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Abstract: In this work, we demonstrate In0.52Al0.48As top/backside-illuminated avalanche photodi-
odes (APD) with dual multiplication layers for high-speed and wide dynamic range performances.
Our fabricated top-illuminated APDs, with a partially depleted p-type In0.53Ga0.47As absorber layer
and thin In0.52Al0.48As dual multiplication (M-) layer (60 and 88 nm), exhibit a wide optical-to-
electrical bandwidth (16 GHz) with high responsivity (2.5 A/W) under strong light illumination
(around 1 mW). The measured bias dependent 3-dB O-E bandwidth was pinned at 16 GHz without
any serious degradation near the saturation current output. To further increase the speed, we down-
scaled the active diameter and adopted a back-side illuminated structure with flip-chip bonding for
batter optical alignment tolerance. A significant improvement in maximum bandwidth was demon-
strated (25 versus 18 GHz). On the other hand, we adopted a thick dual M-layer (200 and 300 nm) and
2 µm absorber layer in the APD design to circumvent the problem of serious bandwidth degradation
under high gain (>100) and high-power operation which significantly enhanced the dynamic range.
Due to dual M-layer, the carriers could be energized in the first M-layer then propagate to the second
M-layer to trigger the avalanche process. In both cases, despite variation in thickness of the absorber
and M-layer, the cascade avalanche process leads to values close to the ultra-high gain bandwidth
product (GBP) of around 460 GHz with a responsivity of 0.4 and 1 A/W at unit gain for the thin and
thick M-layer devices, respectively. We successfully achieved a good sensitivity of around −20.6 dBm
optical modulation amplitude (OMA) at a data rate of 25.78 Gb/s, by packaging the fabricated APDs
(thin dual M-layer (60 and 88 nm) version) with a 25 Gb/s trans-impedance amplifier in a 100 Gb/s
ROSA package. The results show that, the incorporation of a dual multiplication (M) layer structure
in the APD opens a new window to obtaining the higher GBP in order to meet the requirements for
high-speed transmission without the need of further downscaling the multiplication layer.

Keywords: avalanche photodiode; photodiode; photodetector

1. Introduction

The swift growth in the capacity of communication networks has led to new services,
such as mobile broadband for smart devices, social networking, cloud computing, and
online streaming. To assist in this growth, the Ethernet standards have repeatedly been
extended from 100 Gb/s to 400 Gb/s. In optical fiber communication systems, there is
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always a tradeoff between the transmission capacity and the transmission distance. The
optical receiver is a major factor in extending the distance limited by the power transmitted
from laser sources. In comparison to the conventional p-i-n photodiodes, high-sensitivity
avalanche photodiodes (APDs) are a prerequisite for >25 Gbit/s operation across the
telecommunication wavelength (1.31 to 1.55 µm), for the optical signal receivers over
40–80 km fibers in 100 and 400 Gbit/s ER-4 systems [1]. Significant research has been done
on possible alternative materials like silicon-germanium (Si/Ge) and the III-V compounds,
such as InP, InGaAs, and InAlAs, for the fabrication of high-speed APDs for high data rate
applications [2]. However, the III-V based APDs have numerous advantages in terms of
band engineering flexibility in which the materials can be lattice matched with the InP
substrate during growth. Thus, high performance can be achieved by modifying the differ-
ent stacked layers in the APD, varying the distinguishing features such as the bandgaps,
electron, hole velocities, and diffusion coefficients. For example, by varying the thickness
of the hybrid absorber layer, we can boost the speed of an APD for a given responsivity and
vice versa. APDs with In0.52Al0.48As-based M-layers have attracted significant attention
for 10 Gb/s and >25 Gb/s applications because the benefits of a large gain-bandwidth
product, high temperature stability, and reasonably low dark current characteristics at the
1.31–1.55 µm wavelengths. In order to meet the requirements for high-speed transmission,
a lot of effort has been made to improve the bandwidth and gain bandwidth product (GBP)
of the device. For APDs >25 Gb/s operation, thin absorption (<1 µm) and M (<100 nm)
layers with a small diameter of active mesa (<20 µm) are requisite [3–6], but this small
diameter mesa leads to a degradation in the unit gain responsivity and offers less tolerance
for optical alignment. Further improvement in the GBP, up to 140 GHz, has been reported
using a 200 nm InAlAs avalanche layer [7]. Nada et al., proposed an APD with a 100 nm
avalanche layer, which could reach a GBP of 235 GHz with the diameter of 20 µm. Later,
they further downscaled the multiplication layer thickness to 90 nm and achieved a GBP
up to 270 GHz with the same 20 µm diameter [5,8,9].

There are various factors limiting the speed, gain, and noise in the receiver perfor-
mance in high-speed systems, for instance, the avalanche build-up time, which depends
on the material and the thickness of the avalanche layer. Moreover, to further improve
APD speed performance, very thin avalanche layers are generally required, to minimize
the avalanche buildup time [10]. However very thin avalanche layers are vulnerable to
band-to-band tunneling currents, which increase exponentially with the electric field and
add to the receiver noise. Thus, to avoid excessive tunneling currents, the thickness of the
avalanche layer should be within the lower limits. In order to achieve a large GBP and low
noise, it is necessary to adopt the appropriate thickness for the avalanche layer.

In this work, we demonstrate a novel design for In0.52Al0.48As based vertical illumi-
nated APDs with dual M-layers. Separate absorption, grading, and multiplication (SAGM)
structures with thin absorber and dual M-layer (Device A) versus thick absorber and dual
M-layer (Device B) APDs are fabricated. The demonstrated APDs (Device A) are fabricated
using a partially depleted p-type In0.53Ga0.47As absorbing layer and thin In0.52Al0.48As
dual M-layers (60, 88 nm). We obtain a wide optical-to-electrical bandwidth 18 GHz and
large gain bandwidth product (459 GHz). On the other hand, after further downscaling
the active diameter, in its counterpart back-illuminated device (Device A′) exhibits a much
wider O-E bandwidth of 25 GHz and a saturation current as high as >5 mA. whereas
APD (Device B) design with thick absorber and dual M-layers, there is a relaxation in the
trade-off between the avalanche gain and the bandwidth. An ultra-high gain bandwidth
product (460 GHz), high responsivity (1 A/W) at the unit gain and a 3-dB bandwidth of
1.25 GHz with a responsivity as high as 33 A/W at 0.9 Vbr can be achieved using a device
with a large optical window diameter (200 µm). It is worth noting that in either case (thin
or thick multiplication layer), we obtain an ultra-high GBP of around 460 GHz. These
promising results suggest that our proposed dual M-layer with thick absorber layer design
can fundamentally overcome allow further downscaling of the M-layer and absorber layer
to obtain a higher GBP, in order to meet the requirements of high-speed transmission.
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Nevertheless, such APDs with high GBP and high responsivity and a large optical window
diameter (200 µm) can be fundamentally used for FMCW Lidar applications dealing with
weak reflected signals received from the objects being tested.

2. Device Structure and Fabrication

Here, the static and dynamic performance of two types of devices (A and B) are
studied in detail. Figure 1a,b shows conceptual cross-sectional views of the demon-
strated devices A and B, respectively, with their top-illuminated structure. Note that
these figures are not drawn in scale. From top to bottom, the structure of both de-
vices are composed of a p+-In0.53Ga0.47As contact layer, p+-In0.52Al0.48As window layer,
graded/intrinsic In0.53Ga0.47As absorbing layer, two p-type In0.52Al0.48As charge layers,
and N+ In0.52Al0.48As/InP contact layers. For more detail about the epi-layer structure and
the working principles of the demonstrated APDs (Device A), the interested reader can re-
fer to our previous work [11]. Two In0.52AlxGa0.48-xAs graded bandgap layers are inserted
at the interfaces between the absorber/window and absorber/multiplication layers. The
thickness of each epi-layer is specified in detail in this figure.
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Figure 1. Conceptual cross-sectional views of the demonstrated (a) Device A and (b) Device B. The
radius of the active mesa is 12.5 and 120 µm, as specified in the figures.

The electric field distribution within the device was simulated using the Silvaco
Technology Computer Aided Design (TCAD) tools (Semtech; 200 Flynn Road, Camarillo,
CA 93012. Product: GN1085). Figure 2a shows the calculated electric fields for Device B
along the vertical direction at the punch-through (Vpt) and breakdown voltage (Vbr). To
obtain a stepped electric field profile for fabricated ADPs, the thick multiplication (M-)
layer is divided into two partitions (148 nm divided into 60, 88 nm for Device A and 500
nm divided into 200 and 300 nm for Device B) with an additional charge control layer [12].
APDs with dual M-layer are introduce stepped electric field profile, where the electrons will
be energized by the first M-layer (from the top). However, the strength of the electric field
is insufficient to trigger significant impact ionization, they transit to the second M-layer
to initiate successive impact ionization. This design provides better localization of impact
ionization than can be achieved in a uniformly thick M-layer, therefore it can reduce the
delay time induced by the avalanche process in the APD.
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Moreover, the stepped E-field may also reduce excess noise (k-factor) for the APD.
Due to cascade avalanche process, a smaller avalanche delay time and an ultra-high GBP,
compared to those of the traditional APD design can be expected. Similar working princi-
ples are realized for the impact-ionization-engineered (I2E) APD structures [13,14], where
the impact ionization process in the materials is localized with the narrowest bandgap in
the M-layer, forming a hetero-junction with several different bandgap materials. In contrast
to the I2E structure, our M-layer acts as a homo-junction, but with several charge layers
and different doping densities to localize the avalanche process in the region which has the
highest E-field. As can be seen in Figure 1a,b, the same triple mesa structure is adopted for
both devices A and B, confining the E-field within the first mesa (active region) diameter
of 25 µm and 240 µm, respectively. The first mesa is etched through the upper charge
layer (field-control) and p-type window layer and stops at the 60 nm In0.52Al0.48As buffer
layer and 2 µm thick In0.53Ga0.47As absorption layer in devices A and B, respectively. For
detailed E-field distributions for our device structure please refer to our previous work [12].
Figure 2b,c shows top-views of the fabricated devices with 25 µm and 240 µm mesa active
diameters and corresponding optical windows of 12 µm and 200 µm for devices A and B.

3. Device Measurement Results

Figure 3a,b shows the measured bias-dependent dark current, photocurrent, and
operation gain of the demonstrated APDs, subject to different optical pumping powers
at optical wavelengths of 1.31 µm and 1.55 µm for devices A and B. As can be seen, the
measured Vbr and Vpt are around −19.5, −43 V and −7.2, −24.2 V for devices A and B.
The smaller Vpt and Vbr of Device A is attributed to the thinner absorber layer and thicker
M-layer than that of Device B. Moreover, under 0.9 Vbr operation, Device B has a higher
responsivity than that of Device A which is due to the thicker absorption layer (2 versus
0.4 µm).

In addition, when the reverse bias is over Vpt, the photocurrent of Device B ramps up
more quickly than that of Device A. This can be attributed to the precise control of charge
layer doping in Device B which allows the E-field in its dual M-layers to be high enough to
trigger the cascade avalanche process and generate a significant amount of multiplication
gain. We assume a zero coupling loss and single-pass of injected light into the absorption
layer of our device. The theoretical maximum unit gain responsivity of Device A (B) with
a 0.4 (2.0) µm-thick In0.53Ga0.47As absorption layer, will be around 0.4 (1.0) A/W at the
1.31(1.55) µm wavelength. Here, the photo-absorption constant used for the In0.53Ga0.47As
layer at wavelengths 1.31(1.55) µm are around 1.2 (0.8) µm−1 [15,16]. The gain versus bias
voltages under different optical pumping power (1 to 500 µW) are also provided in the
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figures for reference. As can be seen, there is a significant reduction in all the measured
operation gain when the reverse bias voltage is over Vbr due to the tremendous increase
in the dark current, which occupies most of the measured total current (i.e., summation
of photocurrent and dark current). In addition, we can clearly see that the maximum
operation gain gradually decreases with increasing pumping power. This phenomenon can
be explained by the space charge screening (SCS) effect induced by the photo-generation of
holes in the undoped In0.53Ga0.47As absorption layer, which reduces the net E-field and
multiplication gain in the M-layer [11].
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Figure 3. The measured Dark current, photocurrent, and operation gain versus bias voltages under different optical
pumping powers at 1.31 and 1.55 µm wavelengths for (a) devices A and (b) device B.

Figure 4a,b shows the 3-dB O-E bandwidth response, under a low optical pumping
power of 50 (1) µW and operation gain at the 1.31(1.55) µm wavelength of Devices A and
B, respectively. In both cases, under such a low optical pumping power, we can clearly
see a gradual decrease in the measured O-E bandwidth with an increase of the reverse
bias voltage (operation gain). The maximum 3-dB O-E bandwidths of Devices A and B are
around 18 and 1.25 GHz, respectively. The degradation in the O-E bandwidth with the
increase of operation gain is very common in APDs and can be attributed to the increase of
the avalanche induced delay time with the gain.
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Figure 4. The measured bias dependent O-E frequency responses for (a) Device A and (b) Device B
under a 50 (1) µW optical pumping power at the 1.31(1.55) µm wavelength.

Figure 5a,b shows the bias dependent O-E frequency responses of Devices A and B
measured under a high input optical power (1 mW and 240 µW), respectively. As can
be seen, the 3-dB O-E bandwidths for devices A and B are pinned at 16 and 1.3 GHz,
respectively, regardless of the changes in the reverse bias voltages. These bandwidth
values are close to the maximum O-E bandwidths of the device measured under low
power excitation, as shown in Figure 4a,b. Such invariant high-speed performance can be
attributed to the significant decrease in the value of the operation gain, becoming much less
sensitive to the reverse bias voltage under high-power operation, as shown in Figure 3a,b.
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The delay time induced by the avalanched gain, which is the major bandwidth limiting
factor of an APD under high-gain (high-bias) operation is thus minimized, resulting in the
observed invariance of the 3-dB O-E bandwidth [11].
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and high 1(0.1) mW optical pumping powers.

The maximum GBP values given here just follow the definitions reported for high-speed
APDs [6,17] and these numbers suggest the maximum intrinsic speed of the APD [6,17].
However, for practical applications, APDs usually cannot be operated in such high-gain
regions due to the increase of associated excess noise. Under 0.9 Vbr operation, the cor-
responding GBP values for Devices A and B are around 122 (Mg = 8.7, 14 GHz) and 42
(Mg = 33.5, 1.25 GHz) GHz, respectively. On the other hand, there is a gradual decrease
in the maximum values of the GBP to 118 and 40 GHz when the optical pumping power
reaches 1 mW and 100 µW, respectively, which can be attributed to the reduction in the
multiplication gain versus the increase of optical power, as discussed above. The high
GBP of around 460 GHz achieved in our fabricated APDs can be attributed to effect of the
multiplication layer, which is thinner than the conventional APD with its uniformly thick
M-layer. Thus, localization impact ionization in the M-layer (in the lower M-layer) reduces
the probability of the avalanche process occurring in the whole M-layer. In addition, the
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overall gain in our dual multiplication layer is higher, with each layer contributing to the
gain, M1 and M2. Thus, the overall gain in our structure is M1*M2 to sustain a constant
bandwidth. Furthermore, compared to the gain-bandwidth curves of typical APDs, which
usually exhibit monotonic decreases of bandwidth with an increase in the multiplication
gain [3,17], our device curves exhibit different trends. As can be seen for Device A, under a
very-high operation gain (>30), the decrease in the bandwidth versus the gain is gradually
minimized; for more details, please refer to our previous work [11]. Our APD (Device
B) demonstrates a constant O-E bandwidth (~1.25 GHz) over a wide range of operation
gains (from 10 to ~300), which means a larger operation window. Figure 7a,b shows the
corresponding O-E responses measured under high-gain and low power operation. We
can clearly see, the measured bandwidths for devices A and B are pinned at around 3 and
0.9 GHz, regardless of the gain. thereby resulting in the high gain-bandwidth product, as
discussed above.
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Figure 7. The measured O-E frequency responses for (a) Devices A and (b) device B under low power 20 (1) µW and high
gain operation.

In order to further increase the responsivity of Device A for 100 GbE-ER4-Lite (40 km)
applications, we increased the absorber layer thickness from 400 to 800 nm [1] to fabricate
device C. Figure 8a shows conceptual cross-sectional views of the top-illuminated structure.
This absorption layer thickness and the ratio of p-type/intrinsic layer thickness were
chosen to balance the resistance-capacitance (RC) and transit time limited bandwidth [1].
We conducted an APD bandwidth simulation based on our proposed linear model, which
included the bandwidth limiting factors of the avalanche delay time, secondary hole transit
time, and RC-delay time [18]. For sensitivity measurement, samples of device C with both
the top- and back-side illuminated structures were fabricated. These chips were integrated
with 25 Gbit/s trans-impedance amplifiers (TIA) (Semtech; 200 Flynn Road, Camarillo, CA
93012. Product: GN1085) in a packaged ROSA module. During measurement, we adopted
a commercial 25 Gbit/s electro-absorption modulated laser (EML) (2Source Photonics;
8521 Fallbrook Avenue #200, West Hills, CA 91304) to serve as the light source with a 4.8
dB extinction ratio (ER) adjusted to maintain the averaged power to be the same as the
optical modulation amplitude (OMA). Figure 8b shows the measured bit error rate (BER)
values versus the OMA. A pseudorandom binary sequence (PRBS) of length 231–1 with a
25.78 Gbit/s date rate was used for testing. The green line shows the essential BER value
(5 × 10−5) needed to meet the KR4 forward error correction (FEC) coding. To measure
BER, the APDs were integrated with a clock and data recovery (CDR) unit. The BER curves
were measured using a commercially available APDs device integrated with the ROSA
package [4,9] also shown for reference.
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During BER measurement under 20 µW of optical input power, the optimized bias
voltage of each ROSA module was near −15.5 and −16 V with a corresponding ∼6 and
13 A/W responsivity to obtain the highest sensitivity for the top- and back-side illuminated
chips, respectively. Here, under the optimized bias point for high sensitivity operation, the
corresponding GBP value of device C, with its backside-illuminated structure, is around
288 GHz (0.7 A/W for unit gain). The two structures achieved a sensitivity of around
−20.6 dBm OMA which meets the specifications for 100 GbE-ER4-Lite (40 km) applications
(40 km) [19], which requires the receiver operate under a BER value of 5 × 10−5 at an
optical wavelength of 1.31 µm with a −18.5 dBm OMA sensitivity for 25 Gbit/s operation.

Of the three devices (A to C) studied here, Device A has the thinnest active layer,
representing the fastest intrinsic speed performance. In order to further improve the
high-speed performance of our APD structures (A to C), we utilized the equivalent-circuit
modeling technique to investigate whether the carrier transit time or RC-bandwidth limits
the speed of Device A. Figure 9a shows the equivalent circuit models adopted for fitting of
the microwave reflection coefficient (S22) parameters for Device A.

The Smith chart in Figure 9b shows the fitted and measured frequency responses
corresponding to the S22 parameters for Device A. Clearly, there is a good match between
the simulated and measured results. The fitted values for each circuit element in Device
A are shown in Table 1. During the process of device modeling for the extraction of the
extrinsic fRC of the PD chips, the two artificial circuit elements, RT and CT, are removed.
This is because they are used to mimic the low-pass frequency response of the internal
carrier transient time [16,20]. By choosing the proper values of RT and CT to fit the
measured O-E frequency response, we can then determine the internal transient time
limited frequency responses of our devices. Figure 9c shows the measured O-E, fitted O-E,
RC-limited and transient time limited frequency responses. As can be seen, under −13 V,
Device A has an RC-limited O-E bandwidth. A wider 3-dB O-E bandwidth can be expected
by further downscaling of the active diameter.
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Table 1. Values of the circuit element.

Physical Meaning A

Cj Junction Capacitance (fF) 155
Rj Junction Resistance (kΩ) >600
Rc Contact Resistance (Ω) 8
Cp Parastic Capacitance (fF) 15

Thus, to further improve the bandwidth, we fabricated a back-illuminated device
(Device A′) with a smaller active diameter of 18 versus 25 µm, share the same epi structure
as that of Device A. The back-illuminated device offers the advantage of less coupling
loss as compared to the top-illuminated device in which the top metal layer blocks light
from entering the device [5]. Figure 10a,c show top-views of the fabricated device before
and after flip-chip bonding, respectively. Compared with our previous design [21], the
geometric size and layout of the flip-chip bonding co-planar waveguide (CPW) pads has
further been optimized to not only minimize any ripples on the measured O-E frequency
responses, but also to enhance the reliability of the flip-chip bonding process due to the
increase in bonding area. We use gold-tin as the material for the bumps on the AlN
substrate, because it has good thermal conductivity and low dielectric loss, for flip-chip
bonding process.

Figure 10d shows the measured bias-dependent dark current, photocurrent, and
operation gain of the demonstrated APDs, subject to different optical pumping powers at
an optical wavelength of 1.31 µm. As can be seen, the measured breakdown voltage and
punch through voltage are the same as for the top-illuminated counterpart. Figure 11a,b
represents the bias dependent O-E frequency response of the back side illuminated Device
A′ measured under an optical pumping power of 20 µW at the 1.3 1 µm wavelength. As can
be seen, the measured 3 dB bandwidth of Device A′ is 24.5 GHz under low gain (Mg = 3)
and 18.6 GHz under 0.9 Vbr (Mg = 8.2). This is comparatively higher than those of the top
illuminated device measured under the same operation gain condition. Here, we choose
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the responsivity (~0.51 A/W) at the punch-through point as our unit-gain responsivity.
The corresponding GBP value under 0.9 Vbr operation is around 153 GHz.
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Figure 10. (a–c) top-views of the fabricated device before and after flip-chip bonding, and (d) dark current, photocurrent,
and operation gain versus bias voltages measured under different optical pumping powers for Device A′ at the 1.31 µm
wavelength.
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Figure 11. (a,b) represent the measured bias dependent O-E frequency response of Device A′ under
an optical pumping power of 20 µW at the 1.31 µm wavelength.

Figure 12a,b show the bias dependent O-E frequency responses of Device A′ measured
under a high input optical power (1 mW). As can be seen, Device A′ behaves same as
Device A. The maximum 3-dB O-E bandwidths are pinned at around 25 GHz, regardless of
the changes in the reverse bias voltage. It is worth mentioning that under both low and
high gain, our back side illuminated Device A′ has 6–8 GHz higher bandwidth compared
to the top illuminated Device A.

Figure 13a,b shows the dc output photocurrent versus the input optical power for
Devices A′ and B, respectively. As can be seen, the dc saturation current of Device A′ is
higher than that of Device B (5 versus 3 mA) at near Vbr bias, due to the thinner depletion
layer thickness. The output saturation power of our demonstrated APD is tested using
a two-laser heterodyne-beating setup at the 1550 nm wavelength. Figure 14a,b show
the measured photo-generated radio frequency (RF) power versus output photocurrent
obtained under different reverse biases. The measurement frequency was selected to
be around the 3-dB O-E bandwidth for both Devices A′ and B at 25 GHz and 1 GHz,
respectively. The ideal relation between the microwave power and averaged photocurrent
(open symbol), with a 100% optical modulation depth under a 50 Ω load, is also plotted
for reference.
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Figure 12. (a,b) represents the measured bias dependent O-E frequency response of Device A′ under
optical pumping power (1 mW) at 1.31 µm wavelength.
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Figure 13. The measured DC output photocurrent versus input optical power of (a) Device A′ and
(b) Device B at the 1.31 µm wavelength.
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Figure 14. The measured photo-generated microwave power versus photocurrent of (a) Device A′

and (b) Device B under different reverse biases. The open symbol line shows the ideal trace for a
100% optical modulation depth and 50 Ω load.

We can clearly see that the photo-generated RF power of both Devices A′ and B shows
no significant saturation even when the output photocurrent is above their dc saturation
currents of 5 and 3 mA, respectively. Their maximum output powers are limited by thermal
failure due to the high bias voltages required. Contrast this behavior with that of the
typical high-speed p-i-n PDs, which always show saturation in the photo-generated RF
power when their average output dc current is near saturation. In addition, under a small
output photocurrent, the near Vbr bias of both devices would lead to a photo-generated
RF power far below the ideal power values on a 50 Ω load. As can be seen, the highest
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output photocurrents for maximum output RF power for Devices A′ and B occur at 8 and
12 mA, respectively. When the output photocurrent increases, all traces measured under
different reverse bias voltages merge together, which can be attributed to the reduction
in the avalanche delay time and enhancement of the O-E bandwidth under high-power
operation, as discussed in Figure 7a,b.

4. Conclusions

In conclusion, we design a novel top/backside-illuminated APD structure with excel-
lent performance. Our demonstrated APD (Device A) can achieve a wide O-E bandwidth
(16 GHz) and high responsivity (2.5 A/W at 0.9 Vbr), with the dual M-layer facilitating
the cascade avalanche process. By further downscaling the device’s active diameter with
a back-side illuminated structure for easy optical alignment, we successfully obtain and
improved maximum bandwidth (24.5 versus 18 GHz) under the same operation gain con-
ditions as for the top-illuminated device. In addition, under low power excitation (~1 µW),
Device B, with its high unit gain responsivity (1 A/W), can maintain an invariable speed
performance (~1.2 GHz) over a wide range of operation gains (10 to 300). Furthermore,
such a device can eliminate degradation in the O-E bandwidth and sustain high-speed
performance at the saturation output photocurrent due to the reduction in the operation
gain and shortening of the avalanche delay time with an increase in the optical pumping
power. In both cases, the measured GBP was pinned at 460 GHz, which implies that our
proposed dual M-layer design with the thicker absorber layer can fundamentally overcome
the further downscaling of the M-layer and absorption layer to obtain a high GBP.
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