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Abstract: Versatile applications call for InGaN-based light-emitting diodes (LEDs) to operate at
ultra-high current densities with high quantum efficiency. In this work, we investigated the size-
dependent effects of the electrical and optical performance of LEDs as increasing the current density
up to 100 A/cm2, which demonstrated that mini-strip flip-chip LEDs were superior option to achieve
better performance. In detail, at a current density of 100 A/cm2, the light output power density
of these mini-strip LEDs was improved by about 6.1 W/cm2, leading to an improvement in the
wall-plug efficiency by 4.23%, while the operating temperature was reduced by 11.3 ◦C, as compared
with the large-sized LEDs. This could be attributed to the increase in the sidewall light extraction,
alleviated current crowding effect, and improved heat dissipation. This work suggests an array of
mini-strip LEDs would provide an option in achieving higher luminescent efficiency at ultrahigh
current injection conditions for various applications.

Keywords: light-emitting diodes (LEDs); ultra-high current densities; size-dependent

1. Introduction

InGaN-based light-emitting diodes (LEDs) have emerged as vital building blocks in
widespread applications like solid-state lighting [1–3], displays [4–7], and visible light com-
munications [8–10]. Tremendous progress has been made in the past few years, whereby
high quantum efficiency LEDs have been achieved in both blue and green ranges [11,12].
However, there is still much room for improvement in the performance of LEDs as driven
at high current densities. Under high current injection densities, the external quantum
efficiency (EQE) of LEDs will drop sharply, which is the so-called droop effect. Although
still under debate, mechanisms leading to efficiency droop have been mainly identified
to be Auger recombination [13–15], active region effect [16,17], carrier localization [18–20],
and carrier leakage [21–23]. In addition, the reduction in LED efficiency at high current
injection conditions will cause serious thermal problems, which would remarkably affect
LED reliability and its lifetime [24,25]. In terms of material growth, a series of remedial
measures to tackle efficiency droop have been taken, which mainly focus on (a) reducing
the carrier densities in the quantum wells [26], (b) improving the electron confinement
within the active region [17,27], or (c) enhancing the hole injection [28]. In the device aspect,
effective solutions have concurrently been proposed to deal with the efficiency droop. One
way is to transfer the GaN thin-films epitaxially grown on sapphire to a substrate with
good thermal conductivity via wafer bonding, which would reduce the LED operating
temperature or junction temperature, thereby increasing the output power [29–32]. This
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technical route has certain drawbacks, in which the yield and the costs during the produc-
tion are the leading ones, as the sapphire substrates need to be removed by a laser lift-off
process that would induce damages to the thin-films transferred. Another technical route is
to use ultra-large mesa thin-film LEDs (usually in several mm2 scale), which aims to push
the working current density to the lower end, where the droop effect could be significantly
alleviated, in order to achieve higher quantum efficiency even at high current injection con-
ditions [33,34]. However, with this method, the mesa size must be so greatly enlarged that
it will induce severe current crowding effect, particularly on the p-side, leading to a degra-
dation in both internal quantum efficiency and light extraction efficiency [35,36]. Recently,
micro-LED (µ-LED) technology has been developing rapidly as it has great potentials in
next-generation displays and widespread applications, yet there are still existing great
challenges for µ-LEDs to achieve high efficiency due to severe Shockley-Hall-Read (SHR)
recombination and surface recombination processes. They are also faced with difficulties
in the way of electrical interconnects for each component [6,37–39].

In this work, the size-dependent electrical, optical, and thermal properties of the
flip-chip mini-LEDs are studied at the current density approaching 100 A/cm2. Our results
show that mini-strip LEDs exhibit more uniform light emission, greater light emission
power density, higher wall-plug efficiency (WPE), and lower junction temperature, which
suggests the use of mini-strip LED arrays as light sources would provide an option for
achieving high quantum efficiency, which is more suitable especially at high current
injection conditions.

2. Experiment

The epitaxial layers for the mini-strip LEDs in this study were grown on 4-inch
patterned sapphire substrates (PSS) by MOCVD, with an emission wavelength centered
at ~450 nm. In detail, the epitaxial structure consisted of a layer of GaN buffer, a layer
of 3.5 µm un-doped GaN, a layer of 2 µm Si-doped (~2.5 × 1019 cm−3) n-GaN, followed
by 0.135 µm InGaN/GaN multiple quantum wells (MQWs), a 0.02 µm p-Al0.1Ga0.9N
electron blocking layer (EBL), and a layer of 0.08 µm Mg-doped (~3.6 × 1019 cm−3) p-GaN.
The InGaN/GaN MQWs were composed of 9 periods each with a 3.5 nm In0.17Ga0.83N
well and a 10 nm GaN barrier. As to device processing, indium tin oxide (ITO) with a
thickness of 100 nm was used as the current spreading layer and annealed at 550 ◦C in
nitrogen for 30 min. For the device mesa definition, an inductively coupled plasma (ICP)
etching process was carried out to a depth as n-GaN was exposed after the above ITO
was etched away. Here, to investigate the size-dependent effect, LED chips with three
dimensions of 15 × 30 mil2 (Type-I), 10 × 21 mil2 (Type-II), and 06 × 20 mil2 (Type-III)
were fabricated (1 mil ≈ 25.4 µm). Ti/Au (50/200 nm) layers were deposited on n-GaN
by electron beam evaporation as n-contacts. A total of 5 pairs of TiO2/SiO2 (46.4/76.8 nm)
distributed Bragg reflectors (DBR) were deposited, and windows were opened on the
p-/n- electrodes by ICP etching. Again, a metallic reflector consisting of Cr/Ag/Cr/Pt/Cr
(1/150/20/20/60 nm) was deposited and annealed at 500 ◦C in N2 for 6 min. Afterwards,
1 µm SiO2 was deposited on the metallic reflector to realize the electrical isolation between
the p- and n- electrodes. An extra layer of thick Ti/Au was deposited as metal pads for
flip-chip mounting. The schematic structure and cross-sectional image of a mini-strip LED
is shown in Figure 1a. Finally, a laser-scribing process was used to separate the wafer into
independent LED chips, as shown in Figure 1b. For the testing, we used solder paste as the
adhesion layer to mount the LED chip on the alumina substrate, which was baked at a high
temperature of 240 ◦C for about 15 s. An optical photo for a packaged LED device ready for
testing is shown in Figure 1c. The current density versus voltage (J-V) characteristics of the
as-fabricated LEDs with different dimensions were measured in the integrating sphere by a
photoelectrical analysis system (Everfine LHS-100, Hangzhou, China). In order to evaluate
the luminous uniformity of these three types of LEDs, the far-field light distribution of these
LED chips was tested with the light intensity distribution tester (LSA 3000, North Sutton,
NH, USA). The current distribution from the n-electrode to the edge of the chips was
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evaluated by the LED Beamprofile (Unice e-Pro, Taoyuan, China), as the charge-coupled
device (CCD) camera was mounted right on top of the LEDs with a bandpass filter in the
front. The size-dependent LED operating temperatures driven at varied current injection
densities were tested by an infrared camera (FLIR T620, Wilsonville, OR, USA).
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Figure 1. (a) Schematic diagram depicting the device structure for mini-strip light-emitting diodes
(LEDs). (b) Optical photos of mini-strip LEDs (scale bar: 100 µm). (c) Flip-chipped mini-strip LEDs
mounted on the ceramic substrate for testing.

3. Results and Discussion

As shown in Figure 2a, no obvious size-dependent variations in the J-V characteristics
can be found among these LED devices. To give a full picture, results from three randomly
chosen LEDs are presented for a same size. The operating voltages of all LEDs are very
similar, with a variation less than 0.1 V as the injection density increased from 0 to 30 A/cm2

and up to ~0.3 V at injection density approaching 100 A/cm2, which shows that the
electrical performance of all types of LED devices are quite uniform. Moreover, the
operating voltages of LEDs with the same size are almost identical as increasing the current
injection densities. For a fair comparison, light output power (LOP) density was used in
this study, defined as the total LOP divided by the actual light-emitting area of the devices.
Figure 2b shows the LOP density of three types of LEDs versus injected current density,
in which it could be found that as current injection density increased from 0 to 50 A/cm2,
the LOP density exhibits no significant difference. As the current injection density goes
higher, there is a noticeable increase in the LOP density for the mini-strip LEDs (Type-
III). Particularly, at a current injection density of 100 A/cm2, the average LOP density
for these three types of LEDs are 121.24 W/cm2 (Type-I), 124.06 W/cm2 (Type-II), and
127.33 W/cm2 (Type-III), respectively. An enhancement by 3.92 W/cm2 and 6.09 W/cm2

has been achieved as compared with the large-size LEDs (Type-II and Type-I, respectively).
The inset shows the LOP densities of all LED chips with different sizes at 100 A/cm2.

Figure 3 shows the size-dependent wall-plug efficiencies (WPE) of all three types of
LEDs versus the current injection density. When the current density is less than 60 A/cm2,
the WPE of Type-II LEDs on average is around 1.5% lower than that of Type-I LEDs. As
the current injection density further increases to 80 A/cm2, the WPE completely exceeds
that of Type-I LEDs. Meanwhile, when the current injection density is less than 10 A/cm2,
the WPE of mini-strip LEDs (Type-III) is only about 1.85% and 2.89% higher than that
of Type-I and Type-II LEDs, respectively, on average (Type-III: 57.88%, 57.75%, 57.14%;
Type-I: 55.4%, 55.56%, 56.25%). As the current injection density increases to 100 A/cm2, the
WPE increases by about 4.23% on average (Type-III: 38.7%, 38.68%, 37.67%; Type-I: 34.43%,
34.23%, 34.69%). The improvement in the WPE can be mainly attributed to two aspects:
(1) better current spreading for the mini-strip LEDs, and (2) more light extracted from the
LED sidewalls due to the strip-shaped geometric [40].
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Figure 2. (a) Size-dependent electrical characteristics as a function of current density. (b) Light output
power (LOP) density for all types of LEDs versus current density. Inset shows the LOP densities at
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With increasing the current density, the current crowding effect for the LED chips
become severer, which thereafter seriously affects their luminous efficiency and reliability.
According to the simple one-dimensional circuit model [41], the current spreading length
(Ls) can be obtained by the following formula:

Ls =
√(

ρc + ρptp
)
tn/ρn, (1)

J(x) = J(0) exp(−x/Ls), (2)

where x denotes the distance from the mesa edge to the center, J(0) denotes the current
density on the mesa edge, ρc is the specific contact resistivity of metal and p-GaN, and
ρp, ρn, tp, and tn are the resistivity and thickness of p-GaN and n-GaN, respectively. By
using the parameters ρp = 4.0 Ω cm, ρn = 0.03 Ω cm, and ρc = 0.005 Ω cm2 and layer
thicknesses tp = 0.08 µm and tn = 2 µm, the current spreading length is calculated to
be 183 µm. From the above formula, it can be known that the Ls is only related to the
resistivity and thickness of the n-GaN layer, the resistivity and thickness of the p-GaN
layer, and the p-type contact resistance, as the n-type ohmic contact is usually much better.
Since all LEDs were processed in the same batch, the current spreading ability is only
related to the LED geometrical structure. It can be quantitatively estimated by checking
the light emission intensity over the distance between the p- and n-electrodes on the mesa,
which should partially reflect the current density profile. The scanning light intensity
profile from the n-electrode to the mesa edge is shown in Figure 4a. The light emission
intensity of Type-I LED dramatically reduces from 0.62 to 0.46 W/cm2. In contrast, it
slightly reduces from 0.52 to 0.51 W/cm2 for Type-II LEDs and from 0.44 to 0.42 W/cm2
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for Type-III LEDs, demonstrating the light emission uniformity can be improved by using
mini-strip geometrics, which is consistent with results from similar LED strip structure
yet with much larger size [40]. In addition, the overall light emission distribution for all
LED devices is shown in Figure 4b. In terms of color variations, representing the light
emission intensity uniformity, the improvement can be easily distinguished for Type-II
and Type-III LEDs. Although current spreading is almost identical for these two kinds of
LEDs, the light extraction efficiency of Type-III LEDs is higher than that of Type-II LEDs,
as the metal electrodes would block the emission from the QWs. Therefore, to achieve
higher quantum efficiency, the current spreading should be considered, which calls for a
closer configuration of p/n metal contacts, while on the other hand, the absorption of metal
contacts cannot be ruled out, for the light extraction efficiency of the LED will degrade
concurrently, which limits the size of mini-strip LEDs further getting smaller.
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Figure 4. (a) p to n contact (b) overall light output power intensity distribution for the Type-I, Type-II,
and Type-III LEDs.

As shown in Figure 5, the impact of LED geometrics on the side emission are confirmed
by the angular far-field light intensity distribution measurement, from which we can see
Type-I LED chips emit the strongest light at about 60◦ to 90◦, while Type-II LEDs exhibit
the strongest intensity at 55◦ to 85◦ and mini-strip LEDs (Type-III) at about 50◦ to 70◦. It
can be clearly identified that with the gradual decrease of chip width, the edge emission
becomes more dominant, affirming that the enhancement in the LOP density is also out of
the increased side emission [40,42].
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The existence of the spontaneous and built-in piezoelectric fields within InGaN MQWs
leads to the quantum-confined Stark effect (QCSE), which causes the energy bands to bend,
thereby reducing the overlap integral of the electron-hole wave functions [16]. In the
case of high current injection density, the band-filling effect and shielding of the electrical
field in the active area would reduce QCSE, which will cause a blueshift in the emission
wavelength. In Figure 6a, the spectral peak wavelengths for Type-I, Type-II, and Type-
III LEDs are 453.3, 455.6, and 441.4 nm at the current density of 1 A/cm2, and shift to
446.7, 449.4, and 437.9 nm at 100 A/cm2, which exhibits blueshifts by 6.6, 6.2, and 3.5 nm,
respectively. The smaller blueshift with mini-strip LEDs may be attributed to a better
current spreading by reducing the carrier density that alleviates the band-filling effect in
MQWs. Meanwhile, the full width half maximum (FWHM) of the three types of LED are
16.3, 16.0, and 12.8 nm at the current density of 1 A/cm2, and 20.3, 20.3, and 16.7 nm at
100 A/cm2, with an increase of 4, 4.3, and 3.9 nm, respectively, as shown in Figure 6b. The
smaller broadening of FWHM in mini-strip LEDs may be attributed to the alleviated band-
filling effect in MQWs and less self-heating effect, leading to lower operating temperatures
than the other two sizes of LEDs. The smaller wavelength blueshift and narrower FWHM
indicate that light emission from the mini-strip LEDs is more stable, even under a high
current injection density reaching up to 100 A/cm2 [43].
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Nonradiative recombination process will cause severe self-heating problem, which
would significantly degrade the device performance and its lifetime. At high current injec-
tion conditions, Auger recombination is regarded as the most critical factor contributing
to the nonradiative recombination rate, which is strongly related to the carrier densities
according to the ABC model. Hence, self-heating effects are mainly determined by the
over-crowding injected carrier densities. Due to the flip-chip configuration, the devices
suffer fewer thermal effects, with no obvious redshifts observed in the emission wave-
lengths even at the current density up to 100 A/cm2. It is still reflected by the variations
of LED operating temperatures. As shown in Figure 7a, at low current injection density
of 10 A/cm2, the operating temperatures of these three types of LED chips are very close,
within a variation of 1 ◦C. While current injection gets higher, the operating temperatures
of these three types of LED chips exhibits larger divergence, reaching a maximum gap of
almost 12 ◦C. The increase in the LED operating temperature is consistent with the WPE
results, which also shows that mini-strip chip arrays are more suitable for high output
power devices than single large-area mesa LED chips. Figure 7b shows the infrared camera
photos of each type of LED chip at a current injection density of 100 A/cm2. In detail, the
average operating temperature of Type-III LEDs is around 37 ◦C, whereas the operating
temperatures of Type-II and Type-I LEDs are about 4.5 ◦C and 11.3 ◦C higher, respectively.
The decrease in the operating temperature will extend the lifespan of the devices.
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4. Conclusions

In this study, the performance of mini-strip LED chips has been demonstrated as
superior to large-sized chips throughout all current injection density up to 100 A/cm2.
Especially, at a current injection density of 100 A/cm2, the light output power densities
are 3.92 W/cm2 and 6.09 W/cm2 higher; as a result, the quantum efficiencies have been
improved by 3.6% and 4.23%, while the operating temperatures are reduced by 4.5 ◦C
and 11.3 ◦C, respectively, as compared to LEDs with larger mesa dimensions. The current
spreading and light emission are more uniform. Instead of moving towards large-mesa
LEDs, our work suggests that an array of rectangular mini-strip LEDs would provide a
choice for achieving light sources with higher quantum efficiency at ultrahigh current
injection densities.
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