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Abstract: It is challenging to realize the complete broadband absorption of near-infrared in thin
optical devices. In this paper, we studied high light absorption in two devices: a stack of Au-
pattern/insulator/Au-film and a stack of Au-pattern/weakly-absorbing-material/Au-film where the
Au-pattern was structured in graded photonic super-crystal. We observed multiple-band absorption,
including one near 1500 nm, in a stack of Au-pattern/spacer/Au-film. The multiple-band absorption
is due to the gap surface plasmon polariton when the spacer thickness is less than 30 nm. Broadband
absorption appears in the near-infrared when the insulator spacer is replaced by a weakly absorbing
material. E-field intensity was simulated and confirmed the formation of gap surface plasmon
polaritons and their coupling with Fabry–Pérot resonance.

Keywords: light absorption; gap surface plasmon polariton; Fabry–Pérot resonance; graded photonic
super-crystal; broadband absorption; metal/insulator/metal

1. Introduction

The absorption of light, especially the total light absorption (TLA) in sub-wavelength
thin layer stacks or patterned stacks, has been intensively studied for applications in lasers,
photodetectors, solar energy harvesting, metal structural coloring, nanoscale environmen-
tal sensing, surface-enhanced Raman scattering from individual molecules, and other
applications [1–11]. In two-layer or three-layer dielectrics/metal stacks, the refractive index
of the dielectric materials has been carefully selected [11–15] in order to meet the phase con-
dition for a destructive interference of light reflected from the interfaces of multiple layer
stacks or the critical coupling of resonances [16–24]. Plasmonic TLA with zero transmission
and zero reflection has been observed [5–9,25,26] in patterned metal-insulator-metal (MIM)
stacks where light can easily couple with surface plasmons to form surface plasmon polari-
tons (SPPs) following the physics rule of momentum conservation. The patterned MIM
consists of a top-layer metallic pattern, continuous spacer-layer and metallic bottom-layer.
The wavelength of plasmonic TLA was determined by the continuous-layer gap plasmon
resonators without strict conditions for the refractive index of materials, in contrast to the
strict conditions for thin film stacks [11–15].

Broadband TLA has been desired for many applications. In order to achieve broad-
band plasmonic TLA, super-lattice, complex motifs or multiple resonators have been placed
in a unit cell of MIM structures [25–31]. An array of chirped MIM resonators has been
used to achieve a broadband response [27]. Multiplexed plasmonic resonances in metallic
dual-lattices have been used for the broadband detector [25,26]. A super-lattice with a
periodic array of four differently sized circles [6] or squares [28] in a unit cell in MIM has
successfully generated broadband plasmonic TLA. A metasurface with multiple resonators
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in MIM has been studied for the same purpose. Examples include multiple resonators of
various sizes/shapes of squares and circles [29], eight pairs of gold nanoresonators in the
complex unit cell [30], and gradient metasurfaces comprising a periodic arrangement of
metal nanobricks [31].

A recently discovered graded photonic super-crystal (GPSC) can have a very large unit
super-cell with two sets of motifs: the rod size (or hole size) decreases gradually along one
direction in one set of motifs while the other set increases their sizes gradually [32–41]. The
spatially gradient motifs are arranged on a square lattice with a small period, and graded
regions in GPSC have a large period and their own symmetry. The GPSC can have dual
period and dual symmetry [32–42]. Due to the gradient two-set motifs in the unit super-
cell, GPSCs can be used to enhance the broadband light trapping in an Si solar cell and
broadband light extraction from an organic light emitting diode [37–41]. Various GPSCs
with different symmetries and unit super-cells have been fabricated through interference
lithography by two sets of multiple beams arranged in a cone geometry [32–36].

In this paper, we simulated the light absorption in Au GPSC on Au film, Au-
GPSC/insulator/Au-film, and Au-GPSC/lossy-spacer/Au film. We observed multiple-
band absorption in the Au-GPSC/insulator/Au-film. The appearance, in particular,
of the absorption band near 1500 nm is due to the gap SPP in the [1, 1] direction.
Broadband absorption has been observed when a weakly absorbing material is used
between Au-GPSC and Au-film.

2. Simulation Methods

Figure 1a shows a schematic of the to-be-simulated GPSC MIM structure where two
sets of motifs are represented by orange and golden cylinders, respectively. The radii of
the cylinders decrease and then increase along the golden arrow, while they increase and
then decrease along the dashed orange arrow. The GPSC can be obtained by interference
lithography [32–36] or e-beam lithography [42]. The E-beam exposure control program
used the interference pattern as an input [42]. The eight-beam interference intensity as a
function of the location r is calculated from Equation (1):

I(r) = 〈
8

∑
i=1

E2
i (r, t)〉+

8

∑
i<j

EiEjei·ej cos
[(

k j − ki
)
·r +

(
δj − δi

)]
. (1)

where k is the wave vector, δ is the initial phase, and E and e are the electric field strength
and polarization, respectively. The four inner beams and four outer beams have their wave
vectors of: {k1 . . . 4} = {k(sin(7.1◦)cos(45 + n × 90)◦, sin(7.1◦)sin(45 + n × 90) ◦, cos(7.1◦)),
{k5 . . . 8} = {k(sin(47.9◦)cos(45 + n × 90)◦, sin(47.9◦)sin(45 + n × 90)◦, cos(47.9◦)), respec-
tively, where n = 0, 1, 2, 3. Using an UV source with a wavelength = 367 nm, the small
period ΛS equals approximately 2π/(2ksin(47.9◦) × sin45)=350 nm. The big period can
be approximately estimated as by Λb = 2π/(ksin(7.1◦ )

√
2) = 6350 nm. Thus, there are

6 × 6 cylinders in the unit super-cell as indicated by a dashed red square in Figure 1. A
step function was used to generate Au GPSC: the permittivity of Au, which was obtained
from ref. [43], was applied when I(r) was larger than the threshold intensity Ith, and air
when I(r) < Ith. The thickness of the insulator or lossy insulator (light blue) is H, and the
Au film is in golden color in Figure 1a in the stacks of the Au GPSC/insulator/Au film
and Au GPSC/lossy insulator/Au film. For the simulation of Au GPSC on SiO2 film,
the Au film was removed. We used a finite-difference time-domain (FDTD) open-source
software tool MIT MEEP program [44] to simulate the reflection, transmission and E-field.
These simulations were performed at Amazon Web Service through cloud-based parallel
computations using 36-core virtual machines.
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Figure 1. (a) Schematic of a 6 ΛS × 6 ΛS unit cell of graded photonic super-crystal (GPSC) with gold 
cylinders. (b) Simulated reflection, transmission and extinction for Au GPSC on a glass slide. 
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Figure 1b shows the simulated reflection (R) and transmission (T) from Au GPSC on 

dielectric SiO2 (without the Au film). The extinction (E) is obtained by E = 1-T-R. The trans-
mission spectrum shows a low transmission window between 400 and 600 nm. There is a 
low reflection window between 400 and 720 nm in the reflection in Figure 1b. The calcu-
lated extinction shows a sharp peak at 613 nm and a broad band centered around 557 nm, 
similar to the plasmonic features observed in gold nanorods [45]. There are weak peaks 
around 391, 440 and 775 nm. In GPSC, the cylinders on the edge of the unit super-cell have 
almost same sizes, and the percentage of these cylinders over the total number of cylinders 
is high. The size of cylinders becomes smaller or bigger near the center, and these cylin-
ders have a low percentage over the total number of cylinders. The bigger the size of the 
cylinders, the larger the plasmonic resonance wavelength following Equation (2) [6,45]: 𝐷 2𝜋𝜆  𝑛 = 𝑘 𝜋 − 𝜃  (2)
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ameter of 158 nm. The high extinction between 500 and 640 nm is in agreement with the 
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When the Au film is added below the SiO2 spacer as a metal/insulator/metal structure 
patterned with GPSC, as shown in Figure 1a, multiple absorption bands appear above 620 
nm (as shown in Figure 2a) besides the broadband absorption between 400–600 nm. The 
absorption peaks are located at 624, 841 and 1464 nm when the thickness of SiO2 is 10 nm. 
These three peaks increase in wavelength, as indicated by dashed red, blue and purple 
arrows, as the thickness of the spacer increases from 10 to 15 and 30 nm. These three peaks 
have wavelengths of (699, 904, 1625 nm) and (819, 988, 1776 nm) for a space thickness of 
15 and 30 nm, respectively. These three peaks can be assigned as gap SPP following Equa-
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Figure 1. (a) Schematic of a 6 ΛS × 6 ΛS unit cell of graded photonic super-crystal (GPSC) with gold cylinders. (b) Simulated
reflection, transmission and extinction for Au GPSC on a glass slide.

3. Multiple-Band Absorption in Au/SiO2/Au Patterned with GPSC

Figure 1b shows the simulated reflection (R) and transmission (T) from Au GPSC
on dielectric SiO2 (without the Au film). The extinction (E) is obtained by E = 1-T-R. The
transmission spectrum shows a low transmission window between 400 and 600 nm. There
is a low reflection window between 400 and 720 nm in the reflection in Figure 1b. The
calculated extinction shows a sharp peak at 613 nm and a broad band centered around
557 nm, similar to the plasmonic features observed in gold nanorods [45]. There are weak
peaks around 391, 440 and 775 nm. In GPSC, the cylinders on the edge of the unit super-cell
have almost same sizes, and the percentage of these cylinders over the total number of
cylinders is high. The size of cylinders becomes smaller or bigger near the center, and these
cylinders have a low percentage over the total number of cylinders. The bigger the size of
the cylinders, the larger the plasmonic resonance wavelength following Equation (2) [6,45]:

D
2π

λ
ne f f = k π − θ (2)

where D is the diameter of cylinders, neff is the effective index for the SPP, k is an integer
number and θ is the phase shift due to the SPP mode reflection. The diameter of cylinders
on the edge is approximately 90 nm [42], corresponding to a localized surface plasmonic
resonance wavelength of 558 nm [3] and coupled surface plasmonic resonance wavelength
of around 583 nm assuming a reflection phase θ = 0.29 and k = 1 in Equation (2) [6]. The
plasmonic resonance wavelength can reach 793 nm for the large cylinder with a diameter
of 158 nm. The high extinction between 500 and 640 nm is in agreement with the high
percentage of cylinders at the edge over the total.

When the Au film is added below the SiO2 spacer as a metal/insulator/metal structure
patterned with GPSC, as shown in Figure 1a, multiple absorption bands appear above
620 nm (as shown in Figure 2a) besides the broadband absorption between 400–600 nm.
The absorption peaks are located at 624, 841 and 1464 nm when the thickness of SiO2 is
10 nm. These three peaks increase in wavelength, as indicated by dashed red, blue and
purple arrows, as the thickness of the spacer increases from 10 to 15 and 30 nm. These
three peaks have wavelengths of (699, 904, 1625 nm) and (819, 988, 1776 nm) for a space
thickness of 15 and 30 nm, respectively. These three peaks can be assigned as gap SPP
following Equation (3), which is similar to Equation (2) [6,45,46]:

Pn,m
2π

λ
ne f f−Au−Spacer = k π − θ (3)
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where P is the propagation length along the [n, m] direction, and neff-Au-Spacer is the effective
index for the SPP at the interface of the gold film and SiO2. The effective refractive index
neff-Au-Spacer can be obtained from Equation (4) [46]:

ne f f−Au−Spacer =

√
εAuεspacer

εAu + εspacer
(4)

where εAu and εSpacer are the permittivity of gold and SiO2, respectively. In the direction of
[n, m] = [1, 0] and using k = 1 and the reflection phase θ = 0.29, the gap SPP wavelength is
calculated to be 650 nm using Equations (3) and (4). The gap SPP wavelength is calculated
to be 858 and 1653 nm in the direction of [n, m] = [1, 1] for the propagation distance of√

2Λs and 2
√

2Λs, respectively. The calculated SPP wavelengths are (650, 858 and 1653 nm)
when compared with the simulated SPP wavelengths of (624, 841 and 1464 nm) for a spacer
thickness of 10 nm in Au/SiO2/Au patterned with GPSC. When the thickness is increased,
these three peaks are red-shifted. It should be mentioned that the effective index for gap
plasmon depends on the MIM spacer thickness in metamaterial MIM structures [47–49].
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Figure 2c shows the E-field intensity in the X-Y plane inside the spacer near the Au 
film in a stack of Au-GPSC/20-nm-SiO2/Au film. The dashed white circles indicate the lat-
tice location for Au GPSC. The dashed red lines indicate the horizontal and [1, 1] direc-
tions. Within 20 nm from the Au GPSC, the E-field intensity has a pattern with a symmetry 
similar to the GPSC lattice. The E-field oscillates near locations underneath golden cylin-
ders (one set of lattices in Figure 1a), in the x-direction following the x-polarization of 
light. Figure 2d shows the E-field intensity in the X-Y plane in the middle of the spacer. 
Gap SPP modes are clearly observed. The E-field intensity in the X-Y plane inside the 

Figure 2. (a) Multiple-band absorption due to gap SPP in Au/SiO2/Au patterned with GPSC when
the SiO2 thickness is 10 (solid red line), 15 (dashed dark-blue line) and 30 nm (dashed light-blue
line). (b) Absorption in Au/SiO2/Au patterned with GPSC when the SiO2 thickness is 60 (solid
light-blue line), 90 (dashed dark-blue line) and 120 nm (solid red line). E-field intensity in the X-Y
plane inside the spacer (c) near the Au film, (d) in the middle of the spacer, and (e) inside the spacer
near Au GPSC, in a stack of Au-GPSC/20-nm-SiO2/Au film. These E-field intensities are excited by
a Gaussian source with a central wavelength of 1400 nm.

When the thickness of the spacer SiO2 reaches 60 nm, the peak around 1450 nm
becomes very weak, as shown in Figure 2b. When further increasing the thickness to 90
and 120 nm, the peak completely disappears due to the weak confinement of a gap SPP
with a large gap and a long propagation length [45]. The gap SPPs do still exist but are not
efficiently coupled to the resonator.

Figure 2c shows the E-field intensity in the X-Y plane inside the spacer near the Au film
in a stack of Au-GPSC/20-nm-SiO2/Au film. The dashed white circles indicate the lattice
location for Au GPSC. The dashed red lines indicate the horizontal and [1, 1] directions.
Within 20 nm from the Au GPSC, the E-field intensity has a pattern with a symmetry similar
to the GPSC lattice. The E-field oscillates near locations underneath golden cylinders (one
set of lattices in Figure 1a), in the x-direction following the x-polarization of light. Figure 2d
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shows the E-field intensity in the X-Y plane in the middle of the spacer. Gap SPP modes
are clearly observed. The E-field intensity in the X-Y plane inside the spacer near Au GPSC
is shown in Figure 2e. Both oscillations in the horizontal and [1, 1] directions in the E-field
intensity are presented with an eye-guidance from the dashed white lines. Due to two sets
of lattices in GPSC, it is reasonable to have an E-field coupling along the [1, 1] direction
with the same set of motifs in the lattice when compared with the diffraction orders of (1, 1),
(1, −1), (−1, −1) and (−1, −1) observed in the diffraction pattern from Al GPSC [42]. Due
to the fact that there is SPP coupling near Au GPSC in Figure 2e while the coupling in the
[1, 1] direction in Figure 2c is weak with a distance from Au GPSC, the gap SPP coupling
with resonators at a long propagation distance in the [1, 1] direction will become weak
when the thickness of the spacer is increased. This is why the absorption peak around
1600 nm disappears in Figure 2a,b when the spacer thickness is increased to be larger than
60 nm.

4. Broadband Absorption in Au/Absorbing-Spacer/Au Patterned with GPSC

In order to achieve a broad absorption in near-infrared, we replace SiO2 with a
weakly absorbing material that has a complex refractive index n + ik with k << n. The
dielectric function of the material can be obtained by the Drude−Lorentz oscillator model
in Equation (5):

(ω) = εb −
ω2

p

ω2 + iΓpω
+

f1ω2
1

ω2
1 −ω2 − iΓ1ω

(5)

where the background permittivity εb = 3.358, the plasma frequency ωp = 0.41 eV,
the carrier relaxation rate Γp = 0.04 eV and f1 = 1.69, representing the strength of the
Lorentz oscillator with a center frequency ω1 = 0.64 eV and relaxation Γ1 = 0.2 eV.
These permittivity parameters are adopted from the spectra ellipsometry on AZO with
different Al-doping [50]. AZO or ITO is popular as an electrically tunable and transparent
conducting material for tunable MIM devices [51]. Figure 3 shows the calculated real (n)
and imaginary (k) parts of the refractive index in the wavelength range between 500 and
4500 nm. k << n, as shown in the figure. The imaginary part k increases from zero at a low
wavelength to 0.002 at 1260 nm, to 0.005 at 1698 nm, to 0.01 at 2120 nm, and then to 0.02 at
2630 nm. Correspondingly, the real part n decreases from 1.82 to 1.78, 1.74, 1.69 and then to
1.61. We also plot n and k in Figure 3 for a carrier relaxation rate Γp = 0.14 eV and 0.28 eV
while the other parameters are same. The carrier relaxation rate in the Drude model in
Equation (5) is related to the optical loss. When Γp increases, k increases in Figure 3.
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Figure 4a shows the absorption for a spacer thickness of 80, 120 and 350 nm in a
stack of Au-GPSC/weakly-absorbing-spacer/Au-film. For thicknesses of 80 and 120 nm,
broadband absorption appears around 1400–2300 nm, where peaks are disappearing in
Figure 2b. Considering the refractive index and Fabry–Pérot (F-P) effect, the optical path
length of 120 nm × 1.5 (1.5 is the refractive index) in Figure 2b corresponds to the optical
path length of 100 nm × 1.8 in Figure 4a. The difference in absorption in near-infrared
between the two figures can be due to the weakly absorbing spacer used in Figure 4a.
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wavelength of 1900 nm.

The F-P resonance in Figure 4 can form inside the spacer between Au-GPSC and the
Au film through a possible F-P cavity length (FPCL), as shown in Equations (6)–(8) [52–54]:

F− P Cavity Length = FPCL = 2

√(
Λn,m

2

)2
+ T2 (6)

F− P Cavity Length = FPCL = 2

√(
D
2

)2
+ T2 (7)

F− P Cavity Length = FPCL = 2T (8)

where T is the thickness of the spacer, D is the diameter of the cylinder in GPSC and Λn,m
is the lattice period in the [n, m] direction. Equation (6) is for the F-P resonance diffracted
by the GPSC grating from different directions, while Equations (7) and (8) are for F-P
between Au-cylinders and Au-film, as shown by the inserts in Figure 4c for type II and
type I, respectively. The formation of the F-P resonance meets the following condition in
Equation (9) [53,55]:

FPCL
2π

λ
nspacer = k π − ϕtop − ϕbottom , m = 1, 2, 3 . . . (9)

where ϕtop and ϕbottom are the additional phase shifts at the top and bottom surfaces,
respectively, due to the reflection and penetration depth. With a penetration depth of
26 nm around 1900 nm in Au, ϕ = 0.06. We use ϕtop + ϕbottom = 0.29 + 0.06 for the path in
Equations (6) and (7) and ϕtop + ϕbottom = 0.06 + 0.06 for the path in Equation (8). Using
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these additional phase shifts, the calculated wavelength for the absorption peak is close to
the simulated one.

Based on Equations (6)–(9), SPP and F-P coupling in the [1, 1] direction gives an
absorption centered around 1962 nm for a spacer thickness of 120 nm, in agreement with
the simulated broadband absorption wavelength between 1600 and 2200 nm and the central
wavelength of 1975 nm indicated by the dashed green square in Figure 5. For a thickness
of 420 nm in Figure 4b, the absorption is calculated to be 1780 nm using Equation (8). The
absorption is around 2200 and 2050 nm for a spacer thickness of 580 nm in Figure 4c using
Equations (7) and (8), respectively.
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(a) 80 nm and (b) 120 nm for carrier relaxation rates of 0.04, 0.14 and 0.28 eV in Equation (5) for an AZO spacer. (c) Dispersion
of the refractive index nspp and nAZO with carrier relaxation rates of 0.04, 0.14 and 0.28 eV in Equation (5) for an AZO spacer.

Figure 4d shows the E-field intensity in a cross section in the X-Z plane for a space
thickness of 350 nm in a stack of Au-GPSC/weakly-absorbing-spacer/Au-film. The E-field
intensity is high near the center of the unit super-cell of GPSC, and F-P resonance appears
between Au-GPSC and Au-film. Figure 4e shows the E-field intensity in a cross section
in the X-Y plane through z-locations indicated by the dashed white arrow (just below
Au-GPSC). A square pattern appears following the GPSC symmetry. In the middle of the
spacer, the E-field intensity shows oscillations along the [1, 1] direction, as indicated by
dashed purple lines. The light is reflected by the Au film at the center of the unit super-cell,
as shown in Figure 4g. Thus, the coupling of SPP and F-P resonance leads to a broadband
absorption in near-infrared in the stack of Au-GPSC/weakly-absorbing-spacer/Au-film.
For thin device applications, a space thickness of 120 nm, as shown in Figure 4a, can have a
broadband absorption in near-infrared.

5. Discussion

Although super-lattice, complex motifs or multiple resonators have been placed in a
unit cell of MIM structures by other research groups [25–31], the broad absorption around
1400–2100 nm has not been reported. We believe that the coupling of SPP with GPSC
resonators in [±1, ±1] directions plays a key role in the appearance of the broad absorption
band around 1400–2100 nm in our GPSC-based MIM, as evidenced by the E-field intensity
here and the reported laser diffraction in [±1, ±1] from the GPSC pattern [42]. Due to the
dual lattice feature (as indicated by arrows in Figure 1a for GPSC) the SPP is forced to
propagate and resonate in the [1, 1] direction. Due to different diameters for cylinders in
GPSC, the SPP has a broadband resonance.

We believe that the material dispersion also plays a role in the coupling of SPP with
F-P resonance in the spacer. Adopting the permittivity in Equation (5) and in Figure 3
for AZO, we simulate the absorption of Au-GPSC/weakly-absorbing-spacer/Au-film for
carrier relaxation rates of 0.04 (red line), 0.14 (blue dash) and 0.28 eV (black line), as shown
in Figure 5a,b for a spacer thickness of 80 nm and 120 nm, respectively. As expected, the
absorption increases with an increasing k (increasing Γp) in both Figure 5a,b. However, the
absorption is almost the same between the wavelengths of 1916 and 2014 nm in Figure 5a
and between 1860 and 2090 nm in Figure 5b, as indicated by the dashed green rectangle and
square in the figure, respectively. These dashed green rectangle and square are centered at
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1965 and 1975 nm, respectively. This indicates that the SPP wavelength is around 1970 nm
and that it is mainly related to the Au permittivity and GPSC structure. The broadband
coupling between SPP and F-P resonance can be understood from the dispersion of nspp
and nspacer, as shown in Figure 5c. These nspp and nspacer values are very close and change
with the wavelength, having almost the same slope between 1700 and 2200 nm.

6. Conclusions

In summary, we have observed multiband absorption in a stack of Au-GPSC/SiO2/Au-
film. The absorption band near 1500 nm is assigned to the gap SPP in the [1, 1] direction.
This feature appears in the stack that is patterned in GPSC due to its dual-lattice structure
and the coupling of SPP along one set of the lattice in the [1, 1] direction. Broadband
absorption has been observed in a stack of Au-GPSC/weakly-absorbing-spacer/Au-film
due to SPP and F-P resonance in the [1, 1] direction. The E-field intensity has been simulated
for both stacks, for which SPP and F-P resonance have been confirmed. The E-field intensity
has also confirmed the formation of gap SPP near 1500 nm when the spacer thickness was
below 30 nm.
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