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Abstract: Recently, several applications leveraging unconventional manipulation of electromagnetic
radiation based on parity-time symmetry have been proposed in the literature. Typical examples
include systems with unidirectional invisibility and asymmetric refraction. Such applications as-
sume an inherent system stability and no occurrence of unbounded signal growth or unwanted
self-oscillations. Here, a general instability issue of parity-time-symmetric systems is investigated,
with particular emphasis on a recently proposed system based on resistive metasurfaces. Explicit
closed-form stability criterion is derived, crosschecked and verified by both time-domain transient
simulations and the measurements on an experimental demonstrator operating in a lower radiofre-
quency range. Results of this study lead to the conclusion that any parity-time-symmetric system is
necessarily marginally stable. Finally, it is shown that such a marginally stable system may easily
become unstable if not designed carefully.

Keywords: PT symmetry; metasurfaces; stability analysis; negative-impedance converter

1. Introduction

In the last few years, a significant research effort has been devoted to the concept
of parity-time (PT) symmetry. Originally, this principle comes from quantum mechanics.
It states that non-Hermitian Hamiltonian H, which commutes with the parity-time (PT)
operator, can have real-energy eigenvalues [1,2]. Comparing the Schrödinger equation
and the scalar Helmholtz equation [3], i.e., comparing the linear operators in quantum
mechanics and the matrix description of electrical networks [4,5], the principles of PT sym-
metry have recently been extended to electronics [4], electromagnetics [3,6], optics [7] and
acoustics [8,9]. In their simplest one-dimensional form, the electromagnetic PT-symmetric
systems are based on a combination of passive and active slabs with the refractive indices
that form a complex conjugate pair [7]. As an active system (a system with its own source
of energy), a PT-symmetric system can operate in two fundamentally different modes:
Unstable mode and stable mode. In unstable mode, a PT-symmetric system converts the en-
ergy from its power supply into self-oscillations. A practical application of unstable mode
is a PT-symmetric laser [10]. On the other hand, in stable mode, there is no self-oscillation.
A stable system, excited with a bounded input signal, always responds with a bounded
output signal (so-called Bounded Input Bounded Output or BIBO stability). There are
many proposed applications of PT–symmetric systems that assume BIBO stability, such
as unidirectional invisibility, loss-induced transparency, asymmetric refraction, perfect
absorption, and non-trivial anisotropic transmission resonance [7,8], just to mention a
few. In contrast to volumetric structures, some of the aforementioned effects can also
be achieved using a simple pair of metasurfaces represented with positive and negative
surface resistance [3,11]. The metasurfaces with positive surface resistance attenuate the
power of an incident electromagnetic wave. The structure of such metasurfaces is based on
passive, lossy materials [12]. On the other hand, the metasurfaces with negative surface
resistance amplify an incident wave, and thus require an internal power source and active
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circuitry [13–15]. Ensuring BIBO stability is a must in the applications listed above. As
clearly noted in [8], the inherent constraints of PT-symmetric systems dictated by causality
and stability cannot be overlooked in practical implementation. There has been a very
recent attempt to achieve some of the counter-intuitive phenomena that arise from PT-
symmetry in fully passive, inherently stable systems [16]. In such a way, the instability
issue would be avoided. Unfortunately, very few studies reported in the literature cope
with the stability of active PT-symmetric systems in general. Most of them are associated
with highly specific PT-symmetric systems, use theoretical methods of quantum mechanics
and lack experimental verification [17–21]. Therefore, we report the stability analysis
of PT-symmetric systems in general. Furthermore, the stability analysis of the recently
proposed metasurface-based PT-symmetric system [3] is detailed. We report a derivation
of the stability criterion and an analysis of its natural responses, along with the numerical
and experimental verification of the presented theoretical approach.

2. Stability of Parity-Time-Symmetric Systems

PT-symmetric systems are often referred to as systems with a balanced distribution
of gain and loss [8]. While this characterization is not strictly mathematical, it conveys
information about the stability. Indeed, if the gain and loss within a system are perfectly
balanced, the system is marginally stable. If the loss prevails over the gain, the energy
within the system dissipates over time, making the system stable. Similarly, if the gain
prevails over loss, the energy within the system unboundedly accumulates, which is by
definition the manifestation of instability. This leads to the conclusion that PT-symmetric
systems are necessarily marginally stable. In a mathematical sense, the PT symmetry is
a special type of space–time symmetry that describes the invariance of a physical system
upon the combined action of two operators: The parity operator P, which takes the inversion
of space coordinates (z→ −z), and the time reversal operator T, which reverses the sign
of the time variable (t → −t) [8]. From the circuit-theory point of view, the action of the
operator P is to the mirror spatial layout, and the one of the operator T is to switch gain and
loss [8]. Thus, upon the action of the operator T, the real part of all network impedances
changes the sign. Notice that the operator P does not affect the stability properties of
a system to which it is applied. However, this is not the case with the operator T. Let
us assume that the operator T is applied to a stable system with a natural response that
decays with time. Upon the action of the operator T, the sign of a time variable is inverted,
making its natural response grow unboundedly. Thus, the operator T makes a stable system
unstable, and vice versa. If a system changes its stability properties after applying the
operator T, it cannot remain unchanged upon the action of both operators, P and T (i.e.,
the system is not invariant to the combined action of the two operators). Therefore, such a
system is not PT-symmetric. Only if a system does not change its stability properties upon
the action of the operator T can it be PT-symmetric. This is possible only if the natural
response of a system does not decay or grow with time, which is a property of marginally
stable systems. This again leads to the conclusion that only marginally stable systems can
be PT-symmetric. Thus, every PT-symmetric system is indeed marginally stable.

To verify this statement, we conducted a stability analysis of the recently proposed
metasurface-based PT-symmetric system [3]. Its one-dimensional circuit model, shown in
Figure 1, consists of a parallel combination of a positive and a negative resistor, mutually
connected via a segment of ideal transmission line described by its length (l), characteristic
impedance (Z0) and phase velocity (vP). Following the recently published stability analysis
of distributed networks with negative elements [22–24], the locations of the poles s of the
network from Figure 1 can be found by solving the system equation:

tanh
(

sl
vP

)
= −Z0

RL + RR

RLRR + Z2
0

. (1)
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Figure 1. A generalized circuit model of the recently proposed metasurface-based PT-symmetric
system [3].

Here, s stands for complex frequency defined as s = σ + jω (est convention is used).
In the most general case, the right-hand side of (1) contains complex impedances, thus, it is
a function of complex frequency s. In such a general case, (1) is a transcendental equation
that cannot be solved analytically [3]. Here, however, the right-hand side of (1) is not a
function of complex frequency s, since RL, RR, and Z0 are positive real constants. Thus, the
closed-form expression for pole locations can be derived:

s =
vP
2l
{ln|ΓLΓR|+ j[Arg(ΓLΓR) + 2kπ]}. (2)

Equation (2) reveals an infinite number of poles (k ∈ Z) related to the periodic behavior
of the transmission line. Here, ΓL, ΓR ∈ R represent reflection coefficients given by the
well-known expressions [25]:

ΓL =
RL − Z0

RL + Z0
, (3a)

ΓR =
RR − Z0

RR + Z0
. (3b)

It is interesting that all the poles are aligned along the line parallel to the imaginary
axis of the complex plane. It is well known that, for a stable operation, all poles of a system
must lie in the left half-plane of complex plane (Re{s} < 0). This condition is satisfied if
ln|ΓLΓR| < 0, which leads to the general stability criterion:

|ΓLΓR| < 1. (4)

Please notice that stability of the system does not depend on the length of transmission
line l, but RL, RR and Z0 only. The stable and unstable combinations of RL, RR and Z0 can
be determined from the graph in Figure 2. Shadowed areas represent the regions of stable
operating points that satisfy stability criterion (4). Stable and unstable regions are separated
by two stability margins given by (5). Those margins are derived from the condition for
marginal stability (Re{s} = 0→ |ΓLΓR| = 1).

RL = −RR (5a)

RLRR = −Z2
0 (5b)

If RL and RR are chosen from the first quadrant, both resistors are positive and
dissipate injected energy upon each reflection. As a result, the response decays with time
and the network is stable. If RL and RR are chosen from the third quadrant, both resistors
are negative. Upon each reflection from negative resistors the amount of energy in the
network increases. As a result, the response unboundedly grows with time, thus the
network is unstable. However, when it comes to PT-symmetric systems, one is interested
in a combination of positive and negative resistors (the second and the fourth quadrant).
Recall that a network is PT symmetric only if it remains unchanged upon the combined
action of the operators P and T. Therefore, the network from Figure 1 is PT symmetric only
if the resistors RL and RR have the same absolute value and opposite signs. This condition
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places the operating point of the network on the line defined by (5a), representing the
stability margin. As a result, the analyzed PT-symmetric network is indeed marginally
stable. In this case the resistors can be related to the characteristic impedance as RL = rZ0
and RR = −rZ0, r ∈ R, being a proportionality constant. It can be easily shown that
|ΓLΓR| = 1 for any r.

Figure 2. Regions of stable (shaded) and unstable (white) operation. In the shaded regions stability
criterion (4) is satisfied.

While (4) clearly shows that only reflection coefficients ΓL and ΓR affect the stability of
the network, both the length of the transmission line (l) and phase velocity (vP) influence
the pole locations in the complex plane. These parameters determine the type of natural
response of the network. By analyzing the poles (2), it is possible to predict the rate of
growth and repetition frequency of the natural response. The envelope of the response is
defined by the exponential function:

v(t) = V0eσt → v(t) = V0|ΓLΓR|
t

2τ . (6)

Here, τ represents the transmission line delay defined as τ = l/vp. The real part of
the poles σ represents the rate of growth. As (6) indicates, the natural response decays with
time only if |ΓLΓR| < 1, which is consistent with the stability criterion (4).

The repetition frequency of natural response is defined by the smallest imaginary part
of the poles different than zero. According to (2), if ΓLΓR > 0 → Arg(ΓLΓR) = 0, a pole
occurs at the real axis of the complex plane for k = 0. As a result, the natural response
is an exponential-like direct current (DC) signal. In this case, the repetition frequency is
defined for k = 1, leading to (7a). If ΓLΓR < 0 → Arg(ΓLΓR) = π, there is no pole on the
real axis. Thus, the response is purely oscillatory, with the repetition frequency defined
by (7b), for k = 0. In both cases the repetition frequency depends on τ. Notice that the
repetition frequency of the exponential-like response (7a) is twice the repetition frequency
of the oscillatory response (7b).

ω0 =
vP
2l

[Arg(ΓLΓR) + 2kπ]
k=1−−−−→

ΓLΓR>0
ω0 =

1
2τ

[0 + 2π] → f0 =
1

2τ
(7a)

ω0 =
vP
2l

[Arg(ΓLΓR) + 2kπ]
k=0−−−−→

ΓLΓR<0
ω0 =

1
2τ

[π + 0] → f0 =
1

4τ
(7b)

According to the analysis given above, it is possible to define four types of natu-
ral response: Stable exponential-like (|ΓLΓR| < 1, ΓLΓR > 0), unstable exponential-like
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(|ΓLΓR| > 1, ΓLΓR > 0), stable oscillatory (|ΓLΓR| < 1, ΓLΓR < 0) and unstable oscillatory
(|ΓLΓR| > 1, ΓLΓR < 0) response.

3. Numerical and Experimental Verification

The presented theoretical analysis was verified both by time-domain transient simula-
tions using a commercial circuit-theory solver Keysight ADS™ and by measurements on a
designed and constructed low-frequency experimental demonstrator.

3.1. Simulations of the Equivalent Circuit Model

The simulation model, based on the circuit from Figure 1, comprised a positive
resistor RL that was connected to the negative resistor RR = −25 Ω via a segment of ideal
transmission line. Clearly, it is a direct one-dimensional radio freqeuncy analog of the
active metasurface system proposed in [3]. The value of the positive resistor RL was varied
in simulations. Positive RL and negative RR placed the operating point of the network in
the fourth quadrant of the graph in Figure 2. The network was excited by a single voltage
pulse and the voltage across the negative resistor RR was monitored. The waveforms
obtained by time-domain simulations, representing the four types of natural response,
are shown by solid red curves in Figure 3. The envelope and repetition frequency of all
signals were determined using Equations (6) and (7), and compared with the simulated
results in Figure 3. It was found that the simulated results are in absolute agreement with
all theoretical predictions.

(a) Unstable exponential-like response (point
P1 in Figure 2, RL = 5 Ω, RR = −25 Ω).

(b) Stable exponential-like response (point P2

in Figure 2, RL = 30.5 Ω, RR = −25 Ω).

(c) Stable oscillatory response (point P3 in
Figure 2, RL = 223 Ω, RR = −25 Ω).

(d) Unstable oscillatory response (point P4 in
Figure 2, RL = 545 Ω, RR = −25 Ω).

Figure 3. Four types of natural response. Solid and dashed red curves represent response signals and
their envelopes, analytically calculated using (6) and presuming ideal lossless transmission line. Solid
blue curve represents measurement data while the dashed purple curve corresponds to envelope
calculated by improved analytical model that takes losses into account. Simulation parameters:
excitation pulse with magnitude of 1 V, the pulse width of 100 ns, rise time of 2 ns, fall time of 2 ns,
RR = −25 Ω, Z0 = 75 Ω and τ = 360 ns.
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3.2. Transmission-Line-Based Experimental Demonstrator

In the next step, the correctness of the proposed stability criterion was crosschecked
and verified experimentally. Due to simplicity and repeatability, a negative resistor based
on a Negative Impedance Converter (NIC), similar to those reported in [4,26], was designed
and constructed. Here, in particular, a voltage-inverting NIC (VNIC) was used. The VNIC,
shown in Figure 4a, uses a single operational amplifier (OPAMP) to “negate” the feedback
resistor RF, thus generating negative resistance at the input terminals, in the same manner
as the current-inverting NIC (CNIC) detailed in [26]. Its input impedance is given with the
following expression:

ZIN = RR =
VIN
IIN

=
RF

1− G0
= −R1

R2
RF. (8)

Here, G0 represents the closed-loop gain of the OPAMP defined by the resistors R1
and R2 (G0 = 1 + R2/R1). For G0 > 1, the current passing through resistors R1 and R2
creates the voltage across the resistor R1 that opposes the referent input voltage VIN (in
stable mode, electric potentials of the positive and negative input terminals are equal, i.e.,
VD = 0, VD being a differential input voltage). This voltage inversion indeed creates a
scaled “negated” version of the resistance RF at the input port. Following the analysis
proposed in [26], one can obtain a stability circle and a stability region within the Smith
chart for the given negative resistance, representing all the passive impedances, loading
the input port of the VNIC, that ensure stability. In contrast to CNIC, if used in a system
described by the characteristic impedance Z0, VNIC-generated negative resistance must
satisfy condition |RR| < Z0 to maintain stability. Thus, in the 75 Ω system, a −25 Ω
negative resistance is chosen, which defines the shaded stability region (i.e., allows passive
loading impedances) shown in Figure 4b.

(a) A circuit model of VNIC-based negative resistance
with denoted currents and voltages.

(b) Stable (shaded) region
(RR = −25 Ω, Z0 = 75 Ω).

Figure 4. A circuit model of voltage-inverting negative impedance converter (VNIC)-based negative
resistance and corresponding stability region within the Smith chart obtained by following the
analysis similar to one proposed in [26] for generated negative resistance RR = −25 Ω in a system
with Z0 = 75 Ω.

Before choosing an OPAMP that could be used in practical realization of the VNIC,
its frequency characteristic (i.e., dispersion) must be taken into account. Equation (8)
assumes an ideal OPAMP with constant gain and infinite bandwidth. However, the
magnitude and phase of a realistic OPAMP vary with frequency. Thus, the closed-loop
gain G0 is not a constant, but a function of frequency. As frequency approaches infinity, the
magnitude of the closed-loop gain inevitably drops to zero. This gain drop is predominantly
dictated by the frequency of the first pole fP (dominant pole) of the closed-loop gain
function. Such band-limited behavior of an OPAMP causes both the dispersion of the
generated negative resistance and the occurrence of additional, unwanted input reactance
(imaginary part of the input impedance). However, these effects are negligible if the
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operating frequency is much lower than the frequency of the dominant pole fP. Moreover,
to minimize the influence of parasitic capacitance and inductance inevitably present in the
radiofrequency regime, it is convenient to select the operating band of the demonstrator in a
lower frequency range. Thus, the maximum operating frequency was set to 5 MHz. A high-
speed dual OPAMP ADA4857-2 was selected for the realization of the VNIC circuit. With
the dominant pole at approximately 100 MHz (for G0 = 2), it meets the requirements and
represents a suitable choice. Since the frequency of the dominant pole is much higher then
the maximum operating frequency ( fP > 10 fmax), it is expected that the input impedance
generated by the VNIC should behave very closely to an ideal negative resistance. Based
on the Equation (8), fixed resistors R1 = R2 = 560 Ω and trimmer potentiometer RF with
maximum resistance of 250 Ω were selected, and together with the OPAMP assembled
with respect to the circuit shown in Figure 4a. All the components were soldered on a
2× 2 cm2 printed circuit board, equipped with an input SMA connector. Following the
manufacturer’s recommendations, the OPAMP was powered symmetrically using ±5 V
DC voltage power supply.

The initial testing of the VNIC circuit was performed by measuring its input impedance
using the Rohde & Schwarz ZNC3 Vector Network Analyzer (VNA). To ensure the stability
of the VNIC during the measurement, an additional compensating resistor was used in
series with the VNIC to form an equivalent positive resistance. The input impedance of
the VNIC was extracted in post-processing, eliminating the influence of the series compen-
sating resistor through a simple algebraic manipulation. This method revealed negative
input resistance that can be adjusted from −20 Ω to −250 Ω with less than 10% error
compared to the theoretical results, in the frequency range from 100 kHz to 5 MHz. In
addition, the imaginary part of the input impedance was found to be negligible. Thus,
the prototyped VNIC-based negative resistor shows satisfactory behavior in the frequency
range of interest, as shown in Figure 5.

(a) Impedance ZIN (from 0.1 to 5 MHz). (b) Impedance ZIN (from 0.1 to 100 MHz).

Figure 5. Measurement of the input impedance generated by the VNIC, with the nominal input
resistance RR = −25 Ω, based on the circuit from Figure 4a obtained using the Rohde & Schwarz
ZNC3 Vector Network Analyzer (VNA).

A standard trimmer potentiometer was used as a variable positive resistor RL with
a maximum resistance of 600 Ω. Both the variable positive resistor and the VNIC-based
variable negative resistor RR were connected to the opposite ends of a 100 m long RG59B/U
coaxial cable (Z0 = 75 Ω, τ = 360 ns). In this way, the normalized resistances RL/Z0 and
RR/Z0 could be adjusted within a range from 0 to 8, and from 0 to−3.3, respectively. These
values belong to the fourth quadrant from Figure 2. Due to the symmetry of the second and
fourth quadrant, it was sufficient to reduce the investigation to the fourth quadrant only.

The stability was examined by measuring the voltage across the negative resistors
using the LeCroy LT374L digital oscilloscope. The measured voltage was buffered us-
ing an additional OPAMP available within the ADA4857-2 integrated circuit in a high-
impedance voltage follower configuration. The system response was measured for four
different points of the fourth quadrant shown in Figure 2, corresponding to the four char-
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acteristic types of natural response. Those four points represent the pairs of normalized
impedances RL/Z0 and RR/Z0 set by adjusting trimmer potentiometers: P1(0.07,−0.33),
P2(0.41,−0.33), P3(2.97,−0.33) and P4(7.27,−0.33). In order to successfully capture the
transient response of the system that is present only a short period of time after the
excitation, an additional synchronization mechanism is needed. Thus, an external Hewlett–
Packard 222A pulse generator was used. It generates the “enable” signal fed to the Power
Down (PD) pin of ADA4857-2. This signal “wakes up” the VNIC circuit while the pulse
generator simultaneously triggers the time base of the oscilloscope. In this way, it is possi-
ble to capture an arbitrary part of the transient event. The complete experimental setup is
detailed in Figure 6.

Figure 6. Complete measurement setup used for verification of the stability theory applied to
PT-symmetric systems proposed in [3].

3.3. Simulation and Measurement Results

Measured signals (solid blue curves) are compared with the theory and simulations in
Figure 3. At first, it can be seen that the waveform types are equivalent to those predicted by
both theory and simulations: Unstable exponential-line (Figure 3a), stable exponential-line
(Figure 3b), stable oscillatory (Figure 3c) and unstable oscillatory (Figure 3d). However,
the measured waveforms evidently differ from the simulations. The reason is that the
ideal rectangular pulse used as an excitation in the simulations is difficult to reproduce
in experiments due to the parasitics and non-ideal behavior of the active circuitry. These
imperfections, such as the band-limited and non-linear operation, also cause pulse reshap-
ing upon each reflection. Another difference is in the amplitude of the response, which is
noticeably lower than predicted. This discrepancy comes from the inevitable losses of the
coaxial cable, which were not taken into account in the theoretical model. Based on the
analysis given in Section 2, the losses within the coaxial cable contribute to the stability
of the system, dissipating the power injected by the negative resistor in addition to the
assumed dissipation of the positive resistor. Thus, the measured waveforms experience
slower growth than the related simulated ones. The theoretical model was extended to
account for the attenuation of the 0.02 dB/m characteristic for the RG59B/U coaxial cable.
The envelopes obtained by the improved analytical model are shown by the dashed purple
curves in Figure 3. It can be seen that the corrected envelopes closely follow the peaks of
measured pulses, which validates our theoretical and numerical results.

4. Discussion on Limitations

One should be aware of yet another very important limitation, which lies in the
implementation of the negative resistor circuitry. In general, a negative resistor is simply
an electric element that relates the voltage V across it to the current I through it with the
negative proportionality constant R < 0. Thus, it can be modeled using Ohm’s law V = RI
extended to negative R. While such an element does not exist in nature, a circuitry that
mimics its behavior can be designed using an NIC, as explained above. It is the designer’s
choice whether to use a voltage-inverting VNIC or a current-inverting CNIC. These two
types of NICs show very different stability properties. Sometimes, they are classified as
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open-circuit-stable (OCS) and close-circuit-stable (SCS), respectively. This classification,
however, is uninformative concerning whether a circuit is stable when terminated with
any other type of impedance [27,28]. A glimpse of a new promising approach to stability
analysis of NIC-based devices, based on relating the positive and the negative feedback
loop of an NIC, is given in [26]. Unfortunately, the stability properties of NICs are not yet
fully understood by the scientific community. As a result, the circuitry that mimics the
behavior of a negative resistor may show different stability properties that arise only from
the implementation choice, which may introduce inconsistency in the stability analysis
proposed here. To overcome this challenge, we decided to use a VNIC-based negative
resistor with the fixed resistance RR = −25 Ω that satisfies the condition |RR| < Z0,
as stated in Section 3.2. Future research efforts will be devoted to the development of
a comprehensive approach to stability analysis of NIC-based devices that avoids the
aforementioned limitation.

After the criterion (4) is verified both numerically and experimentally, having in mind
the limitation explained above, it can be safely used to accurately predict the stability
properties of the PT-symmetric system proposed in [3]. The framed circuit shown in
Figure 7 represents the equivalent circuit model of the analyzed system. Recall that
for any r ∈ R, the operating point of the unloaded framed circuit lies at the stability
margin represented by the red line in Figure 2 defined by (5a). Thus, as expected, it is
marginally stable. While we have already shown that PT-symmetric systems are necessarily
marginally stable, including the analyzed metasurface-based PT-symmetric system, in
practical realization their operating point may easily drift into an unstable region due to
the imperfection of the system components. Moreover, to exhibit some of the interesting
effects listed in the introduction, PT-symmetric systems usually need to exchange energy
with their surroundings. In particular, to exhibit the effects of negative refraction and
planar focusing, the metasurface-based PT-symmetric systems proposed in [3] require an
incident electromagnetic wave coming from free space, which is then transmitted through
the system, and radiated into the forward half-space. Thus, the additional impedances Z0,
representing the surrounding free space, are used to load the input and the output port
of the system, as shown in Figure 7. Following the proposed stability analysis, it can be
shown that such a system is stable providing that:

|r| >
√

2
2

. (9)

According to [3], the effects of negative refraction and planar focusing occur only for
the specific value of the parameter r = 0.5. Unfortunately, if r = 0.5, the condition (9) is not
satisfied, which leads to instability. This instability is what ultimately limits the practical
exploitation of the metasurface-based PT-symmetric system proposed in [3]. In [8], the
authors reported the occurrence of unstable poles in an acoustic PT-symmetric system
based on a circuit model similar to the one in Figure 7. However the mechanism and cause
of instability were not further investigated. The instability was avoided by engineering
the dispersion of the system elements and reducing the operating bandwidth. The most
recent attempts to avoid instability in PT-symmetric systems are given in [16]. Here, the
authors proposed an inherently stable, gain-free route to achieve effects similar to those
that arise from PT symmetry. The method extends the concept of virtual absorption to
implement virtual gain. Since it is fully passive, such a system is not based on the balance
of loss and gain, which may limit its performance. Moreover, it may be more sensitive
to inevitable parasitic losses ever-present in passive systems. Thus, stability analysis and
understanding the stability properties remain essential prerequisites for designing active
PT-symmetric systems.
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Figure 7. Circuit model of a metasurface-based PT-symmetric system that exchanges energy with its
environment.

5. Conclusions

In this paper we presented a stability analysis of PT-symmetric systems in general,
and its verification of the recently introduced model of metasurface-based PT-symmetric
systems. The analysis was verified both numerically and experimentally. The investi-
gation lead to the conclusion that any PT-symmetric system is necessarily marginally
stable. It was shown that such a marginally stable system may easily become unstable if
it exchanges energy with its surroundings. Thus, practical PT-symmetric systems must
be designed carefully. While the presented analysis was based on circuit theory and the
experimental verification was conducted in a lower radio frequency range, all conclusions
can be applied to any PT-symmetric system operating in any frequency range, including
optical frequencies.

Author Contributions: Conceptualization, J.L. and S.H.; methodology, J.L.; software, J.L.; validation,
J.L., I.K. and J.V.; formal analysis, J.L.; investigation, J.L.; resources, J.L. and S.H.; data curation,
J.L. and S.H.; writing—original draft preparation, J.L.; writing—review and editing, J.L., S.H. and
J.V.; visualization, J.L.; supervision, S.H.; project administration, S.H.; funding acquisition, S.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This material is based upon the work on the project “Non-Foster Networks for Tunable and
Wideband RF Devices” supported by EOARD/AFRL, Grant No. FA8655-20-1-7008, and “Electromagnetic
Structures for Emerging Communication Systems” supported by the HRZZ Grant No. IP 2018-01-9753.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

References
1. Bender, C.M.; Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 1998, 80, 5243.

[CrossRef]
2. Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947. [CrossRef]
3. Fleury, R.; Sounas, D.L.; Alù, A. Negative refraction and planar focusing based on parity-time symmetric metasurfaces. Phys.

Rev. Lett. 2014, 113, 023903. [CrossRef] [PubMed]
4. Schindler, J.; Li, A.; Zheng, M.C.; Ellis, F.M.; Kottos, T. Experimental study of active LRC circuits with PT symmetries. Phys. Rev.

A 2011, 84, 040101. [CrossRef]
5. Schindler, J.C. PT-Symmetric Electronics. Master’s Thesis, Wesleyan University, Middletown, CT, USA, 2003.
6. Valagiannopoulos, C.; Monticone, F.; Alù, A. PT-symmetric planar devices for field transformation and imaging. J. Opt. 2016,

18, 044028. [CrossRef]
7. Zyablovsky, A.; Vinogradov, A.P.; Pukhov, A.A.; Dorofeenko, A.V.; Lisyansky, A.A. PT-symmetry in optics. Phys. Uspekhi 2014,

57, 1063. [CrossRef]
8. Fleury, R.; Sounas, D.L.; Alu, A. Parity-Time Symmetry in Acoustics: Theory, Devices, and Potential Applications. IEEE J. Sel.

Top. Quantum Electron. 2016, 2. [CrossRef]
9. Fleury, R.; Sounas, D.; Alù, A. An invisible acoustic sensor based on parity-time symmetry. Nat. Commun. 2015, 6, 5905.

[CrossRef]
10. Triverio, P.; Grivet-Talocia, S.; Nakhla, M.S.; Canavero, F.G.; Achar, R. Stability, causality, and passivity in electrical interconnect

models. IEEE Trans. Adv. Packag. 2007, 30, 795–808. [CrossRef]
11. Monticone, F.; Valagiannopoulos, C.A.; Alù, A. Aberration-free imaging based on parity-time symmetric nonlocal metasurfaces.

arXiv 2015, arXiv:1509.07300.

http://doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1103/PhysRevLett.113.023903
http://www.ncbi.nlm.nih.gov/pubmed/25062184
http://dx.doi.org/10.1103/PhysRevA.84.040101
http://dx.doi.org/10.1088/2040-8978/18/4/044028
http://dx.doi.org/10.3367/UFNe.0184.201411b.1177
http://dx.doi.org/10.1109/JSTQE.2016.2549512
http://dx.doi.org/10.1038/ncomms6905
http://dx.doi.org/10.1109/TADVP.2007.901567


Photonics 2021, 8, 56 11 of 11

12. La Spada, L.; Vegni, L. Metamaterial-based wideband electromagnetic wave absorber. Opt. Express 2016, 24, 5763–5772. [CrossRef]
[PubMed]

13. Kishor, K.K.; Hum, S.V. An amplifying reconfigurable reflectarray antenna. IEEE Trans. Antennas Propag. 2011, 60, 197–205.
[CrossRef]

14. Landsberg, N.; Socher, E. A low-power 28-nm CMOS FD-SOI reflection amplifier for an active F-band reflectarray. IEEE Trans.
Microw. Theory Tech. 2017, 65, 3910–3921. [CrossRef]
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