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Abstract: Broadband quantum noise suppression of light is required for many applications, including
detection of gravitational waves, quantum sensing, and quantum communication. Here, using
numerical simulations, we investigate the possibility of polarization squeezing of ultrashort soliton
pulses in an optical fiber with an enlarged mode field area, such as large-mode area or multicore
fibers (to scale up the pulse energy). Our model includes the second-order dispersion, Kerr and
Raman effects, quantum noise, and optical losses. In simulations, we switch on and switch off Raman
effects and losses to find their contribution to squeezing of optical pulses with different durations
(0.1–1 ps). For longer solitons, the peak power is lower and a longer fiber is required to attain the
same squeezing as for shorter solitons, when Raman effects and losses are neglected. In the full
model, we demonstrate optimal pulse duration (~0.4 ps) since losses limit squeezing of longer pulses
and Raman effects limit squeezing of shorter pulses.

Keywords: polarization squeezing; quantum noise suppression; stochastic nonlinear Schrödinger
equation; optical soliton; nonlinear fiber optics

1. Introduction

Broadband quantum noise suppression of light is desirable for many applications,
including detection of gravitational waves, quantum sensing, and quantum communi-
cation [1]. For example, the first long-term application of quantum squeezed light for
a gravitational-wave observatory was reported in [2]. In new detectors of gravitational
waves, an injection of −10 dB squeezed light is required and studies in this direction are
in progress [3]. With regard to quantum communications, the first implementation of an
entirely guided-wave optical setup for generation and detection of squeezed light at a
telecommunication wavelength was reported in [4]. Thus, the development and investiga-
tion of methods for quantum noise suppression is of interest for many applications. When
studying optical pulses in fibers, quasi-particle excitations called solitons play a special role
in the spectral region of anomalous dispersion because of their remarkable stability [5–7].
The underlying reason for this is the compensation of dispersion by the Kerr nonlinear
interaction in the medium. In classical optics, such solitons have a well-defined phase
and amplitude. When characterizing the light with high enough precision, one discovers
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that amplitude and phase are subject to some quantum uncertainty. This uncertainty is
minimized e.g., for the coherent state. As a result, a quantum soliton in a coherent state
will not be stable, but will instead show a quantum evolution, which in the case of an
optical fiber is typically dominated by the Kerr-effect [8]. Only if the bright soliton with
a high mean photon number is in a well-defined photon number (Fock) state will it be
stationary, but this is an unrealistic scenario for solitons in fibers. However, the quantum
evolution of an initially coherent soliton generates a soliton in a squeezed state, showing
reduced quantum noise, which can be useful. Interfering two squeezed solitons generates
entangled solitons with potential use in interferometry and communication (see e.g., [9]).
Incidentally, the initial part of the quantum evolution of a coherent state, continuous wave
(CW) or pulsed, and that of the classical evolution of a light field with statistical fluctuations
corresponding the same quantum uncertainty, are very similar [10–12]. However, the later
evolution is much different because the quantum evolution is ultimately periodic [13,14],
in stark contrast to classical evolution. Recently it was pointed out that entangled light
beams may improve the sensitivity of ellipsometry [15], which is not surprising, because
ellipsometry is also a form of interferometry.

There are several ways to obtain (CW) or pulsed squeezed light (see the review [1]
and references therein). This can be done, for example, by means of semiconductor
lasers [16], parametric down-conversion [17], optical parametric systems [17,18], paramet-
ric up-conversion [19–21], and optical fibers with a Kerr nonlinearity [22,23]. The first
demonstration of quantum squeezing in an optical fiber was reported in [22]. Soliton
squeezing of −2.7 dB (−4 dB with correction of detection losses) was achieved in a micro-
structured fiber [24]. A maximum noise reduction of 4.4 dB (6.3 dB with correction for
losses) was obtained for ultrashort pulses in a polarization-maintaining fiber [25]. Po-
larization squeezing of −6.8 dB (−10.4 dB with corrected for linear losses) of ultrashort
pulses in a birefringent fiber was presented in [26]. However, the potential for optical
fibers is not yet fully exploited, and possibilities of efficient noise reduction in fibers are
studied [27–29]. In most experiments on Kerr squeezing, fibers with high nonlinear coef-
ficients were used [23–26]. Note that in optical fibers, the nonlinear Kerr coefficient γ is
proportional to the nonlinear refractive index n2, which is an intrinsic material property,
and is inversely proportional to the effective mode field area Aeff, which depends on fiber
design and can be controlled in a wide range [30]. Here we consider a silica fiber with an
enlarged Aeff compared to standard telecommunication fibers and expect that such a fiber
with a reduced nonlinear coefficient of γ may be useful for operation with higher peak
powers and higher pulse energies. In addition, it was recently shown that using fibers with
large Aeff allows for mitigating guided acoustic wave Brillouin scattering (GAWBS), which
is a parasitic effect for the squeezing of light [31].

Squeezing of CW and pulsed light in fibers has its own advantages and limiting
factors. For Kerr squeezing of narrowband CW radiation, long fibers (~100 m) are required,
and optical losses as well as GAWBS [32] are limiting factors. For ultrashort soliton pulses
with a high peak power and a broadband spectrum, shorter fibers are required (~10 m for
pulse duration of the order of 100 fs), therefore the impact of losses and GAWBS weakens.
However, in this case, Raman effects reduce squeezing significantly [26]. A possible way to
overcome this limitation is to use longer pulses. However, the soliton energy is inversely
proportional to the soliton duration and in standard or highly nonlinear fibers is low
for longer pulses. To scale up the soliton energy, fibers with lower nonlinearity can be
used. Such fibers are available in the form of large-mode-area (LMA) fibers and multicore
coupled-core fibers supporting supermode propagation with a large effective area [30].

Here, we numerically simulate polarization squeezing of ultrashort solitons in fibers
with an enlarged mode field area and reduced nonlinearity and study the interplay between
limiting factors for different pulse durations. We find optimal conditions and expected
quantum noise reduction for them.
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2. Methods

Here, we consider a polarization squeezing of optical solitons in a silica fiber with
enlarged mode field area and with the decreased nonlinear Kerr coefficient γ compared
to a standard telecom fiber SMF-28e (Aeff ~80 µm2 for SMF-28e). Current technologies
make it possible to produce low-loss fibers with different designs including (i) with a small
difference between the refractive indices of cladding and an increased core (LMA fibers) [30]
or (ii) multicore fibers with N coupled cores with a standard diameter [30,33] (also studied
for quantum telecommunications [34]), for which field area of a stable supermode is
approximately N times larger than for a one-core fiber [35,36].

For LMA and multicore fibers, the group velocity dispersion can be similar to the
dispersion of silica glass [30]. The refractive index of the silica glass is given in [30]. For
SMF-28e, optical loss is ~0.2 dB/km in the 1.5 µm range [30], but here we take a 5 times
higher loss value of α since additional losses may arise when drawing a non-standard
fiber. We study squeezing of optical solitons with a full width at half maximum (FWHM)
duration of TFWHM = 0.1–1 ps at a central wavelength λ0 in the telecom range at room
temperature T. Simulation parameters are given in Table 1.

Table 1. Parameters used in the simulation.

Parameter Value

β2 −28.0 ps2/km
Aeff 960 µm2

γ 0.093 (W·km)−1

α 1.0 dB/km
λ0 1.5 µm
T 300 K

We consider the system for polarization squeezing of ultrashort optical pulses as
presented in [23], since it is one of the most experimentally stable techniques to obtain
Kerr squeezing. The system is based on the propagation of two pulses with the orthogonal
polarizations aligned along axes of a birefringent fiber. Note that birefringent LMA and
multicore fibers can be produced with current technologies. Polarization-maintaining
photonic crystal LMA fibers and solid-core LMA fibers are commonly used in high-power
laser systems and are commercially available [37]. Their birefringent properties arise
from anisotropic stress induced by special structures or from asymmetric (e.g., elliptical)
core shape. Multicore birefringent fibers can also be made utilizing similar technologies.
For example, 98-core fiber with stress-applying rods placed near each of the cores was
demonstrated in [38], and 5-core micro-structured multicore fiber was demonstrated in [39].
Usually the pulses are launched into the birefringent fiber with some delay to compensate
for group velocities difference, such that they arrive at the output at the same time. The
polarization state of the output signal has quantum uncertainty. However, the uncertainty
along some directions in the Poincare sphere can be lowered at the expense of an increase
in uncertainty in the other directions, and thus, the polarization squeezing is obtained. Due
to propagation of both pulses in the same fiber, technical and acoustical noise associated
with the fiber is almost canceled out. Polarization squeezing is useful for increasing the
precision of polarimetry [15] and for broader class of interferometric measurements in
which the quantity to be measured is mapped onto the polarization state.

The transformation of the noise statistics occurs during the propagation of the pulses in
the fiber under the action of a Kerr nonlinearity. Hence, the most computationally intensive
part is the simulation of the pulse propagation with an allowance for quantum noise. Some
assumptions are made to simplify numerical modeling. First, we consider the propagation
of orthogonally polarized pulses to be almost independent. Next, we use a truncated
Wigner technique for modeling pulse propagation, which provides accurate results for
relatively short propagation distances and a large photon number. We perform scalar
modeling based on the Raman-modified stochastic nonlinear Schrödinger equation [40–42]
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with an allowance for losses of the signals in both polarizations, and combine the output
results to calculate the polarization squeezing at the last step.

The slowly varying electric field envelope Asol(z, t) of a linearly polarized fundamen-
tal optical soliton propagating in a fiber with a Kerr nonlinearity, and the second-order
dispersion β2 neglecting other effects in the framework of a classical nonlinear Schrödinger
equation is [30,43]:

Asol(t, z) =
√

P0 exp[iz/(2LD)]

cosh(t/t0)
, (1)

where z is a coordinate along fiber, t is time in the retarded frame, LD = t0
2/β2 is the

dispersion length, t0 is related to TFWHM as TFWHM = 2ln(1 + 21/2)t0 ≈ 1.763t0 [30]. For
a fundamental soliton, the peak power P0 is inversely proportional to the square of its
duration [30]:

P0 =
|β2|
γ t2

0
. (2)

To simulate the pulse evolution with allowance for the quantum noise using the
Wigner representation, we use the Raman-modified stochastic nonlinear Schrödinger
equation [40–42]:

∂

∂z
A(t, z) = i

β2

2
∂2

∂t2 A(t, z) +
[

iγ
∫ ∞

0
dt′R

(
t− t′

)∣∣A(t′, z
)∣∣2 + ΓR(t, z)

]
A(t, z)− αA(t, z) + Γ(t, z). (3)

To perform quantum dynamical simulations for the slowly varying envelope of an
ultrashort optical pulse A(z, t), we take as the initial condition a fundamental classical
soliton Asol(0, t) with an addition of normally distributed stochastic noise δA(0,t)

A(t, 0) = Asol(t, 0) + δA(t, 0), (4)

〈
δA(t, 0)δA∗

(
t′, 0
)〉

=
}ω0

2
δ
(
t− t′

)
. (5)

The function R(t − t′) describes deterministic nonlinear response including Kerr
and Raman contributions, Γ and ΓR describe linear quantum noise and Raman noise,
respectively, while GAWBS is neglected. Note that in the recent work [31], the authors
demonstrated that GAWBS influence scales down with increasing effective mode field
area Aeff, which is the advantage of considered fibers with enlarged Aeff and allows us to
neglect GAWBS here. Γ and ΓR are zero-mean delta-correlated random values with normal
distribution in the frequency domain

Γ(ω, z) =
1√
2π

∫ ∞

−∞
Γ(t, z)eiωtdt, (6)

ΓR(ω, z) =
1√
2π

∫ ∞

−∞
ΓR(t, z)eiωtdt, (7)〈

Γ(ω, z)Γ∗
(
ω′, z′

)〉
= α}ω0δ

(
ω−ω′

)
δ
(
z− z′

)
, (8)

〈
ΓR(ω, z)ΓR∗(ω′, z′

)〉
= γ}ω0αR(ω)

1
2
+

1

exp
(
}|ω|
kT

)
− 1

δ
(
ω−ω′

)
δ
(
z− z′

)
, (9)

αR(ω) = 2
∣∣∣∣Im

(∫ ∞

0
R(t)eiωtdt

)∣∣∣∣. (10)

In these equations, ω is the angular frequency counted from the central frequency ω0,
h̄ is the Planck constant, k is the Boltzmann constant. To approximate the experimental
Raman gain [44], we use 10-Lorenz fitting with fit parameters Fi, Di, ωi for the Raman
function [41]:

R(t) = (1− fR)δ(t) + fR ∑10
i=1 FiDi sin(ωit)e−Dit, (11)
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We take fR = 0.2 and the values for the parameters of the Raman function which are
given in Table 2. Note that the commonly used Raman function R0(t) (with only two
parameters τ1 = 12.2 fs and τ2 = 32 fs) is rather simpler [30]:

R0(t) = (1− fR)δ(t) + fR

(
τ−2

1 + τ−2
2

)
τ1 exp(−t/τ2) sin(t/τ1). (12)

Table 2. Parameters for the Raman function used in the simulation.

i Fi ωi, THz·rad. Di, THz·rad.

1 −0.3545 0.3341 8.0078
2 1.2874 26.1129 46.6540
3 −1.4763 32.7138 33.0592
4 1.0422 40.4917 30.2293
5 −0.4520 45.4704 23.6997
6 0.1623 93.0111 2.1382
7 1.3446 99.1746 26.7883
8 −0.8401 100.274 13.8984
9 −0.5613 114.6250 33.9373
10 0.0906 151.4672 8.3649

Here we take the complicated form of the Raman function R(t) instead of the common
form R0(t) due to 10-Lorenz approximation is more precise at low frequencies. This
is important both for accurate soliton evolution and for noise modeling. The imag-
inary and real parts of spectra of Raman functions R(t) and R0(t) are also plotted in
Figure 1a,b, respectively.

Photonics 2021, 8, x FOR PEER REVIEW 5 of 12 
 

 

In these equations, ω is the angular frequency counted from the central frequency 
ω0, ħ is the Planck constant, k is the Boltzmann constant. To approximate the experi-
mental Raman gain [44], we use 10-Lorenz fitting with fit parameters Fi, Di, ωi for the 
Raman function [41]: ( )  =  (1 − ) ( ) + sin( ) , (11) 

We take fR = 0.2 and the values for the parameters of the Raman function which are 
given in Table 2. Note that the commonly used Raman function R0(t) (with only two pa-
rameters τ1 = 12.2 fs and τ2 = 32 fs) is rather simpler [30]: ( )  =  (1 − ) ( ) + (τ + τ )τ exp (−t/τ )sin (t/τ ). (12) 

Here we take the complicated form of the Raman function R(t) instead of the com-
mon form R0(t) due to 10-Lorenz approximation is more precise at low frequencies. This 
is important both for accurate soliton evolution and for noise modeling. The imaginary 
and real parts of spectra of Raman functions R(t) and R0(t) are also plotted in Figure 1a,b, 
respectively. 

Table 2. Parameters for the Raman function used in the simulation. 

i Fi ωi, THz∙rad. Di, THz∙rad. 
1 −0.3545  0.3341 8.0078 
2 1.2874  26.1129 46.6540 
3 −1.4763  32.7138 33.0592 
4 1.0422  40.4917 30.2293 
5 −0.4520  45.4704 23.6997 
6 0.1623  93.0111 2.1382 
7 1.3446  99.1746 26.7883 
8 −0.8401  100.274 13.8984 
9 −0.5613  114.6250 33.9373 

10 0.0906  151.4672 8.3649 

 
Figure 1. The comparison between the imaginary (a) and real (b) parts of spectra of Raman function 
R0(t) given by expression (12) (dashed blue lines) and the Raman function R(t) used in the modeling 
given by expression (11) (solid red lines). 

We find numerical solution of Equation (3) using a specially developed computer 
code based on the split-step Fourier method [30]. An independent random noise for each 
realization is added to the initial soliton at z = 0. 
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R0(t) given by expression (12) (dashed blue lines) and the Raman function R(t) used in the modeling
given by expression (11) (solid red lines).

We find numerical solution of Equation (3) using a specially developed computer
code based on the split-step Fourier method [30]. An independent random noise for each
realization is added to the initial soliton at z = 0.

We modeled the propagation of 1000 independent pairs of x- and y- polarized pulses
through a certain fiber length. Then we analyzed the squeezing of polarization uncertainty
at the output. We assumed that the detection scheme follows one considered in [23]. In
such system, the phases between the orthogonal pulses are set in such a way that the signal
at the output has mean circular polarization. Quantum noise introduces uncertainty in
the polarization state, so in each individual realization the polarization state is slightly
deviate from circular. To characterize the polarization state we calculate integral Stokes
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parameters in the Wigner representation, S0, S1, S2, and S3, analogous to their classical
counterparts [23]:

S0(z) =
∫

dt
(

Ax
∗(t, z)Ax(t, z) + Ay

∗(t, z)Ay(t, z)
)
, (13)

S1(z) =
∫

dt
(

Ax
∗(t, z)Ax(t, z)− Ay

∗(t, z)Ay(t, z)
)
, (14)

S2(z) =
∫

dt
(

Ax
∗(t, z)Ay(t, z) + Ay

∗(t, z)Ax(t, z)
)
, (15)

S3(z) = i
∫

dt
(

Ay
∗(t, z)Ax(t, z)− Ax

∗(t, z)Ay(t, z)
)
. (16)

It is instructive to plot the set of points representing the polarization state on the
plane S1 S2. In the absence of nonlinearity these points form a symmetric distribution
with the uncertainty representing standard quantum limit (see Figure 2a). However,
after a nonlinear propagation, the distribution is an ellipse-like cloud (see Figure 2b)
with uncertainty in some directions below the standard quantum limit, which represents
quantum noise squeezing. We find a minor axis for this cloud and calculate the reduction
of noise compared to the initial quantum noise (illustration of the initial cloud and the
squeezed cloud is given in Figure 2). We find the angle θ for which the expression for
variance V (in dB) is minimal:

V = 10· log10


(

1
}ω0

)2
〈(S1 cos(θ) + S2 sin(θ))2〉 −

(
1

}ω0

)2
〈(S1 cos(θ) + S2 sin(θ))〉2 − M

2(
1

}ω0

)
〈S0〉 −M

. (17)
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Figure 2. The initial quantum noise cloud (a) and the squeezed quantum noise cloud (b).

In the above equation, the average is taken over the set of realizations, and M is the
number of modes used in modeling [23]. Note that for squeezed light V[in dB] < 0, the
strongest squeezing is achieved when V is minimal (or, when the absolute value |V| is
maximal, which is the same).

We study the influence of Raman effects and linear losses on the squeezing of ultrashort
solitons with different durations. For comparison, we also estimate squeezing for CW
signals with the equivalent peak powers, which is given under the lossless approximation
by the following analytical expression [45]:

V0 = 10 · log10(1− 2rKerr

√
1 + r2

Kerr + 2r2
Kerr), (18)

here rKerr is the Kerr parameter rKerr = γP0·z.
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It is known that if the squeezed light propagates through an element with a loss
coefficient R = 1 – 10−χ/10, where χ is a lumped loss in dB, squeezing is reduced to [45,46]:

Vloss = 10 · log10[(1− R)10V/10 + R]. (19)

We also use Equation (19) for further estimations.

3. Results

First, we performed detailed numerical simulations for solitons with TFWHM durations
of 0.2, 0.5, and 1 ps with energies of 5.3, 2.1, and 1.1 nJ, respectively. Their spectral
widths ωFWHM are 17.6, 7.1, and 3.5 THz since for a fundamental soliton time–bandwidth
product is TFWHM·ωFWHM = (8/π)·[ln(1 + 21/2)]2 [30]. Raman effects and losses were
switched on and switched off to find their contributions to squeezing of pulses with
different durations. The simulated results are presented in Figure 3a–f, where the upper
and lower rows correspond to modeling without and with Raman effects, respectively.
Moreover, for comparison, we evaluated squeezing V0 of CW signal with the peak powers
defined by expression (2) using analytical Formula (18) and evaluated squeezing Vloss with
allowance for lumped loss χ = α·z at the fiber output using Formula (19). To study the
influence of losses on squeezing of ultrashort pulses, we performed the following series of
numerical experiments. We modeled Equation (3) (i) with allowance for distributed losses
α, (ii) without any losses, and (iii) without distributed losses but with lumped losses at the
fiber output χ = α·z taken into account using Formula (19).

Here, we analyze the results of modeling when Raman effects are switched off
(Figure 3a–c). The loss influence on optimal squeezing is stronger for longer pulses than
for shorter pulses. Solitons with longer duration have lower peak power according to
expression (2), so for them the significant Kerr parameter rKerr is accumulated at longer
fiber lengths compared to shorter solitons with higher peak power. To attain optimal
squeezing, fiber lengths should be longer, and in this case, the loss influence is stronger.
The comparison between a simple approximation of losses lumped at the fiber output
and modeling with losses distributed along the fiber shows that approximation predicts
lower absolute values of optimal squeezing. This may be explained in the following way:
the effect of distributed losses along with simple gradual reduction of the pulse energy
manifests itself in addition of some vacuum noise along the propagation distance. The
noise added at the initial propagation stage gets squeezed in the subsequent fiber pieces.
In contrast, approximation given by (19) applies the effect of losses at the output, so that it
is not affected by nonlinear propagation.

Next, we analyze the results of modeling when Raman effects are switched on
(Figure 3d–f). Here squeezing of the shortest 0.2 ps pulses is drastically decreased, while
squeezing of longer pulses is only slightly affected. This is the consequence of smaller
overlap of the narrower spectrum of longer pulses with the spectrum of the Raman re-
sponse function. For 0.2-ps solitons, the Raman effects dominate over the effect of losses,
so squeezing curves with and without losses almost coincide in Figure 3d. In contrast, the
results for 0.5 ps and 1 ps pulses obtained with Raman effects taken into account presented
in Figure 3e are very similar, respectively, to the results obtained without Raman effects
presented in Figure 3b,c (compare the corresponding curves in Figure 3b,e as well as in
Figure 3c,f).
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tions are preferable to achieve the strongest squeezing (better than −20 dB), since for them 
the balance between limiting factors (losses for long pulses and Raman effects for short 
pulses) is satisfied. 

Furthermore, we performed simulations for soliton durations in the 0.1–1 ps range 
with a step of 0.1 ps using full model to find optimal parameters. The optimal (strongest) 
squeezing and corresponding fiber lengths are demonstrated in Figure 4a,b, respectively. 
Optimal squeezing of about −22 dB is attained for 0.4 ps solitons with an energy of 2.7 nJ 
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Figure 3. Polarization squeezing simulated without Raman effects for pulse durations of 0.2 ps (a), 0.5 ps (b), and for 1 ps
(c) and with full Raman contribution for pulse durations of 0.2 ps (d), 0.5 ps (e), and for 1 ps (f) compared to analytical
estimates for squeezing of CW light using Formulas (18) and (19). The legend given in subplot (a) is the same for all subplots.
Solid red lines correspond to simulations of Equation (3) with distributed losses; dashed-doted magenta lines correspond
to simulations of Equation (3) without any losses; dashed blue lines correspond to simulations of Equation (3) without
distributed losses but with lumped losses; dotted light-blue and gray lines correspond to analytical estimates of squeezing
of CW light without losses and with lumped losses, respectively.

Simulations show that optimal fiber lengths are: <10 m for 0.2 ps solitons, a few tens of
meters for 0.5 ps solitons, and >100 m for 1 ps solitons. The intermediate soliton durations
are preferable to achieve the strongest squeezing (better than −20 dB), since for them the
balance between limiting factors (losses for long pulses and Raman effects for short pulses)
is satisfied.

Furthermore, we performed simulations for soliton durations in the 0.1–1 ps range
with a step of 0.1 ps using full model to find optimal parameters. The optimal (strongest)
squeezing and corresponding fiber lengths are demonstrated in Figure 4a,b, respectively.
Optimal squeezing of about −22 dB is attained for 0.4 ps solitons with an energy of 2.7 nJ
at a fiber length of 23 m.
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Figure 4. Optimal squeezing (a) and corresponding optimal fiber length (b) as functions of soliton du-
ration.

4. Discussion

We have investigated numerically polarization squeezing of ultrashort solitons with
different durations in a silica fiber with enlarged mode field areas such as LMA or multicore
fiber (Aeff is larger more than ten times compared to the standard telecom fiber SMF28)
using realistic parameters in the framework of the Raman-modified stochastic nonlinear
Schrödinger equation. Using such fibers allows operating with higher energies compared to
the case of SMF28 fiber because soliton energy is inversely proportional to γ (proportional
to Aeff). Moreover, GAWBS may worsen the quantum noise squeezing for SMF28, since it
is inversely proportional to Aeff [31].

We have demonstrated that for relatively long solitons (TFWHM ≥0.5 ps), optical losses
limiting squeezing and Raman effects are insignificant. Longer solitons have lower peak
powers according to expression (2), and thus for them, longer fiber lengths are required
to attain optimal noise suppression in comparison with shorter solitons with higher peak
powers. The found optimal fiber lengths are: <10 m for 0.2 ps solitons, a few tens of meters
for 0.5 ps solitons, and >100 m for 1 ps solitons. For short solitons (TFWHM ≤ 0.2 ps) the
Raman effects limit squeezing, which also agrees qualitatively in its functional behavior
with prior art experimental results [26,47]. Thus, there is an optimal soliton duration
(TFWHM ~0.4 ps) when the balance between these limiting factors is satisfied and the
strongest squeezing is better than −22 dB.

One observation is that the degree of squeezing oscillates as a function of pulse
energy in certain parameter ranges (Figure 3a–c,e,f, dash-dotted magenta lines). The prior
experiments in standard fibers show a similar signature. Such studies have also been done
for light pulses in micro-structured fibers allowing for tuning the waveguide contribution
to dispersion and performing similar experiments in the visible range of the spectrum [48].
Fiorentino et al. [24] have measured the degree of squeezing as a function of pulse energy in
a micro-structured fiber. The experimental curve they present also shows slight oscillations.
However, the origin of this oscillation does not seem to be clear and requires further studies.

Note that analytical expressions (18) and (19) are very useful for approximate estimates
of optimal squeezing of solitons with a duration ≥0.5 ps at fiber lengths near optimal
values and longer. The analytical formulas for CW light may be used to roughly find
an area of parameters for numerical simulation. For solitons with a duration ≤0.2 ps,
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analytical estimates do not give a reasonable answer since the contribution of Raman
effects are dominant.

5. Conclusions

We investigated numerically polarization quantum noise squeezing for ultrashort
solitons with 0.1–1 ps durations in a silica fiber with enlarged mode field area. We showed
that for relatively long solitons (TFWHM ≥ 0.5 ps), optical losses limit squeezing and Raman
effects are insignificant. For short solitons (TFWHM ≤ 0.2 ps), the Raman effects limit
squeezing. We found that there is an optimal soliton duration (TFWHM ~0.4 ps) providing
the strongest squeezing, better than −22 dB when the balance between limiting factors
is satisfied.
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