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Abstract: As a high-throughput data analysis technique, photon time stretching (PTS) is widely used
in the monitoring of rare events such as cancer cells, rough waves, and the study of electronic and
optical transient dynamics. The PTS technology relies on high-speed data collection, and the large
amount of data generated poses a challenge to data storage and real-time processing. Therefore, how
to use compatible optical methods to filter and process data in advance is particularly important.
The time-lens proposed, based on the duality of time and space as an important data processing
method derived from PTS, achieves imaging of time signals by controlling the phase information
of the timing signals. In this paper, an optical neural network based on the time-lens (TL-ONN)
is proposed, which applies the time-lens to the layer algorithm of the neural network to realize
the forward transmission of one-dimensional data. The recognition function of this optical neural
network for speech information is verified by simulation, and the test recognition accuracy reaches
95.35%. This architecture can be applied to feature extraction and classification, and is expected to be
a breakthrough in detecting rare events such as cancer cell identification and screening.

Keywords: optical neural networks; time lens; fiber; dispersion Fourier transform; high-flux imaging;
classification; cancer cell recognition; photon time stretching (PTS)

1. Introduction

Recently, artificial neural networks (ANNs) have achieved significant developments
rapidly and extensively. As the fastest developing computing method of artificial intel-
ligence, deep learning has made remarkable achievements in machine vision [1], image
classification [2], game theory [3], speech recognition [4], natural language processing [5],
and other aspects. The use of elementary particles for data transmission and processing
can lead to smaller equipment, greater speed, and lower energy consumption. The electron
is the most widely used particle to date, and has become the cornerstone of the information
society in signal transmission (cable) and data processing (electronic computer). Artificial
intelligence chips represented by graphics processing units (GPUs), application-specific
integrated circuits (ASICs), and field programmable gate arrays (FPGAs) have enabled
electronic neural networks (ENNs) to achieve high precision, high convergence regression,
and predict task performance [6]. When dealing with tasks with high complexity and
high data volume, insurmountable shortcomings have emerged in ENNs, such as long
time delay and low power efficiency caused by the interaction of many parameters in the
network with the storage modules of electronic devices.
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Fortunately, as a kind of boson, the photon has faster speed and lower energy con-
sumption, resulting in it being significantly better than electrons in signal transmission
and processing, and it has become a strong competitor for the elementary particles used in
the next generation of information technology. Development of all-optical components,
photonic chips, interconnects, and processors will bring the speed of light, photon coher-
ence properties, field confinement and enhancement, information-carrying capacity, and
the broad spectrum of light into the high-performance computing, the internet of things,
and industries related to cloud, fog, and recently edge computing [7]. Due to the parallel
characteristics of light in propagation, light interference, diffraction, and dispersion, phe-
nomena can easily simulate various matrix linear operations, which are similar to the layer
algorithm of forward propagation in neural networks. To pursue faster operating speed
and higher power efficiency in information processing, the optical neural network (ONN),
which uses photons as the information carrier, came at the right moment. Various ONN
architectures have been proposed, including the optical interference neural network [8],
the diffractive optical neural network [9–12], photonic reservoir computing [13,14], the
photonic spiking neural network [15], and the recurrent neural network [16]. To process
high-throughput and high-complexity data in real time, the algorithms in ONNs must have
the characteristics of real-time information collection and rapid information measurement.

Photon time stretching (PTS), also known as dispersive Fourier transform technology
(DFT), is a high-throughput real-time information collection technology that has emerged
in recent years [17]. PTS can overcome the limitations of electronic equipment bandwidth
and sampling speed, thus being able to realize ultra-fast information measurement, and its
imaging frame rate is mainly determined by the mode-locked laser, which can reach tens
of MHz/s or even GHz/s. DFT is widely used in ultra-high-speed microscopic imaging,
microwave information analysis, spectral analysis, and observation of transient physical
processes such as dissipative soliton structure, relativistic electron clusters, and rough
waves [18]. It is worth emphasizing that this architecture plays an important role in the
capture of rare events such as the early screening of cancer cells with large data volume
characteristics. DFT broadens the pulse-carrying cell characteristics in the time domain and
maps spectral information to the time domain; then, the information of the stretched light
pulse is obtained through photo detection and a high-speed analog-to-digital converter,
and finally the information is input into a computer or a special data signal processing
chip for data processing. In 2009, researchers in the United States first proposed a method
to achieve ultrafast imaging using PTS technology [19]. They then combined ultra-fast
imaging and deep learning technology to distinguish colon cancer cells in the blood in
2016 [20]. In 2017, researchers from the University of Hong Kong reduced the monitoring
of phytoplankton communities and used support vector machines to classify them, which
can detect 100,000–1,000,000 cells per second [21]. In biomedicine, the combination of DFT
and optical fluidics technology can complete high-flux imaging of hundreds of thousands
to millions of cells per second, including various conditions in human blood and algae cells.
It has great significance in cell classification [20], early cell screening [22–24] and feature
extraction [25–29].

The high-throughput characteristics of PTS technology will inevitably produce a lot
of data. Typically, the amount of data generated by a PTS system can reach 1 Tbit per
second, which brings huge challenges to data storage and processing based on electronic
devices and limits the application scope of this technology [30]. The high-throughput data
generation of the DFT and the high-throughput processing characteristics of the photon
neural network are perfectly complementary. Based on this characteristic, we propose a new
architecture combining time-lens with the optical neural network (TL-ONN). According to
the optical space–time duality [31] (that is, the spatial evolution characteristics of the light
field caused by the diffraction effect and the time evolution characteristics of the optical
pulse caused by the dispersion effect are equivalent), the imaging of the time signal can be
realized by controlling the phase information of the timing signal, namely the time-lens.
We establish a numerical model for simulation analysis to verify the feasibility of this
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architecture. By training 20,000 sets of speech data, we obtained a stable 98% recognition
accuracy within one training cycle, which has obvious advantages of faster convergence
and stable recognition accuracy compared with a deep neural network (DNN) with the
same number of layers. This architecture implemented with all-optical components will
offer outstanding improvements in biomedical science, cell dynamics, nonlinear optics,
green energy, and other fields.

Here, we first introduce the architectural composition of the proposed TL-ONN,
and then combine the time-lens principle with the neural network to drive the forward
propagation and reverse optimization process. Finally, we use a speech dataset to train the
proposed TL-ONN, and use numerical calculation to verify the classification function of
this architecture.

2. Materials and Methods

The proposed ONN combines the conventional neural network with time stretch,
realizing the deep learning function based on optics. As shown in Figure 1, two kinds of
operations—time-lens transform and matrix multiplication—must be performed in each
layer. The core optical structure which adapts the time-lens method is used to implement
the first linear computation process. After that, the results are modulated by a weights
matrix. Finally, the outputs serve as the input vector in the next layer. After calculation
by the neural network composed of multiple time-lens layers, all input data are probed
by a detector in the output layer. The prediction data and the target output are calculated
by the cost function, and the gradient descent algorithm is carried out for each weights
matrix (W2) from backward propagation to achieve the optimal neural network structure.
The input data of this network structure are generally one-dimensional time data. In the
input layer, the physical information at each point in the time series is transferred to the
neurons in each layer. Through the optical algorithm, each neuron between the layers is
transmitted to realize the information processing behavior of the neural network.
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velocity dispersion of fiber 1 and fiber 2, respectively. W1, W2—the phase modulations. (b) TL-
ONN structure. It comprises multiple time-lens layers. All time points on one layer can be re-
garded as neurons, and the neurons are transmitted through dispersion. L1, L2, …, Ln—layers. D1, 
D2, …, Dn—detectors. 

Figure 1. Optical neural network structure based on time-lens (TL-ONN). (a) The time-lens layer
algorithm. The input data first pass through the first part of the dispersion fiber, undergoing phase
modulation W1, W2 after the dispersion Fourier transform; the modulator reaches the optimal
solution of the network after deep learning, and finally passes through the second segment of the
dispersion fiber to complete the data transmission of each time-lens layer. β2a, β2b—the group-
velocity dispersion of fiber 1 and fiber 2, respectively. W1, W2—the phase modulations. (b) TL-ONN
structure. It comprises multiple time-lens layers. All time points on one layer can be regarded as
neurons, and the neurons are transmitted through dispersion. L1, L2, . . . , Ln—layers. D1, D2, . . . ,
Dn—detectors.

Like the diffraction of space light, the time-lens plays a role of dispersion in time. As a
result, the time-lens [32] can realize the imaging of the light pulse on the time scale. This is
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similar to the idea that the neurons in each layer of the neural network are derived from
each neuron in the previous layer through a specific algorithm. The amplitude and phase
of each point of the pulse after the time-lens is derived from the previous pulse calculated
for each point. Based on this algorithm, an optical neural network based on the time lens
is designed. Each neural network layer is formed by two segments of dispersive fiber
and a second-order phase factor. The two layers are transmitted through intensity or a
phase modulator. After backward propagation, each modulation factor is optimized by the
gradient descent algorithm to obtain the best architecture.

2.1. Time-Lens Principle and Simulation Results

Analogous to the process by which a thin lens can image an object in space, a time-lens
can image sequences in the time domain, such as laser pulses and sound sequences. In
this section, we will introduce the principle of a time-lens starting from the propagation of
narrow-band light pulses.

Assuming that the propagation area is infinite, the electric field envelop
→
E(x, y, z, t) of

a narrow-band laser pulse with a center frequency of ω0 propagation in space coordinates
(x, y, z) and time t satisfies

→
E(x, y, z, t) =

→
A(x, y)ei(ω0t+β(ω0)z) (1)

where
→
A(x, y) is the electric field envelope of the input light pulse, β(ω0) is the dispersion

coefficient, and ω represents the angular frequency. Expanding the dispersion coefficient
β(ω) with Taylor series and retaining it to the second order, the frequency spectrum Λ(z, ω)
after Fourier transformation can be described as

∂Λ(z, ω−ω0)

∂z
= −i

[
(ω−ω0)

dβ

dω
+

(ω−ω0)
2

2
d2β

dω2

]
Λ(z, ω−ω0), (2)

Then, we perform the inverse Fourier transform on (2) to obtain the time domain
pulse envelope:

∂A(z, t)
∂z

+
1

Vg

∂A(z, t)
∂t

=
i
2

d2β

dω2
∂2 A(z, t)

∂t2 , (3)

where Vg is the group velocity, Vg = dω
dβ . If we establish a new coordinate whose frame

moves at the speed of the group velocity of light, the corresponding transformation can be
described as

T = (t− t0)−
z− z0

Vg
, (4)

Z = z− z0, (5)

where t0 and z0 are the time and the space initial points, respectively. Under this circum-
stance, (3) can be simplified as

∂A(Z, T)
∂Z

=
1
2

d2β

dω2
∂2 A(Z, T)

∂T2 , (6)

Then, we can get the spectrum of the signal envelope by Fourier transform:

Λ(Z, τ) = Λ(0, τ) exp
(
− iZβ′′

2
ω2
)

. (7)

where τ is the time variable in frequency domain, i is the imaginary number. It can be
seen from the time domain envelope equation that the second order phase modulation
of the independent variable T is carried out in the time-lens algorithm. Like the space
lens, the space diffraction equation of a paraxial beam and the propagation equation of
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a narrow-band optical pulse in the dispersive medium both modulate the independent
variable (x, y, and t) second order.

The time lens mainly comprises three parts—the second-order phase modulator and
the dispersion medium before and after the modulator (Figure 2a). In the dispersion
medium part, the pulse passing through the long distance dispersion fiber is equiva-
lent to the pulse being modulated in the frequency domain by a factor determined by
the fiber length and the second-order dispersion coefficient, which can be expressed as
Gi(Zi, ω) = exp

(
−i Zi

2 β2iω
2
)

where Zi and β2i represent the length of fiber i and the
second-order dispersion coefficient, respectively. When passing through the time domain
phase modulator, the phase factor satisfying the imaging condition of the time-lens is the
quadratic function of time τ by ϕtimelens(τ) = exp

(
i τ2

2D f

)
, and Df is the focal length of

the time-lens satisfying the imaging conditions of the time-lens. With respect to analog
space-lens imaging conditions, the time-lens imaging condition is

1
Z1β2a/2

+
1

Z2β2b/2
= − 1

D f /2ω0
, (8)
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Figure 2. Time-lens principle and imaging of soliton pulses. (a) The imaging of the pulse by the time lens mainly comprises
two dispersive fibers and the secondary phase modulation factors with respect to time t. a(τ) and a′(τ) represent the
pulse envelope before and after transmission through the time-lens, respectively. D1 and D2 represent two dispersion
fibers. G1 and G2 are the transmission function of dispersive fibers 1 and 2 in the frequency domain, respectively. h(t) is a
function with respect to the square of time, and constitutes the second order phase modulat or ϕtimelens(t) in the time-lens.
(b) Example of time-lens imaging of pulse. The peak position (top) and normalized intensity (bottom) of each pulse are
identified in the figure.

Its magnification can be expressed as M = −Z1β2b/Z2β2a (see Appendix A). Figure 2b
shows a comparison of the duration of a group of soliton pulses and their output of the
time lens at M = 2.5; the peak position and normalized intensity of the pulse are marked
to verify its magnification. In summary, after passing through the time-lens, the pulse is

1√
M

times larger in amplitude and M times larger in duration, and a second order phase
modulation is added in phases.

2.2. Mathematical Analysis of TL-ONN

In this section, we will analyze the transmission process of input data in two adjacent
time-lens layers. Suppose that the input pulse can be expressed as A(0, t), that is, the
initial intensity in time of the pulse into the first dispersion fiber of the time lens. The
intensity of the input data at each time point will be mapped to all time points according to
a specific algorithm after two segments of the dispersion fiber in the time lens and second-
order phase modulation in the time domain. Equation (9) shows the algorithm results; its
derivation can be found in Appendix A. In the neural network based on this algorithm,
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each neuron in the mth layer can be regarded as the result of mapping all neurons in the
(m − 1)th layer.

Al
ti
=

1
2π
√

M
exp

j
ω0

(
tl−1
k

)2

2MD f

 +∞∫
−∞

Λ
(
0, ω′

)
exp

(
−i

tl−1
k
M

ω′
)

dω′, (9)

where M = − Z1
2

d2βb
dω2 / Z2

2
d2β f
dω2 represents the magnification factor of the time-lens, βb and

β f are the second-order dispersion coefficients of the two segments of the dispersion fiber,
Z1 and Z2 are the lengths of the two segments of the dispersion fiber, l represents the layer
number, tk represents all neurons that contribute to the neuron ti in the lth layer.

The intensity and phase of the neuron ti in the L layer are determined by both the
input pulse in the L − 1 layer and the modulation coefficient in the L layer. For the Lth
layer of the network, the information on each neuron can be expressed by

nl
ti
= hl

ti
·∑k nl−1

k,ti
, (10)

where ml
ti
= ∑k nl−1

k,ti
is the input pulse to neuron ti of layer l, nl−1

k,ti
represents the contribu-

tion of the k-th neuron of the layer l − 1 to the neuron ti of the layer l. hl
ti

is the modulation
coefficient of the neuron ti in layer l; the modulation coefficient of a neuron comprises
amplitude and phase items, i.e., hl

ti
= al

ti
exp

(
jφl

ti

)
.

The forward model of our TL-ONN architecture is illustrated in Figure 1 and notated
as follows: 

nl
ti
= hl

ti
·ml

ti

ml
ti
= ∑k nl−1

k,ti

hl
ti
= al

ti
exp
(

jφl
ti

) , (11)

where ti refers to a neuron of the lth layer, and k refers to a neuron of the previous layer,
connected to neuron ti by optical dispersion. The input pulse n0

k , which is located at layer 0
(i.e., the input plane), is in general a complex-valued quantity and can carry information in
its phase and/or amplitude channels.

Assuming that the TL-ONN design is composed of N layers (excluding the input and
output planes), the data transmitted through the architecture are finally detected by PD,
and detectors are placed at the output plane to measure the intensity of the output data. If
the bandwidth of the PD is much narrower than the output signal bandwidth, the PD will
serve not only as an energy transforming device but also as a pulse energy accumulator.
The final output of the architecture can be expressed as

sN+1 = ∑
ti

wti·nN
ti

, (12)

where nN
ti

represents the neuron ti of the output layer (N), and wti is the energy accumula-
tion coefficient of PD on the time axis of the data.

To train a TL-ONN design, we used the error back-propagation algorithm along
with the stochastic gradient descent optimization method. A loss function was defined
to evaluate the performance of the network parameters to minimize the loss function.
Without loss of generality, here we focus on our classified architecture and define the loss
function (E) using the cross-entropy error between the output plane intensity sN+1 and the
target gN+1:

E
(

al
ti

, φl
ti

)
=

1
k ∑

k

[
gN+1lnsN+1 +

(
1− gN+1

)
ln
(

1− sN+1
)]

(13)
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In the network based on a time-lens algorithm consisting of N time-lens layers, the
data characteristics in the previous layer with α neurons are extracted into neurons in
the current layer with β neurons, where β = α·kL−1,L and kL−1,L represents the scaling
multiples between the (L − 1)th layer and the Lth layer. The time-lens algorithm has a
similar function of removing the redundant information and compressing the features as
the pooling layer in a conventional ANN. The characteristics carried by the input data
will emerge and be highlighted through each layer after being transmitted through this
classification architecture, and finally evolve into the labels of the corresponding category.

3. Results

In order to verify the effectiveness of the system in the time-domain information clas-
sification, we used numerical methods to simulate the TL-ONN to realize the recognition
of specific sound signals. We used a dataset containing 18,000 training data and 2000 test
data picked from intelligent speech database [33] to evaluate the performances of TL-ONN.
The content in the speech dataset is the wake phrase “Hi, Miya!” in English and Chinese
collected in the actual home environment using a microphone array and Hi-Fi microphone.
The test subset provides paired target/non-target answers to evaluate verification results.
In general, we used the dichotomy problem to test the classification performances of two
kinds of systems including the TL-ONN and the conventional DNN.

We first constructed a TL-ONN composed of five time-lens layers to verify the classifi-
cation feasibility of this architecture. Figure 3a shows the training results of TL-ONN in the
cases of kL−1,L = 0.6. The accuracy of the TL-ONN for a total of 2000 test samples is above
98% (Figure 3a top), which is close to the accuracy for the DNN (Figure 3a bottom). The
horizontal axis represents the number of training steps in one training batch (batch size
= 50). The accuracy of this test fluctuates greatly in the first few steps, and then reaches
over 98% at about 17 steps and remains stable. In contrast, it was difficult for a five-layer
DNN network under the same conditions to achieve stable accuracy and training loss in
one epoch (Figure 3a). When the training epoch was set to 10, it was found that the test
accuracy and training loss still changed suddenly at the 10th training epoch, which might
be due to gradient explosion, overfitting, or another reason. We define the accuracy as the
proportion of the number of output labels that are the same as the target label to the total
number of test sets. Using the same 2000 test set to test the two networks’ architecture, the
accuracy rates reached 95.35% (Figure 3b) and 93.2% (Figure 3c). In general, TL-ONN has
significant advantages over DNN in verifying classification performance.

To easily see the changes of the two types of voice information in each layer of TL-
ONN, we extracted two sets of input with typical characteristics for observation. Figure 4a
shows the layer structure of this network, which contains multiple time-lens layers, where
each time point on a given layer acts as a neuron with a complex dispersion coefficient.
Figure 4b,c shows the data evolution of each layer when two types of speech are input to the
network. From the input layer, we can distinguish the differences between the two types of
input data from the shape of the waveform. The waveform containing “Hi, Miya!” has a
higher continuity, while the waveform of random speech has quantized characteristics and
always has a value on the time axis. On the second layer of the network, the “Hi, Miya!”
input will change into several sets of pulses through the time-lens layer and another type
of information will spread all over the time. After being transmitted by multiple time-lens
layers, the two inputs will eventually change to the shape in Layer 6, and the two types
of speech will eventually evolve into the shape of the impact function at different time
points. As shown in Figure 4b,c, D1 and D2 correspond to detectors of different input types.
The random speech eventually responds at D1, while the input containing “Hi, Miya!”
responds at D2.
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Figure 3. (a) Change curves of the loss function and accuracy of training TL-ONN (top) and deep
neural network (DNN) (bottom) with 18,000 sets of speech data each. (b,c) Statistical results of the
number of correct (green squares) and incorrect (grey squares) output label after the training of the
two networks’ architecture is completed. We define the accuracy rate as the percentage of the correct
result in the total test set data (2000).
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Figure 4. TL-ONN layer structure and the change process of input information at each layer. (a) The layer structure of this
network, which contains multiple time-lens layers, where each time point on a given layer acts as a neuron with a complex
dispersion coefficient. L1, L2,..., Ln represent the time lens layer, and D1 and D2 represent two types of detectors on the
output plane. Different colors are used to distinguish neurons that carry different messages. The evolution of the two types
of input data in each layer of the structure ((b,c) contain “Hi, Miya!” and random speech, respectively), and the two inputs
are responses at different detectors in the output layer.

To eliminate the contingency of the experiment, we set up a series of networks con-
sisting of 3–8 layers to test the influence of different numbers of time-lens layers on
classification performance. Figure 5 shows the test results of the TL-ONN architecture
composed of different numbers of time-lens layers—33, 30, and17 steps are needed in
the TL-ONN with three, four, and five layers, respectively, to reach an accuracy of 98%
(Figure 5a). When the number of time-lens layers is increased to six or more, the accuracy
can be stabilized at 98–99% after about 10 training steps; however, an unlimited increase



Photonics 2021, 8, 78 9 of 14

in the number of time-lens layers does not make the results of network training infinitely
better. For example, we can see that compared with a network with six, seven, or eight
layers, TL-ONN requires more steps to achieve stable accuracy. Overall, the network
with six time-lens layers has the best classification performance. All the results discussed
above occur in one training epoch. At least a few epochs were needed to achieve stable
classification accuracy for conventional DNN with the same dataset. TL-ONN has obvious
advantages of faster convergence speed and stable classification accuracy.
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Similarly, we reverse the order of the phase modulator W1 and W2, and use the same
training set for training. Figure 5b shows the classification results under this architecture,
and the time-scaling multiple between two layers is still 0.6. Under the same conditions, a
series of networks consisting of three–eight layers were constructed to test the classification
performance. To achieve an accuracy of 98%, 55 and 12 steps are needed in the TL-ONN
with three and four layers, respectively. The accuracy can be stabilized at 98–99% after
about 10 training steps when the number of time-lens layers is increased to five or more.
As with the previous results, compared with a network with six, seven, or eight layers,
TL-ONN requires more steps to achieve stable accuracy. Overall, the network structure
with six time-lens layers has the best classification performance, and it is consistent with
the results of the former architecture.

At the detector/output plane, we measured the intensity of the network output, and
as a loss function to train the classification TL-ONN, we used its mean square error (MSE)
against the target output. The classification of TL-ONN was trained using a modulator
(W2), where we aimed to maximize the normalized signal of each target’s corresponding
detector region, while minimizing the total signal outside of all the detector regions. We
used the stochastic gradient descent algorithm, Adam [34], to back-propagate the errors
and update the layers of the network to minimize the loss function. The classifier TL-
ONN was trained with speech datasets [33], and achieved the desired mapping functions
between the input and output planes after five steps. The training batch size was set to be
50 for the speech classifier network. To verify the feasibility of the TL-ONN architecture,
we used the python language to establish a simulation model for theoretical analysis. The
networks were implemented using Python version 3.8.0. and PyTorch version 1.4.0. Using
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a desktop computer (GeForce GTX 1060 Graphical Processing Unit, GPU and Intel(R)
Core (TM) i7-8700 CPU @3.20GHz and 64GB of RAM, running a Windows 10 operating
system, Microsoft), the above-outlined PyTorch-based design of a TL-ONN architecture
took approximately 26 h to train for the classifier networks.

Compared with conventional DNNs, TL-ONN is not only a physical and optical neural
network but also has some unique architecture. First, the time-lens algorithm applied at
each layer of the network can refine the features of the input data, similar to what is used
as a pooling layer, remove redundant information, and compress features. The time-lens
method can be regarded as the pooling element in the photon. Second, TL-ONN can handle
complex values, such as complex nonlinear dynamics in passively mode-locked lasers. The
phase modulators can respectively modulate different physical parameters, and as long
as the modulator parameters are determined, a passive all-optical neural network can be
basically realized. Third, the output of each neuron is coupled to the neurons in the next
layer through a certain weight relationship through the dispersion effect of the optical fiber,
thereby providing a unique interconnection from within the network.

4. Discussion

In this paper, we proposed a new optical neural network based on the time-lens
method. The forward transmission of the neural network can be realized by the time lens
to enlarge or reduce the data in the time dimension, and the characteristics of the signal
extracted by the time-lens algorithm are modulated with the amplitude or phase modulator
to realize the weight matrix optimization process in linear operation. After the time signal
is compressed and modulated by the multilayer based on the time-lens method, it will
eventually evolve into the corresponding target output, so as to realize the classification
function of the optical neural network. To verify the feasibility of the network, we used the
speech data set to train it and got a test accuracy of 95.35%. The accuracy is obviously more
stable and has faster convergence compared with the same number of layers in a DNN.

Our optical architecture implements a feedforward neural network through a time-
stretching method; thus, when completing high-throughput data processing and large-
scale tasks, it basically proceeds at the speed of light in the optical fiber, and requires
little additional power consumption. The system has a clear correspondence between the
theoretical neural network and the actual optical component parameters; thus, once each
parameter in the network can be optimized, it can basically be realized completely by
optical devices, which provides the possibility of building an all-optical neural network
test system composed of optical fibers, electro-optic modulators, etc.

Here, we verify the feasibility of the proposed TL-ONN by numerical simulation,
and we will work to build a test system to realize all-optical TL-ONN in the future. It is
often accompanied by noise and loss in experiments. We conservatively speculate that
such noise may reduce the classification accuracy of the architecture. On the other hand,
in order to solve the influence of loss on the experiment, an optical amplifier is generally
added to improve the signal-to-noise ratio. The non-linear effects of the optical amplifier
have similar functions to the activation function in the neural network, and it may play an
important role in all-optical neural networks in the future.

The emergence of ONNs provides a solution for real-time online processing of high-
throughput timing information. By fusing the ONN with the photon time stretching
test system, not only can real-time data processing be achieved, but also the system’s
dependence on broadband high-speed electronic systems can be significantly reduced.
In addition, cost and power consumption can be reduced, and the system can be used
in medicine and biology, green energy, physics, and optical communication information
extraction, having more extensive applications. This architecture is expected to provide
breakthroughs in the identification of rare events such as the initial screening of cancer cells
and be widely used in high-throughput data processing such as early cell screening [22],
drug development [23], cell dynamics [21], and environmental improvement [35,36], as
well as in other fields.
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Appendix A

In this section, we use the transmission function of each part of the time-lens to
derive the output time domain envelope. Table A1 shows the transfer function of the two
dispersion fibers in the frequency domain and the second phase modulation in the time
domain. This is assuming that the time domain and frequency domain envelopes of the
input pulse are A(0, T) and Λ(0, ω), respectively, and the lengths of the two fibers are
Z1 and Z2, respectively. After passing the fiber D1, the time domain of the pulse can be
described as

A(Z1, T) = f−1{Λ(0, ω) · G1(Z1, ω)}, (A1)

after the second phase modulation with respect to time, the pulse becomes

A(Z1 + ε, T) = f−1{Λ(0, ω) · G1(Z1, ω)} · ϕtimelens(t), (A2)

Finally, the pulse passes through the fiber D2 and we can get the output of the time
lens expressed in the time domain as

A(Z1 + ε + Z2, T)
= 1

2π f−1{[(Λ(0, ω) · G1(Z1, ω)) ∗ f {ϕtimelens(t)}] · G2(Z2, ω)}, (A3)

where ε distinguishes the signal expression before and after the second-order phase mod-
ulation, f and f−1 represent the Fourier transform and the inverse Fourier transform,
respectively. The time-lens output is mainly based on the time domain convolution theo-
rem and frequency domain convolution theorem.

Table A1. Transmission function of the time-lens.

Frequency Domain Time Domain Parameters

D1 G1(Z1, ω) = exp
(
−iaω2) — a = Z1

2
d2 β1
dω2

D2 G2(Z2, ω) = exp
(
−ibω2) — b = Z2

2
d2 β2
dω2

Df — ϕtimelens(t) = exp
(

i t2

4c

)
c = D f

2ω0
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After inverse Fourier transformation of ϕtimelens(t), the frequency domain expression
ψ(ω) =

√
4πic exp

[
−icω2] can be obtained. Using convolution calculation:

(Λ(0, ω) · G1(Z1, ω)) ∗ f {ϕtimelens(t) =
∫ +∞

−∞
Λ
(
0, ω′

)
·G1

(
Z1, ω′

)
·ψ
(
ω−ω′

)
dω′. (A4)

Putting (A4) into (A3) and switching the order of integration, the output of the time-
lens can be written as

A(Z1 + ε + Z2, T)
= 1

2π

∫ +∞
−∞ exp(iωT)G2(Z2, ω)ψ(ω−ω′)dω

· 1
2π

∫ +∞
−∞ Λ(0, ω′)G1(Z1, ω′)dω′,

(A5)

substituting G2(Z2, ω) and ψ(ω−ω′) into the integral calculation of ω and performing
the integral operation:

1
2π

∫ +∞

−∞
exp(iωT)G2(Z2, ω)ψ

(
ω−ω′

)
dω =

√
c

b + c
exp

(
−icω′

2
)

exp

[
i
(

T +
2cω′

2
√

b + c

)2
]

(A6)

Bringing (A6) back to (A5), after merging similar items, the final output of the time-lens
is described by

A(Z1 + ε + Z2, T) =√
c

b + c
exp

i

 T2(
2
√

b + c
)2


· 1

2π

∫ +∞

−∞
Λ
(
0, ω′

)
exp

[
−i
(

a + c− c2

b + c

)
ω′

2
]

exp
[

i
(

cT
b + c

ω′
)]

dω′.
(A7)

According to imaging conditions, if the time imaging system confirms that the varia-
tion is only found in size instead of shape between input and output pulse envelopes, it is
necessary to confirm that the coefficient value of the quadratic term of ω′ is equal to 1:

a + c− c2

b + c
= 0 (A8)

Therefore, the integral term in (A7) can become an inverse Fourier transform, which
is equivalent to Λ

(
cT

b+c , ω′
)

. Bring a, b, c into (A8) to get the imaging conditions of the
time lens:

1
Z1
2

d2β1
dω2

+
1

Z2
2

d2β2
dω2

= − 1
D f
2ω0

, (A9)

and the time magnification is defined by the first-order coefficient of ω′:

M =
c

b + c
= − a

b
= −

Z1
2

d2β1
dω2

Z2
2

d2β2
dω2

. (A10)

Introducing the magnification factor into (A7), we can finally get the basis of the time
lens layer algorithm (9):

A(Z1 + ε + Z2, T) =
1

2π
√

M
exp

(
i

ω0T2

2MD f

) ∫ +∞

−∞
Λ
(
0, ω′

)
exp

(
−i

T
M

ω′
)

dω′ (A11)

When the time-lens algorithm (A11) is applied to TL-ONN, each time point can be
regarded as a neuron, and thus the calculation result of each neuron (9) in the mth layer
is obtained.
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