATLAB codes are provided for both invasive and non-invasive modes of
reconstruction.

Keywords: fast transient events; high-speed imaging; computational optics; holography; diffraction;
phase-retrieval algorithm; invasive imaging; non-invasive imaging

1. Introduction

Imaging through occlusion such as mist, fog, or a scattering medium is a challenging
task [1–3]. There are many techniques developed which allows reconstruction of the object
information from the deformed images [3–6]. Techniques which utilize the information of
the imaging configuration such as the point spread function (PSF), scattering matrix, and
distances are categorized as invasive since additional information related to the scattering
media is needed [4]. The techniques which do not require any of the information as
described above are classified as non-invasive [5,6].

The two modes: invasive and non-invasive have their own advantages and disad-
vantages. The requirement of additional information about the imaging components and
configuration in invasive mode is the disadvantage but the method can reconstruct up
to 5D information in space, spectrum, and time [7,8]. In non-invasive approaches, the
capability is often limited to 2D [6]. In the recent years, there has been numerous research
works on non-invasive approaches and the method has been successfully extended to
obtain an additional dimension—depth [9–11]. Another major difference between invasive
and non-invasive approaches is that with invasive methods, it is possible to reconstruct the
object information as close as possible to reality, with higher signal to noise ratio (SNR),
optimal resolution and field of view. In the non-invasive approaches, the demonstration is
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often carried out with much smaller objects and the quality of reconstructions are much
lower than direct and invasive approaches. Furthermore, the non-invasive approach relies
on an initial guess (random matrix) which controls the degree of convergence, necessitat-
ing several initial guess cases in [6], that were tried until an optimal reconstruction was
obtained.

In this tutorial, a comprehensive comparison of different types of correlation based in-
vasive reconstruction methods and non-invasive type reconstruction using phase-retrieval
algorithm is studied. The manuscript consists of five sections. In the next section, the
methodology of the study is described. The simulative studies are presented in third
section. The computational reconstruction with MATLAB code is described in the fourth
section. In the fifth section, the experimental results are presented and discussed. The
conclusion and summary are presented in the final section. Supplementary files consisting
of original MATLAB code with comments are provided for a freshman in this area of
research.

2. Methodology

The optical configuration of light collection from an isolated fast transient industrial
process through an occlusion (metal window with holes) by a ultra-high-speed camera is
shown in Figure 1. Many industrial processes produce intense temperature, light intensity,
and pressure so are generally isolated from their surroundings. This makes it difficult
to image or monitor using conventional lens-based imaging systems. A metal occlusion
consisting of few holes is better than a glass window as it can substantially cut down the
light intensity. Additionally, an electrical bias of such “metallic-optics” can be used to
mitigate material (re)deposition for a close placement of them near high-temperature event.
Furthermore, if the holes have sizes of the order of the wavelength of interest then the light
will undergo diffraction and generate intensities within recordable range of values. Let us
consider that the fast transient event generates light that is spatially as well as temporally
incoherent (Figure 1).
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Figure 1. Optical configuration of light collection from an isolated fast transient industrial process through an occlusion
(metal window with punched holes) by a high-speed camera.

As it is seen in Figure 1, what is recorded by the high-speed camera is not the image
of the object or the event but a scattered intensity distribution. Therefore, the recorded
intensity distribution needs to be processed to reconstruct the event as close as possible to
reality. This reconstruction can be achieved using two modes: invasive and non-invasive. In
the invasive approach, as the name suggests it is necessary to carry out some measurements
in the region invasively where the event occurs to extract additional information about the
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system. This invasion can be either in the form of recording the image of the occlusion and
generating the transmission matrix or mounting a point object such as a pinhole at different
axial locations and recording the PSF library. The above invasion is possible in some cases
and may be safe where the space beyond the occlusion is accessible or the occlusion itself
is detachable. In such cases, a PSF library can be recorded for different wavelengths or the
occlusion can be imaged. By processing the PSF library with the recorded scattered intensity
distribution, the event can be completely reconstructed in depth and wavelength up to five
dimensions. However, in many industrial processors, the above is not possible where the
occlusion is welded on to the system and the space beyond the occlusion is not accessible.
Besides, this invasive procedure is especially not safe in biomedical applications where the
surface of an organ or tissue is occluded by the skin. In such cases, the only information that
is available is the scattered intensity distribution and the reconstruction mechanisms which
use only this scattered intensity distribution are called as non-invasive imaging methods.
Phase-retrieval based image reconstruction techniques that can reconstruct the event or the
image of the object just by processing only the scattered intensity distribution without any
other information of the system were developed. However, is the phase retrieval-based
reconstruction universal? i.e., does this approach work in all types of occlusions? In the
next sections, the mathematical formulations are presented and simulative studies on
different types of occlusions are investigated.

2.1. Invasive

Let Io(λ) be the intensity of a point object emitting light with a wavelength λ, located
in the (xo, yo) plane at a distance of u from the occluding object. The complex amplitude at
the occlusion is given by

ψ1 = C1

√
Io(λ)L(o/u)Q(1/u), (1)

where ro = (xo, yo), L(o/u) = exp
[
j2π
(
oxx + oyy

)
/(λu)

]
and Q(1/u) =

exp
[
jπ
(

x2 + y2)/(λu)
]

are the linear and quadratic phase factors respectively, C1 is a
complex constant and oxx and oyy are the projections along the x and y directions. Con-
sidering the occlusion as a metal consisting of many holes of the order of wavelength, the
following design can be made. The occlusion at a plane m consisting of N micro-holes that
are randomly located can be expressed as

Mask =
N

∑
i=1

δ(r− ri,m)⊗ circ(R) (2)

where δ(r− ri,m) is a Delta function, R is the radius of the pinhole and ‘⊗’ is a two dimen-
sional (2D) convolutional operator, rm = (xm, ym), ri = (xi, yi) and xi, yi ∈ {C2.(U[0, 1])},
U is a uniform random variable distributed on [0, C2] and circ(R) is the circle function.
The above convolution operation creates holes in the locations of the Delta functions. The
complex amplitude after the mask is given as

ψ2 = C1

√
Io(λ)L(o/u)Q(1/u)Mask (3)

The sensor located at a distance of v from the occlusion records an intensity distribution
given by

IPSF(rs; ro, u, λ) =

∣∣∣∣C1

√
Io(λ)L

(
o
u

)
Q
(

1
u

)
Mask⊗Q

(
1
v

)∣∣∣∣2, (4)

where rs is the location vector in the sensor plane. The above equation can be modified as

IPSF(rs; ro, u, λ) = IPSF

(
rs −

v
u

ro; 0, u, λ
)

(5)
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which indicates that a point in the object plane located not along the optical axis will
generate the same intensity pattern but shifted in the sensor plane by v

u ro. So, the location
vector is modified by including this shift. A 2D object consisting of multiple points can be
represented as

o(ro) = ∑
i

aiδ(r− ri), (6)

where ai is the intensity at the object plane (at the point i). The object intensity pattern at
the sensor plane is given as

O(rs, u, λ) = ∑
i

ai IPSF

(
rs −

v
u

ro,i; 0, u, λ
)

(7)

The image of the object is reconstructed by a cross-correlation between O and IPSF

IR(rR) =
x

∑
i

ai IPSF

(
rs −

v
u

ro,i; u, λ
)

I∗PSF(rs − rR; u, λ),=

[
x

∑
i

aiΛ
(

rR −
v
u

ro,i

)]
+ K ≈ o

(
rs

M

)
+ K, (8)

where M is the magnification of the system given by v/u and Λ is a Delta-like function
which samples the object and K is a function indicating background noise arising due
to cross-correlating two positive functions. If the conditions of either the object or the
point object in u or λ are different from one another, then the width of Λ increases with
the minimal width corresponding to ~2.44λ/NA when there is a perfect match in wave-
length and distance. The above correlation can be accomplished through different filters
such as matched filter [12], phase-only filter [13], non-linear filter (NLR) [14], Weiner
filter (WF) [15] and other algorithms such as Lucy–Richardson algorithm (LRA) [16,17],
maximum likelihood algorithm (MLA) [18], regularized filter algorithm (RFA) [19]. The
previous studies [20] have proven that the NLR has better performance than different filters
and iterative methods due to the high level of adaptability and versatility [20].

2.2. Non-Invasive

In non-invasive approach, the reconstruction is not by a cross-correlation with the
PSF but by a phase-retrieval algorithm which uses the magnitude of the autocorrelation of
the object intensity distribution given as IA = O∗O, where ‘∗’ is a 2D correlation operator.
Rewriting the above expression by expanding the object intensity distribution O, we get
IA = (o⊗IPSF)∗(o⊗IPSF). The terms can be rearranged by convolution theorem such that IA
= (o∗o)⊗(IPSF∗IPSF) [21]. The autocorrelation of IPSF gives rise to a Delta-like function Λ
with a background given by K and so IA = (o∗o)⊗(Λ + K). The function of K is given by
the nature of the occlusion as described in [22]. So, the above expression can be written
as IA = (o∗o + K1). For simplicity, the occlusion is considered as highly scattering and so
K1 is nearly constant which can be suppressed by subtraction of the average minimum
value. The autocorrelation of the object intensity distribution can be expressed in terms of
Fourier transforms as IA = =−1

{
|={O}|2

}
[23]. A Fourier transform operation followed

by a square root on IA will result in |={O}|. As the magnitude of Fourier transform of the
object information is available, the object information can be obtained using Fienup type
phase retrieval algorithm [24].

The block diagram for the phase-retrieval algorithm is shown in Figure 2. In the
first step, the autocorrelation of the object intensity distribution is calculated, followed
by a Fourier transform and square root operation yielding the magnitude of the Fourier
transform of the object. There are two planes of interest with complex amplitudes A1(x, y)

and
√∣∣={IA

(
kx, ky

)}∣∣exp[jΦ(kx, ky)] as shown in Figure 2. The size of A1(x, y) is predicted
as approximately half of the extend of IA as the autocorrelation of the intensity is equivalent
to the autocorrelation of the object if the autocorrelation of the PSF generates a Delta-like
function. The algorithm begins with an initial guess object function A1(x, y) with a size
about half of the width of IA and a value of zero for all other pixels of the matrix. This
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matrix is Fourier transformed and the resulting complex amplitude’s real part is replaced

by
√∣∣={IA

(
kx, ky

)}∣∣ while the phase Φ(kx, ky) was carried on. The resulting matrix is
inverse Fourier transformed and the constraints of non-negativity and real are applied
and this process is iterated until the matrix A1(x, y) converges and reaches non-changing
values. Thus, the object function is reconstructed. Previous studies have indicated that
convergence of the algorithm is highly dependent upon the initial guess matrices and so it
was repeated many numbers of times with different initial guess matrices mostly with a
random profile [6].
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3. Simulative Studies

In this section, the invasive and non-invasive approaches were studied for different
types of occlusion as shown in Figure 3a–d and for an object consisting of two circular
objects as shown in Figure 3e. The previous studies have shown that the non-invasive
approaches work well only for simpler objects with a smaller field of view [6]. The main
difference between Figure 3a–d is that the first three are periodic structures while the final
one is chaotic [7]. Even though the inversion images of Figure 3a,b are typically used, the
current images were used for decreasing the light throughput. The simulation studies
were carried out and the PSFs are shown in Figure 4. As is seen, the periodic structures
generate PSFs that have periodic intensity patterns. Consequently, the autocorrelation of
the periodic patterns give rise to multiple peaks other than a single peak as described in
Section 2. For this reason, the generated function cannot be considered as a Delta-like
function for the periodic cases. The object intensity distributions for different cases are
simulated by convolving the respective PSFs with the object function shown in Figure
3e. As expected, the object intensity distribution appears periodic except for the case with
randomly punched holes. The phase retrieval method has been applied to reconstruct the
object information without the PSF and the results for different types of occlusion are shown
in Figure 4. As expected, the reconstruction for periodic intensity cases have lower quality
than the case with randomly punched holes. The invasive approach was implemented

with NLR given as IR =

∣∣∣∣F−1
{∣∣∣ ĨPSF

∣∣∣αexp
[
i arg

(
ĨPSF

)]∣∣∣Õ∣∣∣βexp
[
−i arg

(
Õ
)]}∣∣∣∣ and the

parameters α and β are tuned between −1 and 1 until a minimum entropy given as
S(p, q) = −∑ ∑ φ(m, n)log[φ(m, n)], is obtained where φ(m, n) = |C(m, n)|/ ∑

M
∑
N
|C(m, n)|,

(m,n) are the indexes of the correlation matrix, and C(m,n) is the correlation distribution.
The reconstruction results are better for the case with random intensity distribution than
other cases of occlusion with periodic mesh patterns. The results shown in the rows 4 and
5 (from top) of Figure 4 are magnified versions of the reconstructed images with the central
part filling up the window. Every reconstructed pixel information of the reconstructed
image is approximately twice the size of the diffraction limited spot as the object function o
is sampled by the autocorrelation function of the imaging system. The image reconstruction
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by NLR can be given as IO = O∗IPSF = (o⊗IPSF)∗IPSF. Rearranging the terms of the equation
we get o⊗(IPSF∗IPSF) = o⊗Λ, where Λ is twice the diffraction limited spot size for matched
filter [13] and can be equal to the size of the diffraction limited spot size at the optimal case
of the NLR [14].
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4. Software

The computational reconstruction has been carried out using the software MATLAB.
The step-by-step approach is provided using pseudo code for invasive and non-invasive
cases in Tables 1 and 2 respectively. In invasive mode, there are two inputs namely the
object intensity pattern and the PSF and in non-invasive mode, there is only a single input
which is the object intensity distribution. In invasive mode, the reconstruction is direct
where the matrices of object intensity pattern and PSF are cross correlated by NLR filter. By
setting different values to α and β, different filters such as matched filter, phase-only filter
and Weiner or inverse filter cases can be obtained. Other iterative reconstruction methods
such as LRA and MLA and noise removal method RFA are available as one line syntax in
MATLAB software. The pre-processing of the recorded intensity distributions is similar in
both cases.

Table 1. Pseudocode for the reconstruction of the image for invasive mode of imaging through occlusion.

Task. No Task Steps

1 Defining computational space

Step-I Define the length and breadth of the computational space in pixels
(N1, N2).
Step-II Define origin (0, 0), x and y coordinates:
x = (1 to N1), y = (1 to N2).
Step-III Create meshgrid:
(X,Y) = meshgrid (x, y).

2 Load experimentally recorded
object intensity pattern and PSF and

carry out low pass filtering

Step-I Read image files of object intensity pattern and PSF and convert them
into double precision arrays and choose one of the channels of RGB.
Step-II Define radial coordinate using the coordinates of the meshgrid

R =
√
(X− N/2)2 + (Y− N/2)2. Calculate Fourier transform of the two

processed matrices ={O′} and =
{

IPSF
′} and select the radial range of spatial

frequencies (For R > r, ={O′} = 0 and =
{

IPSF
′} = 0 ) calculate the inverse

Fourier transform, where the prime symbol indicates processed matrices and
r is the spatial frequency range. The absolute value of the resulting matrices
namely O” and IPSF” can be used for further processing.

3 Reconstruction

Normalise O” and IPSF”.
Step-I Calculate Fourier transform of O′′ and IPSF

′′={O′′ } and ={IPSF
′′ } .

Step-II Multiply ={O′′ } with ={IPSF
′′ } for different values of α and β

ranging from −1 to 1 in steps of 0.1 and calculate inverse Fourier transform.
Calculate entropy and find the optimal reconstruction.
α = 1, and β = 1, Matched filter.
α = 0, and β = 1, Phase-only filter.
α = −1, and β = 1, Weiner or inverse filter.
Step-III Apply median filter to the optimal reconstruction.
Step-IV Display the result.
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Table 2. Pseudocode for the reconstruction of the image for non-invasive mode of imaging through occlusion.

Task. No Task Steps

1 Defining computational space Step-I Define the length and breadth of the computational space in pixels
(N1, N2).
Step-II Define origin (0, 0), x and y coordinates:
x = (1 to N1), y = (1 to N2).
Step-III Create meshgrid: (X, Y) = meshgrid (x, y).

2 Load experimentally recorded
object intensity pattern, carry out

low pass filtering and
autocorrelation and determine

parameters

Step-I Read image files of object intensity pattern, convert it into double
precision arrays and choose one of the channels of RGB.
Step-II Define radial coordinate using the coordinates of the meshgrid

R =
√
(X− N/2)2 + (Y− N/2)2. Calculate Fourier transform of the

processed matrix ={O′} and select the radial range of spatial frequencies
(For R > r, ={O′} = 0) calculate the inverse Fourier transform, where the
prime symbol indicates processed matrices and r is the spatial frequency
range. The absolute value of the resulting matrix namely O” is extracted, the
minimum value was subtracted and normalized again. The magnitude of

Fourier transform of the object is calculated as
√∣∣∣=[=−1

{
|={O}|2

}]∣∣∣
which is used in the phase retrieval algorithm.
Step-III Set the size of the object and generate the initial guess object function
from the extension of the autocorrelation function and low pass filter.

3 Phase retrieval algorithm (Figure 2) Start for loop
Step-I Calculate Fourier transform of the initial guess object matrix A1(x, y)
which produces A2(x, y)exp[jΦ(kx, ky)].

Step-II Replace A2(x, y) by
√∣∣∣=[=−1

{
|={O}|2

}]∣∣∣ and calculate inverse

Fourier transform.
Step-III Apply constraints—real and object size.
End for loop

5. Experiments

The schematic of the experimental set up is exactly same as the optical configuration
shown in Figure 1. A spark is generated behind an occlusion and the scattered intensity
pattern was recorded using an ultra-high-speed camera. The spark generation circuit is
shown in Figure 5a and the photograph of the experimental set up is shown in Figure 5b.
The occlusion for the experiment was fabricated on a 4-inch chromium coated glass plate
with a thin layer of resist. A design consisting of 12,000 holes grouped into sets of 2000, 1500
and 1000 holes each with a diameter of about 100 µm was made for the experiment. The
design was transferred to the resist layer using Intelligent micropatterning SF100 XPRESS
on a standard non-contact photo-lithography mask-blank. A standard chrome etchant was
used to transfer the pattern to the chromium layer. Only a small area (~64 mm2) consisting
of about 2000 holes of the mask was unblocked while the rest of the areas were blocked
by a black tape. An ultra-high-speed camera (Phantom v2512, monochrome, 800× 1280,
∆ = 28µm) was mounted at a distance of about 15 cm from the occlusion.

For this tutorial study, a spark was generated by capacitor discharge using a simple
circuit, as shown in Figure 5a. The circuit consisted of two 10 W, 10 Ω resistors connected
in series with a capacitor 100 µF, 400 V [25]. The capacitor was charged to about 207 V
and discharged by touching the wires that were connected parallel to the terminals of the
capacitor resulting in a sudden discharge causing a spark. This spark event was located
approximately 5 cm from the occlusion. The photograph of the experimental set up is
shown in Figure 5b. The camera was configured to record the 2 s preceding that start of the
fast transient event and triggered manually and saved as a cine file. The Phantom Camera
Control software was used to export the cine file into a 12-bit TIFF file for processing
in MATLAB. In order to have reliable comparison between invasive and non-invasive
approaches, a PSF was recorded using a pinhole with a size of 20 µm at the location of
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the event. The image of the recorded green PSF (λ = 530 nm, ∆λ = 33 nm) and the object
intensity distribution of the spark event with a time lapse of 40µs between successive
frames are shown in Figure 6a–g.
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The reconstructed intensity distributions from invasive and non-invasive approaches
are shown in Figure 7. It is seen that the reconstructed intensity distributions from NLR
(α = 0, β = 0.7) matched with that of RFA, LRA (50 iterations) and MLA (50 iterations)
and the non-invasive method yielded the reconstructions with additional information.
The reconstructed intensity distributions for invasive methods enhance the information
corresponding to the green wavelength and the corresponding depth which may not
happen with the non-invasive approach leading to additional information. The results for
non-invasive approach matched with that of the invasive methods for a set of values of
the parameters in the phase retrieval algorithm such as spatial frequency range of low-
pass filter, computational space and initial guess matrix. However, it was found that the
pattern of the initial guess matrix was not crucial if the computational space and filter were
optimized. The results obtained did not vary much even when the initial guess matrix
consisted of only constant values such as 0 or 1. Furthermore, the number of iterations
needed was only about 20 and only mild variations were seen after that indicating a
faster convergence which is different from the earlier studies which required hundreds or
thousands of iterations [6].
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6. Summary and Conclusions

In the recent years, there have been a shift in interest from developing invasive imaging
methods towards non-invasive ones. Bypassing the need to record or generate PSFs means
that in environments where the target area cannot be accessed, imaging through a scattering
or occluding window can still be achieved. Even in situations where conventional imaging
is used, the optical window can degrade over time, leading to increased scattering or
occlusion and creating an environment highly suitable for this method. This tutorial
summarises the invasive and non-invasive methods of image reconstruction and goes
through the mathematical operations required to accomplish both. A simple simulation is
shown to demonstrate the effects of the occluding medium on the resultant reconstruction,
which shows a better result when the occluder is not periodic. Finally, a model system
consisting of an electrical spark is used to compare the invasive and non-invasive methods
and to show the effects of different filters in the invasive approach. We believe that this
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tutorial along with commented code provides good starting point and background for
users that want to begin implementing these methods by facilitating quick learning of
the fundamentals of invasive and non-invasive approaches for freshman in this area of
research. This non-invasive imaging is directly amenable to artificial intelligence analysis
of images. The recently developed edge and contrast enhancement studies can be directly
applied to the methods discussed here [26].

Supplementary Materials: The following are available online at https://doi.org/10.5281/zenodo.
4882872, Supplementary files Supplementary_Code_1 and Supplementary_Code_2.
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