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Abstract: The transverse asymmetry of the index modulation profile in the asymmetric few-mode
fiber Bragg grating (FM-FBG) was investigated. The transverse asymmetry of the index modulation
profile will lead to mode conversion between modes with the different azimuthal orders, and
this asymmetry is characterized by the attenuation coefficient α. We evaluated that the value of
attenuation coefficient α was 0.2 µm−1, and grating amplitude χ was 2.8× 10−4 for FM-FBG inscribed
by UV single-side illumination. We found that the optimized value of α was 0.16 µm−1, at which
the maximum mode conversion efficiency of LP01–LP11 can be achieved. The results of this paper
provide great potential application in few-mode fiber (FMF) devices and mode division multiplexing
(MDM) optical communication.

Keywords: fiber Bragg grating; few-mode fiber; mode conversion; transverse asymmetry

1. Introduction

In recent years, few-mode fiber Bragg grating (FM-FBG) has attracted considerable
attention, owing to the advantages of simple structure, flexible operation, versatility,
low loss, and low crosstalk [1]. The FM-FBGs can realize the coupling of the forward
propagating mode and the phase-matched backward propagating mode, which are widely
used in various applications such as fiber filters [2], fiber lasers [3–5], fiber sensors [6,7],
mode division multiplexing (MDM) communication systems [8], and mode converters
(MCs) [9–12].

As one of the key components in an MDM system, the MCs based on FM-FBG can
convert a specific mode into other modes. Traditionally, for a uniform FM-FBG, the mode
conversion only occurs between modes with the same azimuthal order. However, when
FM-FBG has an asymmetric transverse index profile, the mode can convert into the higher
azimuthal order modes [13,14]. A high-order vector mode conversion approach was pro-
posed based on asymmetric fiber Bragg grating (AFBG), and the influence of the attenuation
coefficient α on vector mode conversion was also theoretically analyzed, and the maximum
conversion efficiency at specific α was achieved for each vector mode [15]. Additionally,
some experiments on asymmetric FM-FBG were also reported. The strong LP01 and LP11
mode coupling was experimentally achieved by Wu et al. [16] through ultra-violet (UV)
illumination on the fiber from one side. Wang et al. [17] realized the mode conversion of
high-order vector mode (including TE01, TM01, HE21, HE31, and EH11) based on AFBG.
Moreover, Yao et al. [18] designed experiments to realize high-order excitation modes by a
lateral core offset splicing spot (OSS), and mode conversion from LP01 to LP01, LP01 to LP11,
LP11 to LP11, LP11 to LP21, and LP11 to LP21 was demonstrated through UV single-side
illumination. With the single-side illumination of UV light, the refractive index modulation
profile across the fiber core in FM-FBG could change asymmetrically [19]. The transverse
asymmetry is characterized by the attenuation coefficient α. Therefore, the determination

Photonics 2021, 8, 87. https://doi.org/10.3390/photonics8030087 https://www.mdpi.com/journal/photonics

https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-5787-9613
https://doi.org/10.3390/photonics8030087
https://doi.org/10.3390/photonics8030087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/photonics8030087
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics8030087?type=check_update&version=1


Photonics 2021, 8, 87 2 of 8

of the attenuation coefficient α of FM-FBG is significant for realizing high-order mode
conversion. The value of α was generally obtained by a fit of transverse index profile across
the core according to measured transverse index data in the experiment [20,21]. However,
the scheme mentioned above is relatively complicated.

In this paper, we propose a method to determine the value of α according to the
transmission spectrum of FM-FBG combined with coupled mode theory. The values of
α and χ were obtained for the FBGs inscribed in the homemade few-mode fiber (FMF)
by UV single-side illumination. Based on the obtained α and χ, we calculated the trans-
mission spectra of FM-FBG, which is consistent with the experimental results of FM-FBG.
Furthermore, the optimization of α was analyzed under different excitations (LP01 mode,
LP11 mode).

2. Simulation and Experiment

We studied the mode conversion based on asymmetric FBG in a homemade FMF. The
homemade FMF was fabricated via modified chemical vapor deposition (MCVD), and its
refractive index profile is shown in Figure 1a. The fiber core diameter was approximately
15 µm, and the max core-cladding index difference was 0.008. The first three linearly
polarized modes (LP01, LP11, and LP21 modes) were supported at C band for this FMF.
The effective refractive indices of LP01 mode, LP11 mode, and LP21 mode were 1.4495,
1.4477, and 1.4451 at the wavelength of 1550 nm, respectively. Based on the coupled
mode theory, strong mode coupling would occur when the phase matching condition
was satisfied [22], expressed as ∆n = βm + βn − 2K, where βm and βn are propagation
constants of the mth forward mode and nth backward mode. K is the wave number of
non-tilted grating, and K = π/∧, where ∧ is the period of grating, and a phase mask with
period of 1068 nm is used to inscribe FM-FBG. The variation of ∆n+ with wavelength is
shown in Figure 1b. Among them, the solid lines and the dashed lines indicate that the
excitation was LP01 mode and LP11 mode, respectively. And the red lines, black lines,
and blue lines represent coupled LP01 mode, LP11 mode, and LP21 mode, respectively.
The wavelength corresponding to ∆n+ = 0 was the resonance wavelength of the coupled
modes. For example, when the excitation was LP01 mode, the resonance wavelength of the
coupled LP11 mode was 1546.5 nm. The values of resonance wavelength of each coupled
mode under different excitation modes are listed in Table 1. Here, LP01–LP01 (LP11–LP11)
represents the self-coupling (intra-mode coupling) process, and LP01–LP11 (LP01–LP21,
LP11–LP01, LP11–LP21) represents the cross-coupling (inter-mode coupling) process.
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Figure 1. (a) The refractive index profile of the homemade few-mode fiber (FMF). (b) Phase matching expression ∆n+ as a
function of wavelength.
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Table 1. The resonance wavelengths of coupled modes under different excitation modes.

Excitation Modes–Coupled Modes Resonance Wavelengths (nm)

LP01–LP01 1547.4
LP01–LP11 1546.5
LP01–LP21 1545.1
LP11–LP01 1546.5
LP11–LP11 1545.6
LP11–LP21 1544.2

When FM-FBG was fabricated by UV single-side illumination, and the fiber core
on the side close to the UV beam had the higher refractive index change because of the
absorption of UV light. Therefore, the refractive index profile over the fiber core became
asymmetric after UV single-side illumination [19]. The refractive index modulation is an
approximate decreasing exponential profile (as shown in Figure 2), and the core refractive
index modulation function could be expressed as [15]:

∆n(z) = σ(z) + 2χ · exp[−α(x +
√

r2
co − y2)] · cos[

2π

Λ
z + φ(z)] (1)
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The coupling coefficient κmn of the mth and nth modes can be represented as [15,16]:

κmn =
ε0ω

2

x
n(r)P(r)(Em · En)∆n(z)dS (2)

where σ(z) is the slow varying DC perturbation. Here, σ(z) = 0. χ is the grating amplitude,
and α is the attenuation coefficient of the index change distribution. φ(z) is the chirp
function of the grating. rco is the radius of the fiber core, and Λ is the grating period. ε0 is
the dielectric constant. ω is the angular frequency of light. n(r) is the refractive index of the
fiber. P(r) is the function on the fiber radius, r (P(r) = 1, inside the perturbed area; P(r) = 0,
outside the perturbed area). Finally, Em and En are the normalized electric fields of the mth
and nth modes, respectively. Therefore, α and χ will affect the mode coupling efficiency by
Equation (2).

Figure 3a,b show the transmission spectra of the FM-FBG when the excitation (input
mode) is LP01 mode and LP11 mode, respectively. The black lines, red lines, and blue lines
represent the transmission spectra of the coupled LP01 mode, LP11 mode, and LP21 mode,
respectively. Here, we adopt α = 0.2 µm−1, χ = 2 × 10−4, and a grating length L = 13 mm.
In Figure 3a, LP01 mode was used as the excitation mode, and the transmission peak of
LP01 mode (LP11 mode) was −20.1 dB (−8.9 dB) at a wavelength of 1.5474 µm (1.5465 µm),
which corresponds to conversion efficiency of 99% (87%). However, the transmission of
LP21 mode was very small and can be ignored (as shown in the set in Figure 3a). LP11 mode
was used as the excitation mode, and the transmission spectrum of the FM-FBG is shown in
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Figure 3b. The transmission peaks of LP01 mode, LP11 mode, and LP21 mode were −8.9 dB,
−21.6 dB, and −5.1 dB at the wavelengths of 1.5465 µm, 1.5456 µm, and 1.5442 µm, which
correspond to conversion efficiencies of 87%, 99.3%, and 69%, respectively. The resonance
wavelength corresponding to each coupled mode was consistent with the results in Table 1.
Moreover, compared with the mode conversion from LP01 mode to LP21 mode, the mode
conversion from LP11 mode to LP21 mode was stronger because of the large overlap of the
mode fields. Therefore, when the excitation was in LP11 mode, strong LP11 and LP21 mode
conversion could be realized. Meanwhile, no matter which mode is used as the excitation,
the self-coupling process was stronger than the cross-coupling process.
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Figure 3. Transmission spectra of the few-mode fiber Bragg grating (FM-FBG) when the excitation was (a) LP01 mode and
(b) LP11 mode.

According to the index modulation expression of asymmetric FM-FBG (Equation (1)),
the attenuation coefficient α and the grating amplitude χ affected the refractive index profile
of fiber core and further affected the mode coupling coefficient by Equation (2), and finally
determined the output characteristics of the FM-FBG. α was determined by the absorption
factor of the material, and χ depended on the UV power and the photosensitivity of
the fiber [16]. When the excitation was in LP01 mode, the variations in the conversion
efficiencies of the LP01 mode and LP11 mode with α and χ are shown in Figure 4a,b. At a
given α, the conversion efficiencies of the coupled LP01 mode and LP11 mode increased
with the increase in χ. Moreover, with a given χ, as α increased, the mode conversion
efficiency of self-coupling (LP01–LP01) decreased, and the mode conversion efficiency of
cross-coupling (LP01–LP11) increased firstly from zero to the maximum and then decreased.
Therefore, with a given χ, the maximum mode conversion efficiency from the LP01 mode
to the LP11 mode can be achieved at a specific α.

Next, in the experiment, we investigated mode conversion based on asymmetric
FM-FBG1, and the FM-FBG1 was written in the homemade FMF by the well-established
phase mask method under UV single-side illumination [16,23]. The experimental setup
included amplified spontaneous emission (ASE) light source, single-mode fiber (SMF),
few-mode fiber (FMF), and an optical spectrum analyzer (OSA). The ASE light source
enters from SMF to FMF, and then the transmitted light from FMF is output through SMF
and the transmission spectrum is monitored by OSA. During splicing of SMF and FMF,
the axes of SMF and FMF are aligned without introducing lateral core OSS. Since the
homemade FMF supports LP01, LP11, and LP21 modes and does not support LP02 mode
(LP02 mode is cutoff), it can be determined that the excitation mode in the experiment was
LP01 mode and no other modes were excited [16]. The length of FM-FBG1 was 13 mm. The
values of laser energy, voltage, frequency, and moving speed of the displacement platform
were 60 mJ, 19.15 kv, 20 Hz, and 0.2 mm/s, respectively. The experimental results of the
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transmission spectra of FM-FBG1 are shown as the blue lines in Figure 5a. The two peaks
(i) and (ii) corresponding to self-coupling (LP01–LP01) and cross-coupling (LP01–LP11) are
centered at the wavelengths of 1547.3 nm and 1546.3 nm, respectively. In addition, the
values of the transmission peaks (i) and (ii) were –27.8dB and –13.9 dB, which correspond to
conversion efficiencies of 99.83% and 95.93%, respectively. The two red lines in Figure 4a,b
show the contour lines of 0.9983 and 0.9593, respectively. According to the intersection
point of the two red lines, we obtained α ≈ 0.2 µm−1 and χ ≈ 2.8 × 10−4.
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mode excitation.

Then based on the obtained α and χ, the theoretical result of transmission spectra
is shown as the red lines in Figure 5a. The values of transmission peak (conversion
efficiency) of LP01–LP01 and LP01–LP11 were −28.1 dB (99.85%) and −14.3 dB (96.28%),
respectively. And the resonance wavelengths of these two peaks were 1547.4 nm and
1546.5 nm, respectively. Therefore, the values of the theoretical transmission peak were
consistent with the experimental results. Note that the resonance wavelengths of the
simulation showed a slight difference from the experimental result, and we believe this
difference was caused by the external tension in the processing of fabricating FM-FBG.
The external tension would cause the strain change of grating, and the resonance Bragg
wavelength shift varied linearly with the strain change [24,25]. Since our experiments were
operated at room temperature, the effect of temperature was not considered. The Bragg
wavelength shift, ∆λB, can be expressed as ∆λB = λB(1− Pe)∆εFBG, where Pe is the photo-
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elastic constant (0.22), and ∆εFBG is the strain change of FM-FBG. λB is the initial resonance
Bragg wavelength. Thus, strain sensitivities were approximately 1.207 pm/microstrain
and 1.206 pm/microstrain, ∆λ01 = 1.207∆εFBG and ∆λ11 = 1.206∆εFBG, ∆λ01 and ∆λ11
represent the Bragg wavelength shift of the coupled LP01 and LP11 modes under LP01
mode excitation. Therefore, under the external tension, the resonance wavelength will
shift linearly. Theoretically ∆λ01 and ∆λ11 should be approximately consistent. However,
comparing the experimental and simulation results, ∆λ01 = 0.1 nm and ∆λ11 = 0.2 nm, the
resonance Bragg wavelength shift of LP11 was larger than that of LP01. This may be due to
the non-uniformity of the refractive index profile along the length of the homemade fiber.
This non-uniformity will affect the effective refractive indices of LP01 and LP11 modes, and
result in error of the resonance wavelength shift.

Also, in the experiment, the FM-FBG2 was written in the homemade FMF through
UV single-side illumination under LP01 mode excitation, and the grating length was
10 mm. The experimental result of the transmission spectra of FM-FBG2 is shown as the
blue lines in Figure 5b. The two peaks (iii) and (iv) were centered at the wavelengths of
1547.34 nm and 1546.3 nm, respectively, and the values of the transmission peaks (iii) and
(iv) were −22.47 dB and −9.62 dB, which correspond to conversion efficiencies of 99.43%
and 89.09%, respectively. Since the parameters of the two experiments are the same except
for the grating length, α and χ were the same. Based on the obtained α and χ, we calculated
the transmission spectra of FM-FBG2 (as shown by the red lines in Figure 5b). The values of
the transmission peak (conversion efficiency) of LP01–LP01 and LP01–LP11 were −22.3 dB
(99.41%) and −10.2 dB (90.45%), which are consistent with the experimental results of
FM-FBG2. Moreover, the shift of the resonance wavelength of FM-FBG2 was also due to
the external tension, which is in accordance with the reason for the FM-FBG1. In addition,
comparing the transmission spectra of FM-FBG1 and FM-FBG2, the mode conversion
efficiencies increased as the grating length increases.

The mode conversion characteristics of FM-FBG1 could be further improved by op-
timizing α. Figure 6a,b show the variations of the mode conversion efficiencies with the
attenuation coefficient α, when excitation was LP01 mode and LP11 mode, respectively. The
black lines, red lines, and blue lines represent coupled LP01 mode, LP11 mode, and LP21
mode, respectively. When α = 0, only self-coupling (LP01–LP01, LP11–LP11) occurs. With
the increase of α, the mode conversion efficiencies of self-coupling gradually decreased.
The mode conversion efficiencies of cross-coupling (LP01–LP11, LP11–LP01, LP11–LP21)
increased firstly and then decreased with the increase of α and reached the maximum when
α = 0.16 µm−1. It should be noted that the FM-FBG inscribed by the phase mask method
have the advantages of low cost, simple structure and easy to fabricate. Moreover, the
FM-FBG can be applied to MDM optical communication, optical fiber lasers and optical
fiber sensors, due to the fact of its mode conversion functions.
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3. Conclusions

In conclusion, we investigated the transverse asymmetry of the index modulation
profile in the asymmetric FBG written in a homemade FMF by UV single-side illumination,
and the asymmetry can be represented by the attenuation coefficient α. When LP01 mode
was used as the excitation mode, the values of α and grating amplitude χ were evaluated,
and α was approximately 0.2 µm−1 and χ at a speed of 0.2 mm/s in the experiment was
approximately 2.8 × 10−4. Based on the obtained α and χ, we calculated the transmission
spectra of FM-FBG. The theoretical results of the transmission spectra were in accordance
with the experimental results, which show that the obtained α and χ were feasible. In
addition, the maximum mode conversion efficiencies of cross-coupling were achieved by
the optimized value of α (0.16 µm−1). This work can be applied to the fields of FMF devices
and MDM optical communication.
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