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Abstract: We compare the performances of three previously proposed methods to reduce the peak-
to-average power ratio (PAPR) of the carrier-suppressed optical single-sideband (OSSB-SC) signal.
PAPR of OSSB-SC signal becomes high due to the peaky Hilbert-transformed signal which is used
for spectral suppression. Nonlinear phase shifts induced by high PAPR degrade OSSB-SC signal
during fiber transmission. Previously, we proposed peak folding, peak clipping, and high-pass
Hilbert transform methods to reduce the PAPR of OSSB-SC modulation. In this study, we numerically
compare the effectiveness of proposed methods in a 10 Gbit/s non-return-to-zero (NRZ)-coded
100-km single-channel transmission link. Due to the reduced PAPR, peak folding and peak clipping
can increase the self-phase modulation (SPM) threshold of the studied system by 2.40 dB and 2.63 dB
respectively. The high-pass Hilbert transform method improves the SPM threshold by more than 9 dB.

Keywords: optical communications; BPSK-VSB; BPSK-SSB; fiber transmission

1. Introduction

Tremendous amounts of data traffic being added to short-reach networks are expedit-
ing data rate scaling of 100 to 400 G and beyond [1–3]. Intensity modulation-direct detection
(IM-DD) transmission is preferred for short-reach links because of its simplicity and cost-
effectiveness [4–6]. However, to meet the capacity requirements, it is becoming obvious
that more degree of freedom is required in short-reach links. Driven by emerging capacity
hungry applications, digital coherent transmission with the high-order degree of freedom
using polarization and wavelength-multiplexing is gaining attention in short-reach links,
regardless of the cost [7–9].

Recently, optical single-sideband (OSSB) modulation with direct-detection took the
attention of researchers as a cost-effective solution for increasing the capacity of short-reach
links [10–12]. In C-band transmission, OSSB modulation can tolerate signal distortions
induced by chromatic dispersion because of the single-sided spectrum [13,14]. Moreover,
the phase information of the transmitted optical signal is preserved even after direct
detection. Therefore, electrical dispersion compensation can be done in the receiver [15,16].
However, signal-signal beat interference (SSBI) caused by square-law detection of the
OSSB signal degrades the received signal. Several methods have been studied to reduce
or eliminate the SSBI of the direct-detected OSSB signal [17–20]. Kramers-Kroning (KK)
relation-based receiver outperforms all the SSBI-cancellation schemes proposed so far [20].
Nevertheless, the KK receiver requires faster digital signal processing (DSP) and a high
carrier-to-signal power ratio (CSPR) [21,22].

Even though KK reception is applicable for both double sideband (optical double-
sideband signal+ optical tone at the edge of the spectrum) and SSB (OSSB + optical tone)
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transmission [23], SSB transmission is preferred to save the DSP bandwidth at the re-
ceiver [24,25]. Equivalently, the addition of optical tone at the receiver is preferred because
it allows polarization division multiplexing (PDM) while increasing the transmission power
efficiency [26]. In this manner, adding an optical tone to transmitted carrier-suppressed
OSSB signal (OSSB-SC) at the receiver can overcome two major technical challenges of the
KK receiver.

Despite OSSB-SC transmission’s capability of overcoming the above-mentioned chal-
lenges, inherited high peak-to-average power ratio (PAPR) of OSSB-SC signal introduces
two new challenges; fiber nonlinearity-based signal distortions and requirement of high
tone power at the receiver to meet the minimum phase condition. OSSB-SC signal consists
of high peaks in the optical waveform. This is because of the Hilbert-transform pair relation
of in-phase and quadrature-phase components of the OSSB signal [27].

Paying attention to the fiber nonlinearity-based signal distortions, the authors pre-
viously proposed three methods for alleviating PAPR of OSSB-SC signal, namely, peak
folding using optical modulator nonlinearity [28], peak clipping [29], and high-pass Hilbert
transforming [30]. The proposed methods use transmitter side digital processing or non-
linear modulation characteristics of the LN (Lithium niobate: LiNbO3) IQ modulator.
Extending our previous work, after brief introductions of operation principles, we com-
pare the effectiveness of the above three methods in a 100-km transmission system in this
paper. To clarify the transmission performance improvements by PAPR reduction, we
restrict ourselves to single-channel single-polarization binary phase-shift keying (BPSK)
transmission. To avoid the effect of the receiver DSP parameters on the proposed methods,
we use ideal coherent detection to recover the transmitted signal. Because PAPR is closely
related to self-phase modulation (SPM)-based signal distortions, the SPM threshold is used
as a figure of merit. PAPR reductions by proposed methods are compared and changes of
modulated signal spectra during the PAPR reduction process are discussed.

The rest of this paper is organized as follows; in Section 2, the principal of the phase-
shift method OSSB-SC signal generation and characteristics of OSSB-SC signal are discussed.
Section 3 describes the PAPR reduction of the OSSB-SC signal by folding the peaks of the
Hilbert-transformed signal. PAPR reduction by peak clipping is discussed in Section 4.
High-pass Hilbert transform-based PAPR reduction is discussed in Section 5. The effective-
ness of three PAPR reduction techniques in fiber transmission is compared in Section 6. In
Section 7, we discussed the reported results in detail before conclusions are drawn.

2. Phase-Shift Method OSSB-SC Signal and Its PAPR

Figure 1a shows the schematic of the optical IQ modulator-based optical SSB transmit-
ter. IQ modulator is composed of two sub-Mach-Zehnder interferometers (sub-MZIs) in a
dual parallel structure. To generate OSSB-SC signal, baseband signal VB(t) and its Hilbert
transform VH(t) are used to drive the two sub-MZIs which are biased at their transmission
null points. Hilbert transform is defined as in Equation (1).

H(ω) =

{
−jsgn(ω) (ω 6= 0)
0 (ω = 0)

(1)
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Figure 1. (a) IQ modulator based OSSB-SC transmitter; (b) spectra of optical BPSK-SSB signal
and OOK modulated signal; (c) temporal waveform of optical BPSK-SSB modulator output power;
(d) temporal waveforms of modulator driving signals, PRBS: pseudo-random binary sequence
generator, DAC: digital-to-analog converter, OOK: on-off keying, BPSK-SSB: binary phase-shift
keying-single sideband.

Here, sgn(·) denotes the signum function. ω is the angular frequency. Hilbert trans-
form creates a π-phase difference between the upper and lower frequency components
of the baseband spectrum separated by the center frequency. By orthogonally combining
the output light of two sub-MZIs, a side-band suppressed signal is generated. Sideband
suppression is achieved due to the π-phase difference between the spectral sidebands.
Therefore, this modulation is named the phase-shift method [31].

We define modulation depth as the ratio of the peak voltage of the baseband signal
(VB-Peak) to the half-wave voltage (Vπ) of the IQ modulator. Figure 1b compares the
optical power spectra of OSSB-SC modulated and optical on-off keying (OOK) modulated
10 Gbit/s non-return-to-zero (NRZ)-coded sequence when modulation depth is 0.1. Over
40-dB spectral sideband suppression can be observed in the OSSB-SC spectrum compared
to that of the intensity-modulation. The output optical waveform and the two driving
signal waveforms of the IQ modulator are depicted in Figure 1c,d, respectively. Here, the
baseband signal is an NRZ-coded binary sequence. Peaks appear in the Hilbert-transformed
waveform following the transmission points of the baseband signal between marks and
spaces. The height of the peaks in the Hilbert-transformed waveform depends on the
transfer function of the Hilbert transform [27] and the bit pattern of the baseband signal.
As can be noticed by comparing the driving signals and the modulator output optical
waveforms, peaks of the Hilbert-transformed component cause peaks in the modulator
output waveform. Subsequently, the PAPR of the modulator output increases. High PAPR
of the optical output leads to signal distortions at the receiver due to nonlinear phase-shifts
caused by SPM during the transmission.

3. Peak Folding Using LN Modulator Non-Linearity
3.1. Principle

The operation condition of the IQ modulator for OSSB-SC signal generation is illus-
trated in Figure 2. To modulate the amplitude of the optical carrier, two sub MZIs of the
IQ modulator are biased into their transmission null points. In conventional OSSB-SC
modulation schemes, electrical input signals are driven within the range of 2Vπ. However,
peaks of Hilbert-transformed signal which causes high PAPR can be suppressed using the
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sinusoidal shape of the MZI modulation curve [28]. Portions of the Hilbert transformed
signal which surpass the range of 2Vπ are folded back. One can use this peak folding
property of the IQ modulator to suppress the peaks of the Hilbert-transformed signal and
to reduce the PAPR of the OSSB-SC signal.

Photonics 2021, 8, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 2. The operation condition of IQ modulator. 

Because the peak-to-peak voltage of the Hilbert transformed signal (Vpp-H) is about 
2.5 times that of the baseband signal, Vpp-H exceeds 2Vπ range for modulation depths larger 
than 0.4. Peak folding was implemented by increasing the voltage of the Hilbert-trans-
formed signal component. Accordingly, the modulation depth was increased. 

3.2. Characteristics of Peak-Folded OSSB-SC Signal 
We numerically investigated the OSSB-SC signal generated using a peak-folded Hil-

bert-transformed component. The OSSB-SC transmitter model is depicted in Figure 1a. A 
continuous-wave (CW) light of 1552.5 nm from a laser diode (LD) was sent to the IQ mod-
ulator. Optical BPSK-SSB signal was generated by driving two MZIs of IQ modulator by 
10 Gbit/s NRZ coded (pseudo-noise (PN)-stage 10) baseband signal generated at a random 
bit sequence generator and its Hilbert transform. Peak folding was achieved for the values 
of VH(t) greater than Vπ. Modulator output power also increases with modulation depth. 
However, for a better comparison of waveform changes, the average modulator output 
power was kept constant by adjusting the LD power when the modulation depth was 
changed. We assumed identical half-wave voltages for the two-sub MZIs. 

Figure 3a presents modulator output waveforms when the modulation depth was 
0.1, 0.6, and 1. When the modulation depth is 0.1, sharp peaks can be noticed in the mod-
ulator output waveform. This is because of the peaks of the Hilbert-transformed wave-
form which have transferred linearly from the electrical domain to the optical domain at 
the linear region of the modulation curve when the modulation depth was small. The 
peaks of the modulator output start to shrink when the modulation depth is increased. 
For the modulation depths greater than 0.4, VH(t) becomes larger than Vπ. Hence the peaks 
of the Hilbert transformed waveform are folded back by the modulation curve. This peak 
folding back of the Hilbert-transformed waveform appears as peak shrinking in the mod-
ulator output waveform. The minimum PAPR of 1.52 was achieved by peak folding at a 
modulation depth of 1.0. 

Spectra of the modulator output signal are depicted for comparison in Figure 3b–d 
when the modulation depth was 0.1, 0.6, and 1.0, respectively. The power spectrum den-
sity of the suppressed sideband has increased with the modulation depth. In this study, 
we define the sideband suppression ratio (SSR) as the difference of peak power spectral 

Figure 2. The operation condition of IQ modulator.

Because the peak-to-peak voltage of the Hilbert transformed signal (Vpp-H) is about
2.5 times that of the baseband signal, Vpp-H exceeds 2Vπ range for modulation depths
larger than 0.4. Peak folding was implemented by increasing the voltage of the Hilbert-
transformed signal component. Accordingly, the modulation depth was increased.

3.2. Characteristics of Peak-Folded OSSB-SC Signal

We numerically investigated the OSSB-SC signal generated using a peak-folded
Hilbert-transformed component. The OSSB-SC transmitter model is depicted in Figure 1a.
A continuous-wave (CW) light of 1552.5 nm from a laser diode (LD) was sent to the IQ
modulator. Optical BPSK-SSB signal was generated by driving two MZIs of IQ modulator
by 10 Gbit/s NRZ coded (pseudo-noise (PN)-stage 10) baseband signal generated at a
random bit sequence generator and its Hilbert transform. Peak folding was achieved for the
values of VH(t) greater than Vπ. Modulator output power also increases with modulation
depth. However, for a better comparison of waveform changes, the average modulator
output power was kept constant by adjusting the LD power when the modulation depth
was changed. We assumed identical half-wave voltages for the two-sub MZIs.

Figure 3a presents modulator output waveforms when the modulation depth was
0.1, 0.6, and 1. When the modulation depth is 0.1, sharp peaks can be noticed in the
modulator output waveform. This is because of the peaks of the Hilbert-transformed
waveform which have transferred linearly from the electrical domain to the optical domain
at the linear region of the modulation curve when the modulation depth was small. The
peaks of the modulator output start to shrink when the modulation depth is increased.
For the modulation depths greater than 0.4, VH(t) becomes larger than Vπ. Hence the
peaks of the Hilbert transformed waveform are folded back by the modulation curve. This
peak folding back of the Hilbert-transformed waveform appears as peak shrinking in the
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modulator output waveform. The minimum PAPR of 1.52 was achieved by peak folding at
a modulation depth of 1.0.
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Figure 3. Waveforms and power spectra of peak-folded OSSB-SC signal, (a) modulator output
waveforms at modulation depths of 0.1, 0.6, and 1.0, (b–d) power spectra of the modulator output
signal at modulation depths of 0.1, 0.6, and 1.0 respectively.

Spectra of the modulator output signal are depicted for comparison in Figure 3b–d
when the modulation depth was 0.1, 0.6, and 1.0, respectively. The power spectrum
density of the suppressed sideband has increased with the modulation depth. In this study,
we define the sideband suppression ratio (SSR) as the difference of peak power spectral
densities of the suppressed sideband and the unsuppressed sideband as shown in the inset
of Figure 4. SSR of 48.7 dB at the modulation depth of 0.1 increased to 17.6 dB when the
modulation depth was changed to 0.6.
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Figure 4. PAPR and SSR characteristics of peak-folded OSSB-SC signal, inset; definition of sideband
suppression ratio (SSR).

PAPR and SSR variations of the modulator output signal with the modulation depth
are depicted in Figure 4. By increasing the modulation depth from 0.1 to the maximum
modulation depth of 1, PAPR is reduced from 4.26 to 1.52. During the increase of modula-
tion depth, the Hilbert-transformed waveform was degraded by peak folding. Peak-folded
Hilbert-transformed component leads to harmonics in the optical spectrum because of
the nonlinear modulation characteristics of the IQ modulator. Subsequently, an increase
in suppressed sideband power is observed causing degradation of SSR. However, it is
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noticeable that SSR greater than 20 dB is achievable for the modulation depth of 0.5 where
PAPR becomes 2.13.

4. Peak Clipping
4.1. Principle

Another approach for PAPR reduction of the OSSB-SC signal is clipping the peaks of
the Hilbert-transformed signal in the electrical domain [29]. Peak clipping was proposed
and extensively studied as a PAPR reduction method for wireless orthogonal frequency-
division multiplexing (OFDM) transmission [32,33]. Peak clipping of OFDM results in
direct signal-amplitude distortions since peaks of the OFDM signal are superpositions of
OFDM subcarriers where the data is encoded [32]. However, since the peaks of modulator
output optical signal are resulted by peaky Hilbert-transformed component in OSSB-SC
modulation, the peak clipping of Hilbert-transformed signal does not cause direct harm to
baseband signal amplitude.

Peak clipping of Hilbert transformed signal can be implemented using a clipper circuit
which was introduced to the transmitter after Hilbert transformer (Figure 1a). Peak clipped
Hilbert-transformed waveform is illustrated in Figure 5 with a pink line. The maximum
value of clipping voltage VCL is restricted to Vπ by the sinusoidal shape modulation curve
of MZI. Here Vpp-B denotes peak-to-peak voltages of the baseband signal. VB-Peak is the
peak voltage of the baseband signal.
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4.2. Characteristics of Peak-Clipped OSSB-SC Signal

Properties of the peak clipped OSSB-SC signal were analyzed using the transmitter
model in Figure 1a. The effect of peak clipping was studied for a fixed clipping voltage [29]
and variable clipping voltages [34]. The same driving signals described in 3.2 were used to
drive the modulator. The Hilbert-transformed signal component which produces peaks in
the modulator output waveform was clipped using the clipper circuit before connecting to
the modulator.

4.2.1. Fixed Clipping Voltage

When the clipping voltage is fixed, the clipping amount of Hilbert-transformed wave-
form depends on the values of modulation depth and the clipping voltage VCL. Here we
discuss the peak clipped OSSB-SC signal when VCL equals Vπ. The clipping amount was
adjusted by changing the modulation depth by varying VB-Peak. An increase of VB-Peak
increases Vpp-H accordingly. When the modulation depth is greater than 0.4, Vpp-H ex-
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ceeds ±Vπ range. Because VCL equals Vπ, Hilbert transformed waveform is clipped
when the amplitude surpasses the range of ±Vπ. For modulation depths greater than 0.4,
Hilbert transformed waveform exceeds ±Vπ range. Consequently, the upper MZI of the
IQ modulator was driven by the peak-clipped Hilbert-transformed waveform.

In both fixed and variable clipping voltage studies, the modulator output power was
unchanged. We adjusted the LD output power in the case of modulation depth or clipping
voltage was changed.

Modulator output waveforms of peak-clipped OSSB-SC signal are compared in Figure 6a.
The waveforms of Figure 6a are calculated for modulation depths of 0.1, 0.4, 0.6, and 1.0
when the average modulator output power was 0 dBm. Because VCL was set to Vπ, there
were no peak clippings when the modulation depth was 0.1 where Vpp-H nearly equals
0.5Vπ. As a consequence, high peaks appear in modulator output intensity waveform as
mentioned in Section 3.2. Peak reduction can be seen at the modulation depth of 0.4 where
the peak clipping has just started. The cause of peak reduction up to modulation depth of
0.4 was the nonlinearity of the modulator transfer function. When the amplitude of the
modulator input signal becomes sufficiently large with increasing modulation depth, the
effect from the sinusoidal shape of the transfer function of MZI appears as peak folding
of modulated signals. Since the Hilbert-transformed signal has a larger amplitude it is
affected by the nonlinearity of the modulator first and reduces the peaks of the modulator
output signal [28]. For modulation depths greater than 0.4, Vpp-H exceeded the ±Vπ range
and peak clipping was implemented. Consequently, peak suppression of modulated output
waveform can be seen which results in a reduction of PAPR.
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Figure 6b–e show the power spectra of the modulator output signal when the mod-
ulation depths were 0.1, 0.4, 0.6, and 1.0, respectively. Compared with Figure 6b where
peak clipping was not implemented, a rise in suppressed sideband power can be noticed in
peak-clipped signal spectra. Both peak clipping and the nonlinearity of the IQ modulator
contribute to this spectral degradation [29].

PAPR and SSR variations of the peak-clipped OSSB-SC signal are depicted in Figure 7.
With increasing modulation depth, the clipping amount of the Hilbert-transformed signal
increases consequently reducing the PAPR. Due to peak clipping, the value of SSR decreases.
SSR becomes 13.57 dB at the modulation depth of 1.0 where the minimum PAPR of 1.41
was achieved. PAPR and SSR characteristics of peak-folded OSSB-SC signal are also
shown for comparison. PAPR, SSR values of both peak-folded and peak-clipped signals
resemble lower modulation depths. Compared with peak folding, peak clipping reduces
waveform degradations of Hilbert-transformed signal at high modulation depths and
thereby reducing harmonics generated during the modulation. Subsequently, peak- clipped
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OSSB-SC signal shows lower PAPR and higher sideband suppression relative to the peak-
folded signal. Peak clipping improves PAPR by 6.9% and SSR by 4.7 dB at the modulation
depth of 1.0.
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Figure 7. PAPR and SSR of peak clipped OSSB-SC signal.

4.2.2. Variable Clipping Voltage

Then the effect of the clipping voltage was studied while varying the clipping voltage
when the modulation depth was fixed. We compared the characteristics of peak-clipped
OSSB-SC signal when the modulation depth was 0.1 and 0.4. Modulator output waveforms
and their spectra at modulation depths of 0.1 and 0.4 are depicted in Figure 8 for varied
clipping voltages. To check the effect of variable clipping voltage, clipping ratio r is
defined as

r =
VCL

VB−Peak
(2)

The voltages of modulator input electrical signals vary with the modulation depth.
However, the waveforms and spectra of Figure 8 are compared when the amount of
clipping of the Hilbert-transformed waveform relative to the baseband signal is equal. The
average modulator output power was 0 dBm in each case.

For larger r, modulator output waveforms show peaks in both 0.1 and 0.4 modulation
depths. Because the clipping amount increases with decreasing r, peaks start to shrink.
Waveforms of both modulation depths start to resemble when r becomes smaller. Suppres-
sion of peaks in modulator output waveform can be observed for the modulation depth of
0.4 even for smaller values of r. This difference of peak powers of two modulation depths
at higher values of r is due to the nonlinearity of the IQ modulator.

The effect of the modulator nonlinearity can be also seen in the power spectra of peak
clipped OSSB-SC signal. For greater modulation depths, the power spectrum density of
the suppressed sideband becomes high. Harmonics generated due to the nonlinearity of
the modulation curve of the IQ modulator increases the power of the suppressed sideband.
Spectra and modulator output intensity waveforms of the modulation depth of 0.1 mimic
those of the modulation depth of 0.4 since the baseband signal component of the OSSB-SC
signal becomes dominant with decreasing r.
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Figure 8. Peak-clipped OSSB-SC signal with variable clipping voltage, (a–d) modulator output
intensity waveforms at r = 2.5, r = 2.0, r = 1.0, r = 0.25 respectively. (e–h) power spectra of the
waveforms of (a–d) respectively.

PAPR and SSR variations of the peak-clipped OSSB-SC signal are illustrated in Figure 9.
PAPR of 4.14 was noticed for the modulation depth of 0.1 when r is 2.5. As a result of peak
folding, PAPR was reduced to 2.51 at the modulation depth of 0.4. Because of suppressed
peaks by peak clipping, PAPR reduces gradually with r. Minimum PAPR of 1.30 was
achieved for r < 0.5. SSR becomes small with decreasing r for both modulation depths.
For large r, the SSR becomes smaller for the modulator output signal at a modulation
depth of 0.4, because of harmonics generated due to the nonlinearity of the modulator.
Because peak clipping of the Hilbert-transformed component also contributes to spectral
degradation by adding harmonics, the SSR becomes small for smaller r. It is noteworthy
that the SSR for both modulation depths coincides when r is decreased.
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5. High-Pass Hilbert Transform

PAPR of OSSB-SC signal also can be reduced by manipulating the spectrum of peaky
Hilbert-transformed components [30]. Because the shape of the waveform is largely
determined by low-frequency components, peaks of the Hilbert-transformed waveform
can be suppressed by reducing their power. To suppress the low-frequency components
power of Hilbert-transformed signal, we modify the flat amplitude response of Hilbert
transform to a high-pass response. The modified transfer function of the Hilbert transform
is as follows

HH(ω) =

{
−j sgn(ω) (|ω| > 2ωc)

−j sgn(ω) sin{π(|ω|/4ωc)} (|ω| ≤ 2ωc)
(3)

Here, ωc is the cut-off frequency. Amplitude and phase responses of modified Hilbert
transform are compared with those of ideal Hilbert transform in Figure 10a–c. Because
of the high-pass amplitude response, we name HH as high-pass Hilbert transform. The
high-pass Hilbert-transformed waveform at a cut-off frequency of 3 GHz is portrayed
in Figure 10d and compared with 10 Gbit/s NRZ-coded baseband signal and its ideal
Hilbert-transformed waveforms. The high-pass Hilbert transform reduces the peaks of
the Hilbert-transformed waveform. The peak-to-peak voltage of the high-pass Hilbert-
transformed waveform reached that of the baseband signal at the cut-off frequency of
3 GHz.
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Figure 10. (a) phase response of H (ω) and HH (ω), (b) amplitude response of Hilbert transform
H (ω), (c) amplitude response of high-pass Hilbert transform HH (ω), (d) 10 Gbit/s NRZ-coded
baseband signal and its Hilbert-transformed waveforms (f c = 3 GHz of HH (ω)).

Figure 11 shows the relation of driving signals voltage ratio and the upper limit of the
modulation depth of high-pass Hilbert transformer-based OSSB-SC signal. The baseband
signal is a 10 Gbit/s NRZ-coded sequence. With increasing cut-off frequency, peaks of
Hilbert-transformed signal component reduce. This reduction of Hilbert-transformed
signal amplitude can be observed as a reduction of the driving signal peak-to-peak voltage
(Vpp) ratio which is defined as the ratio of Vpp-H to Vpp-B. The Vpp ratio reaches unity at
the cut-off frequency of 3 GHz. Further increase of the cut-off frequency results in Vpp
ratios smaller than 1 because the peak-to-peak voltage of the Hilbert-transformed signal
becomes smaller than that of the baseband signal. Because the Vpp ratio becomes unity for
cut-off frequencies greater than 3 GHz, maximum modulation depth can be achieved for
cut-off frequencies greater than 3 GHz. Different from peak folding and peak clipping, the
high-pass Hilbert transform allows modulation at higher modulation depths with lower
spectral degradations due to the decrease of Vpp-H.
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Figure 11. Driving signals peak-to-peak voltage (Vpp) ratio and the modulation depth’s upper limit
of the high-pass Hilbert transformer based OSSB-SC signal.

PAPR and optical bandwidth of the modulator output signal are plotted against the
cut-off frequency and presented in Figure 12. Peak reduction of Hilbert-transformed signal
results reduced PAPR of the modulator output signal. PAPR reaches unity around the
cut-off frequency of 3 GHz.
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Figure 12. PAPR and 20-dB optical bandwidth of the modulator output signal.

Because of the filtering of Hilbert-transformed signal, residual bandwidth of modula-
tor output signal increases with increasing cut-off frequency. Spectral changes of high-pass
Hilbert transform-based OSSB-SC signal are evaluated using 20-dB bandwidth of the
optical spectrum. 20-dB bandwidth is defined as the spectral bandwidth at where the
power spectral density becomes −20 dB relative to the maximum power spectral density
of the modulator output signal spectrum. Because high-pass Hilbert transform filters out
the lower frequencies of the Hilbert-transformed signal spectrum, sideband suppression
deteriorates. Consequently, the 20-dB bandwidth increases almost linearly with the cut-off
frequency. However, even at a cut-off frequency of 3 GHz, 20-dB bandwidth remains within
65% of double sideband modulation bandwidth giving spectral efficiency of 0.77 b/s/Hz.

6. Fiber Transmission of PAPR Reduced OSSB-SC Signal

To study the effect of PAPR reduction on transmission characteristics of the OSSB-SC
signal by the proposed methods, a 100-km transmission simulation was carried out. OSSB-
SC signal was generated as described in Sections 3–5. The modulator output signal was
launched into the fiber link shows in Figure 13 and transmitted.
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We assumed ideal phase-diversity homodyne detection at the receiver instead of KK
relation-based direct detection. This allows us to clarify the effect of PAPR reduction on
nonlinear signal distortions during transmission, without bothering to optimize the DSP
parameters required for the KK receiver, which is out of the scope of this paper. For the
same reason, we used dispersion compensating fiber (DCF) in our simulation model to
compensate fiber dispersion instead of frequency-domain equalization (FDE). Chromatic
dispersion of standard single-mode fiber (SSMF) was compensated using 21.5-km long
DCF. We found no waveform degradations during the transmission of DCF. Because of
the superior sensitivity characteristics of coherent detection [23,35,36], we did not employ
any optical amplifiers in our transmission simulations. Here PIN and PO represent average
fiber input and output power, respectively. We simulated fiber transmission by solving the
nonlinear Schrödinger equation using the split-step Fourier method [37]. Fiber parameters
used in our calculations are given in Table 1. At the receiver, the transmitted signal was
detected using a phase-diversity homodyne detector. The receiver consisted of a balanced
detector and local oscillator (LO) laser. Here, we assumed ideal phase-matching between
the LD and LO for the sake of simplicity.

Table 1. Fiber Parameters.

Parameter SMF DCF Unit

Loss coefficient α 0.2 0.45 dB/km
Dispersion coefficient D +17.0 −80.0 ps/nm/km

Dispersion slope S 0.057 −0.22 ps/nm2/km
Effective core cross-section Aeff 80 14 µm2

Nonlinear index coefficient n2 2.9 × 10−20 4.3 × 10−20 m2/W

As our primary intention is to evaluate the reduction of the SPM effect during trans-
mission, we neglect all the electrical and optical noises in the system. Since PAPR is closely
related to waveform degradation, eye diagrams of the received signal were used to evaluate
the transmitted signal. OSSB-SC signal eye diagrams of before and after transmission at a
modulation depth of 0.1 are compared in Figure 14. Figure 14a depicts the back-to-back
eye diagram, and the eye diagram of the received signal is presented in Figure 14b. We
define the parameter k as the ratio of LO power to received signal power. k was set to 20 dB
and PIN to 9 dBm for the calculations of transmitted signal eye diagrams. Very obviously,
high PAPR of OSSB-SC degrades the received signal eye diagrams due to the nonlinear
phase-shifts by SPM. Figure 15 compares the eye diagrams of the transmitted signal whose
PAPR is reduced using the techniques introduced in Sections 3–5.
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Figure 15. Transmitted signal eye diagrams of PAPR reduced OSSB-SC signal (PIN 9 dBm, k 20 dB).

Eye diagrams of the peak-folded OSSB-SC signal are shown at the top of Figure 15
when modulation depth is varied. Eye-opening becomes larger with increasing modula-
tion depth in peak-folded OSSB-SC signal. Because the peak-to-peak voltage of Hilbert-
transformed signal becomes larger than 2Vπ for modulation depths greater than 0.4,
peak-folding of Hilbert-transformed signal component occurs which effectively increases
the eye-opening.

The next row of Figure 15 displays the transmitted signal eye diagrams of peak-clipped
OSSB-SC signal. VCL was set to be Vπ and modulation depth was varied. Compared with
peak-folding, the eye-opening of the peak-clipped signal slightly increase. The reason for
this slight increase of eye-opening is the reduction of high order harmonics during the
modulation, by peak clipping.

Peak-clipped signal eye diagrams with variable clipping voltage are also shown.
When r is large, eye diagrams of modulation depth 0.1 show less eye-opening than that
of modulation depth 0.4. This is because of the nonlinearity of the modulator. For small
modulation depths, the modulator operates in its linear region. Hence, the PAPR of the
OSSB-SC signal becomes high due to the linearly transformed peaks of Hilbert-transformed
from the electrical domain to the optical domain. For larger modulation depths, PAPR
becomes less since modulator nonlinearity folds the peaks of Hilbert-transformed signal.
For smaller values of r, the clipping amount of the Hilbert-transformed waveform increases.
As a result, the baseband signal component becomes dominant. The effect of modulation
depth on the transmitted signal eye degradations disappears giving similar eye openings
in both modulation depths.
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The most opened eyes are archived in high-pass Hilbert-transformed OSSB-SC signal.
Despite higher PAPR, high-pass Hilbert transform gives less degraded eyes compared to
peak-folding and peak-clipping methods. This can be found comparing the eye diagrams of
Figure 15. One can compare the eye diagrams of peak-folded and peak-clipped (VCL = Vπ)
signal of modulation depths of 0.4 (PAPR = 2.51) and 0.6 (PAPR = 1.86) with the eye
diagrams of high-pass Hilbert transform at cut-off frequencies of 0.5 GHz (PAPR = 3.05)
and 1.0 GHz (PAPR = 2.18). Degradations of high-pass Hilbert-transformed OSSB-SC
signal become less due to the deficiency of high order harmonics in the modulated signal
spectrum. Since there are no waveform degradations of Hilbert-transformed signal during
the PAPR reduction process, broadened mark, space levels are seen in peak-folding and
peak-clipping do not appear in high-pass Hilbert-transformed eye diagrams. Along with
increasing cut-off frequency of the high-pass Hilbert transformer, eye-opening increases
due to the reduction of PAPR.

To evaluate the improvement of eye-opening by proposed techniques, eye-opening
penalty (EOP) is defined as follows

EOP =
ER

(αSMFLSMF × αDCFLDCF)ET
, (4)

where ER is the eye-opening (EO) of transmitted signal and ET is the eye-opening of the
back-to-back eye diagram when modulation depth is 0.1. EO is defined as the ratio of ∆Ir
to (∆Ir)max where ∆Ir and (∆Ir)max are inside and outside eye openings as shown in the
inset of Figure 16. α and L denote loss coefficients and fiber lengths of SMF and DCF of the
transmission link, respectively.
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Figure 16. Eye-opening penalty of peak-folded OSSB-SC signal, inset: definition of eye-opening (EO),
∆Ir, and (∆Ir)max are inside and outside eye openings, respectively.

Figures 16–18 show the EOP of the three methods introduced in Sections 3–5, respec-
tively. In each case, EOP increases exponentially with PIN. This increase in EOP is due to
the waveform degradations caused by SPM. As noted with the eye diagrams, the increase
in EOP was alleviated at higher modulation depths for peak folded and peak clipped
OSSB-SC signal. This is because of the peak reduction of the Hilbert-transformed signal
component by peak folding and peak clipping at greater modulation depths, respectively.
In the high-pass Hilbert transform method, the average fiber input power which EOP starts
to increase exponentially becomes higher with increasing cut-off frequency.
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Figure 17. Eye-opening penalty of peak-clipped OSSB-SC signal (VCL = Vπ).

Photonics 2021, 8, x FOR PEER REVIEW 15 of 18 
 

 

OSSB-SC signal. This is because of the peak reduction of the Hilbert-transformed signal 
component by peak folding and peak clipping at greater modulation depths, respectively. 
In the high-pass Hilbert transform method, the average fiber input power which EOP 
starts to increase exponentially becomes higher with increasing cut-off frequency. 

We defined the value of the average fiber input power that EOP becomes 1 dB as the 
SPM threshold. We found the SPM threshold of our system for the OSSB-SC transmission 
as 3.14 dBm when the modulation depth is 0.1. Peak-folding starts to occur for modulation 
depths larger than 0.4. SPM threshold becomes 3.99 dBm at the modulation depth of 0.4 
where peak-folding just started. In the case of peak clipping, peak clipping also starts to 
occur for modulation depths larger than 0.4 since VCL = Vπ. The SPM threshold of the peak-
clipped OSSB-SC signal at a modulation depth of 0.4 is 3.70 dBm. In peak folding and 
peak clipping methods, the SPM threshold can be improved up to 2.40 dB and 2.63 dB 
respectively, comparing to the situation where peak folding or clipping is not used. In the 
high-pass Hilbert transformed method, an SPM threshold of 9.86 dB is achieved at the cut-
off frequency of 3 GHz for 10 Gbit/s NRZ-coded signals. 

 
Figure 17. Eye-opening penalty of peak-clipped OSSB-SC signal (VCL = Vπ). 

 
Figure 18. Eye-opening penalty of high-pass Hilbert-transformed OSSB-SC signal. 

7. Discussion 
Even though OSSB transmission is attracting the interest of researchers’ as a cost-

effective solution for short-reach links, high PAPR of OSSB-SC transmission becomes a 
major drawback during the transmission. PAPR reduction has been substantially studied 
in wireless transmission. However, PAPR reduction methods for optical links have to be 
investigated. 

We previously proposed three techniques to reduce the PAPR of optical SSB-SC sig-
nal using both time and frequency-domain signal processing. Peak folding using the non-
linearity of optical modulator was originally studied to suppress the noise of driving sig-
nals [38]. Later, we reported the capability of PAPR reduction of OSSB-SC signal using the 

-5 0 5
0

1

2

3

4

Average fiber input power [dBm]

Ey
e 

op
en

in
g 

pe
na

lty
 [d

B]

Mod. Depth
  0.1
  0.4
  0.6
  1.0

3.70 6.33

-5 0 5 10 15
0

1

2

3

4

Average fiber input power [dBm]

Ey
e 

op
en

in
g 

pe
na

lty
 [d

B] Cut-off frequency
  0   [GHz]
  0.5 [GHz]
  2.0 [GHz]
  3.0 [GHz]

3.14 13.0

Figure 18. Eye-opening penalty of high-pass Hilbert-transformed OSSB-SC signal.

We defined the value of the average fiber input power that EOP becomes 1 dB as the
SPM threshold. We found the SPM threshold of our system for the OSSB-SC transmission
as 3.14 dBm when the modulation depth is 0.1. Peak-folding starts to occur for modulation
depths larger than 0.4. SPM threshold becomes 3.99 dBm at the modulation depth of 0.4
where peak-folding just started. In the case of peak clipping, peak clipping also starts to
occur for modulation depths larger than 0.4 since VCL = Vπ. The SPM threshold of the
peak-clipped OSSB-SC signal at a modulation depth of 0.4 is 3.70 dBm. In peak folding
and peak clipping methods, the SPM threshold can be improved up to 2.40 dB and 2.63 dB
respectively, comparing to the situation where peak folding or clipping is not used. In the
high-pass Hilbert transformed method, an SPM threshold of 9.86 dB is achieved at the
cut-off frequency of 3 GHz for 10 Gbit/s NRZ-coded signals.

7. Discussion

Even though OSSB transmission is attracting the interest of researchers’ as a cost-
effective solution for short-reach links, high PAPR of OSSB-SC transmission becomes a
major drawback during the transmission. PAPR reduction has been substantially studied
in wireless transmission. However, PAPR reduction methods for optical links have to
be investigated.

We previously proposed three techniques to reduce the PAPR of optical SSB-SC
signal using both time and frequency-domain signal processing. Peak folding using the
nonlinearity of optical modulator was originally studied to suppress the noise of driving
signals [38]. Later, we reported the capability of PAPR reduction of OSSB-SC signal
using the same property of the LN modulator. In the peak-folding method, peaks of the
Hilbert-transformed signal are folded back using the sinusoidal transfer function of the LN
modulator. The Peak power was approximately halved while maintaining 20-dB spectral
suppression. An SPM threshold improvement of 2.40 dB is reported.
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PAPR reduction by peak clipping has been studied extensively for OFDM transmission
in wireless communication [32,33]. We investigated PAPR reduction of OSSB-SC signal by
clipping peaks of the Hilbert-transformed signal in the electrical domain. Reduction in
spectral suppression is noticed during PAPR reduction. Peak power of the optical SSB-SC
signal was reduced to about one-half of the original value with a spectral suppression of
20 dB. Using peak-clipping, the SPM threshold is improved by 2.63 dB.

To the best of our knowledge for the first time, we proposed a PAPR reduction method
for OSSB-SC transmission using frequency-domain signal processing. Peaks of Hilbert-
transformed signal are suppressed by reducing the power of low-frequency components
of the spectrum where the energy is concentrated. The all-pass amplitude response of the
Hilbert transformer was modified to a high-pass response to reduce the power of lower
frequency components of the spectrum. The high-pass Hilbert transform method reduces
the PAPR of the optical SSB-SC signal from 4.17 to 1.65. Bandwidth saving of over 30% was
achieved relative to double-sideband modulation. As a result of PAPR reduction, the SPM
threshold was improved by 9.86 dB.

In this study, we chose 10G-class BPSK modulation for the sake of simplicity. How-
ever, the proposed concepts can be extended to other modulation formats and higher
transmission rates.

8. Conclusions

We compared the performances of three previously proposed methods to reduce the
PAPR of OSSB-SC signal in a repeater-less 100-km transmission link. The effectiveness
of the proposed methods was confirmed by the analysis of the transmitted signal. SPM
threshold of the studied system can be improved by 2.40 dB and 2.63 by peak folding
and peak clipping of Hilbert-transformed signal respectively. Besides reducing PAPR, the
peak-folding method brings the benefit of driving signal noise suppression. (In this study,
we focused on a noise-free signal for the sake of simplicity). Among the proposed methods,
the high-pass Hilbert-transform method makes OSSB-SC signal most tolerant to SPM-based
signal degradations. SPM threshold can be adjusted according to the demand by choosing
the appropriate cut-off frequency in the high-pass Hilbert transform method. For 10 Gbit/s
NRZ-coded baseband signal, the SPM threshold of 13 dBm could be achieved by setting
the cut-off frequency to 3 GHz.

It is seen that the reduction of spectral efficiency cannot be avoided during PAPR
reduction. Almost similar spectral characteristics were noticed in peak clipping and peak
folding methods. Different from the other two methods, spectral bandwidth increase is
noticed in the high-pass Hilbert-transform method during PAPR reduction. Hence, a tech-
nique to reduce PAPR should be chosen after taking the available bandwidth into account.

Chromatic dispersion of optical fibers has been identified as a limiting factor of next-
generation radio over fiber (RoF) systems [39]. The reach limitation caused by the fiber
dispersion is predicted to be severe in radio access networks where capacity improvements
are planned to achieve using higher frequencies such as millimeter waves. Different meth-
ods such as optical-domain and electrical-domain compensation and O-band transmission
have been studied to circumvent this issue of chromatic dispersion [40]. Among those, SSB
transmission becomes a strong candidate because of the colorless operation capability and
the simple configuration of the receiver. In combination with the proposed PAPR reduction
methods, OSSB-SC transmission can increase the transmission power efficiency other than
extending the reach.
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