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Abstract: Recent global warming has resulted in shifting of weather patterns and led to intensifica-
tion of natural disasters and upsurges in pests and diseases. As a result, global food systems are
under pressure and need adjustments to meet the change—often by pesticides. Unfortunately, such
agrochemicals are harmful for humans and the environment, and consequently need to be monitored.
Traditional detection methods currently used are time consuming in terms of sample preparation,
are high cost, and devices are typically not portable. Recently, Surface Enhanced Raman Scattering
(SERS) has emerged as an attractive candidate for rapid, high sensitivity and high selectivity detection
of contaminants relevant to the food industry and environmental monitoring. In this review, the
principles of SERS as well as recent SERS substrate fabrication methods are first discussed. Following
this, their development and applications for agrifood safety is reviewed, with focus on detection of
dye molecules, melamine in food products, and the detection of different classes of pesticides such as
organophosphate and neonicotinoids.

Keywords: Surface Enhanced Raman Scattering (SERS); fabrication; application; agriculture;
food safety

1. Introduction

Climate change is manifesting itself with increased temperatures more favorable to
spread of pests and diseases. This has resulted in more challenging food production as well
as higher numbers of foodborne disease outbreaks. To try to protect yield and ensure food
safety, farmers have little choice other than treating their crop with a range of pesticides [1].
Unfortunately, there is more and more evidence showing that these phytosanitary products
would do harm to humans, and also lead to the loss of biodiversity, leading to accumulation
in soil and deleterious effects on indigenous microbiome [2]. As a result, it is necessary
to monitor biological and chemical contamination in food systems throughout the whole
food chain.

Traditional detection methods in food and agriculture systems are based on chromatog-
raphy techniques coupled with mass spectrometry. These methods are time consuming,
high cost, and laboratory based. Therefore, implementation of new portable technologies
is needed to provide pesticide usage monitoring and regulation.

In this regard, Surface Enhanced Raman Spectroscopy (SERS) has recently attracted
a lot of attention as it addresses these requirements. The advantages of SERS include
ultrasensitive detection, fast turnover, in-situ sampling, on-site monitoring, low cost,
portability of sensors, and the suitability for large-scale screening. Sensors based on SERS
have been shown to provide real-time data on soil nutrients [3,4], monitor water run-off
and contaminants in water supplies [5], and also detect pesticide residues in food [6,7]. The
technique has also found applications in a wide range of sectors including the following:
industrial, material, forensic, biological, food safety and electrochemical fields [8–18], with
the most common chemical contaminants within environmental and food sectors being
pesticides, adulterants, antibiotics and illegal drugs and illegal food dyes.
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In this paper, we review the main SERS substrate fabrication methods and bring
a special focus on applications for the detection of hazardous chemicals in both food
and agriculture.

2. Raman Spectroscopy and Surface Enhanced Raman Scattering (SERS)

Raman spectroscopy was first discovered in 1928 by Sir Chandrasekhara Venkata
Raman. It was observed that when light excited a molecule, the majority of light was
elastically scattered—this is Rayleigh scattering where Eincident = Escattered, but also a small
fraction of photons was inelastically scattered—this corresponds to Raman scattering
where Eincident 6= Escattered. When Escattered < Eincident, it is called a Stokes shift and when
Escattered > Eincident, it is an anti-Stoke shift. Figure 1 shows an energy diagram for the two
types of scattering [19,20]. Each peak on the Raman spectrum corresponds to a vibrational
mode of the bonds of the molecule under Investigation. Raman scattering can occur in
the near ultraviolet, visible, or near-infrared ranges [21,22]. However, Raman scattering
efficiency is very low, with typically only 1 in 108 incident photons being Raman scattered.
This results in a low signal/noise ratio and can make it impractical and vulnerable to
background interferences [23]. Fortunately, the efficiency of this scattering can be increased
by using nanostructured plasmonic metals in a technique known as Surface Enhanced
Raman Spectroscopy (SERS).

Figure 1. Schematics of energy levels of a molecule for Rayleigh and Raman Scattering [24].

SERS effects were first observed by Fleischman et al. in 1974, when acquiring Raman
spectra of pyridine on electrochemically roughened silver [25]. In SERS, lasers are used
to excite plasmons in nanostructured metallic surfaces (Au, Ag, Cu, etc.). The SERS en-
hancement is thought to be two-fold. The first enhancement is based on an electromagnetic
enhancement [26,27]. due to localised surface plasmons, while the second originates from
chemical resonant energy charge transfer [25,28–30]. The enhancement factor (EF) typically
reaches 106, which drastically improves the sensitivity of the plasmonic based device.

2.1. Localized Surface Plasmon Resonance (LSPR)—Electromagnetic Enhancement

When laser light excites a metallic nanostructure, the free electrons on its surface
oscillate. This collective oscillation is known as Localised Surface Plasmon Resonance
(LSPR) [31]. The excited LSPR makes a target molecule highly polarisable and forms a large
electric field on the surface. This electric field induces dipole moments in a molecule on the
surface of nanostructures, and sequentially produces Raman enhancement. These large,
localised electromagnetic fields present around the nanostructures or in nano-gaps between
closely-spaced nanostructures are known as “hot spots” [32], see Figure 2. The intensities
of the Raman scattered photons are susceptible to enhancement, if their wavelengths are in
resonance with the plasmon mode of the nanostructure. LSPR enhancement depends on
the size, shape, composition, orientation and local dielectric of the nanostructure. This will
be discussed in the next section.
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Figure 2. Plasmonic effects: Electric Field around two nanoparticles and the presence of a
SERS “hotspot”.

2.2. Chemical Enhancement

The origins of the chemical mechanism for SERS enhancement are still under discus-
sion [33]. One hypothesis is that it is based on the change in polarisability of molecule
adsorbed to a metal surface. Upon absorption of the incident laser light, charge transfer oc-
curs between the molecule and the metal [34,35]. It is generally estimated that the chemical
effect contributes to a factor of 102 of the total SERS enhancement [36].

2.3. Enhancement Factor (EF)

The enhancement factor (EF) depends on molecular adsorption on plasmonic surface,
as well as the morphology, roughness and homogeneity of this surface and the laser
wavelength, etc. The calculation of the enhancement factor is EF = ISERS/(µM µS AM)

IRS/(CRS Heff)
[37],

where ISERS is the intensity of Surface Enhanced Raman signal, IRS is the intensity of the
normal Raman signal, µM (m−2) is the surface density of NPs contributing to enhancement,
µS (m−2) is the surface density of molecules adsorbed to NP, AM (m2) is the surface area of
metallic NPs, CRS (M) is the concentration of the solution used for non-SERS measurements
and Heff (m) is the effective height of the scattering volume.

Experimental values of EFs are typically in the range of 104 to 106. However, elec-
tromagnetic “hotspots” are claimed to have provided massive enhancements of between
1011 to 1014 orders of magnitude of the SERS signal [38]. This theory is still being largely
researched, as it is key to single molecule detection, which may be achieved from selective
excitation of single molecules [32,39,40].

3. Fabrication of SERS-Active Substrates

SERS substrates need nanostructured metallic surfaces with well-defined distances in
the region of 10–100 nm between nano clusters [41]. By decreasing the distance between the
nanostructures, the electric field becomes more localized and concentrated, and the corre-
sponding SERS intensity signal increases accordingly. An example of this was discussed by
Lee et al. where the distance between metallic clusters was decreased from 30 nm to 10 nm,
and an intensity increase of over 200-fold was observed [42]. There are two fundamentally
different approaches to the development of SERS-active nanostructures with “hotspots”:
bottom-up assembly and top-down fabrication have been used [43].
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3.1. Bottom-Up Assembly

Bottom-up approaches refer to the fabrication of nanostructures by chemical syn-
thesis [44,45], colloid aggregation [41,46], electrochemical deposition [47–51], and self-
assembly [52–54]. These methods have been used to fabricate a variety of nanostructures
ranging from a few nanometers to a few hundred nanometers in size. Metal nanoparticles
can be synthesised chemically at low cost with tailored geometries such as nanoparti-
cles [55,56], nanowires [57,58], nanospheres [55,59,60], nanorods [61–64], nanotubes [65,66],
nanotriangles [67], nano flower [68], nano-urchins [69], and nanoshells [70,71], see Figure 3.
Besides pure metallic nanoparticles, composite materials such as bimetallic or hybrid
nanostructures [72], Graphene Oxide/Au nanostars, [73], SiO2@TiO2@Ag [74] etc. and
other composite material based on molecular imprint (MIP) have also attracted research
attention [68,74–77] and have been reviewed recently [78].

Figure 3. TEM/SEM images of (a) Ag/Au nanocubes [79], (b) GO/Au nanostars [73], (c) Ag
nanodendrides [48], (d) Au nanocages [80], (e) Au nanobowls with Au seed inside [81], (f) gold
nanotriangles [82], (g) Gold octahedrals [83], (h) Au nano ring [84], and (i) gold hollow stars [85].
Scale bar: 100 nm.

Metal NPs such as gold or silver possess great potential for numerous applications in
SERS [86,87]. The most common fabrication of SERS substrates are gold (Au) and silver
(Ag) colloids in diameters between 10 and 100 nm, as they yield the greatest enhancements
at their “hot spots”. These nanoparticles constitute the fundamental SERS “building blocks”
and can be assembled in different ways.

For example, they can be presented in a suspension or sol-gel in the presence of the
analyte of interest [88–90]. The nanostructures, together with the analyte suspension, can
then be drop-casted onto a substrate to create hot spots for Raman enhancement. The disad-



Photonics 2021, 8, 568 5 of 24

vantage of this method is that the nanoparticle suspensions must be mixed with the analyte
solution for SERS applications [91,92]. However, this drawback was addressed by Yang
et al., who grew Ag nanoshells on thiol-modified silica NPs, and deposited them directly on
apple skin for analysis [93]. Although there is a greater enhancement observed with these
substrates, it is hard to obtain a homogeneous surface to get uniform enhancement. Addi-
tionally, they are not suitable for field analysis due to their complex sample preparation
steps. In contrast, solid based devices may be more suited for portable and remote sensing,
i.e., NPs that are immobilised on a solid substrate [94–97]. For example, Fan et al. fabri-
cated self-assembled Ag NPs onto glass slides by using 3-mercaptopropyltrimethoxysilane
(3-MPTMS) [97] This transformation stabilizes the Ag NPs, avoids the usual aggregation
process and produces self-sustaining and portable SERS active substrates. Yu et al. fab-
ricated silver colloidal nanoparticles for SERS analysis but alternatively injected them
through a filter membrane, thus entrapping them in the filter. The filter therefore was
used as the solid portable substrate. It demonstrated 1–2 orders of magnitude better SERS
enhancement than the typical approach [98] In addition, Shiohara et al. fabricated gold
nanostars and deposited them onto a polydimethylsiloxane (PDMS) platform for SERS
evaluation. They used back side illumination for the detection of selected pesticide on fruit
skin [99].

Other supports also add additional functionalities to SERS devices. Optical fiber-based
SERS sensors have in this regard generated steady interest as a versatile means of extending
SERS for portable field applications [63]. There is also a growing interest in the fabrication
of flexible SERS substrates. These substrates are ultra-low cost, disposable, easy to use
and highly suitable for on-site sensing applications. Polavarapu et al. fabricated SERS
substrates by directly writing on paper using a pen filled with plasmonic nanoparticle
inks to detect thiabendazole, which is a fungicide and parasiticide [100]. Lee et al. also
fabricated SERS paper substrates impregnated with gold nanorods by dip coating [101]
Chen et al. combined adhesive tape and SERS activity of Au nanoparticles to fabricate a
“SERS tape” substrate. The Au particles were deposited onto the sticky side of the tape that
was used to extract pesticides from different kinds of fruit and vegetable peels [102]. These
flexible sensors fabricated by different methods dramatically improve the portability and
feasibility of SERS detection for pollutants as a promising technique for both laboratory
and field-based detection [102].

Overall, bottom up assemblies have shown very high enhancement but they often give
inconsistent performance. This is mainly because of a lack of structural uniformity over the
entire area of the substrate which could result in poor reproducibility and inhomogeneity,
as different size, shape, composition, orientation and local dielectric of the plasmonic
structure have different enhancement factors as mentioned before. The arrangements of
the aggregates on the nanostructured surface are also hard to control.

3.2. Top-Down Synthesis

Top-down approaches for nanofabrication are scalable and highly reproducible. Top-
down approaches include lithography techniques (electron-beam (E-beam) [103–105] and
nanoimprint lithography [106,107]), laser etching together with film deposition (sputtering,
metal evaporation, atomic layer deposition) [108,109], templating (using anodic aluminium
oxide [65], porous polymer (Polyester(PS) [110], masks or molds [57]), inkjet printing [111].

E-beam and nanoimprint lithography are fabrication methods used to create patterns
with dimension down to 10 nm. In E-beam lithography, the photon resist is crosslinked
after being exposed to the electron beam. The exposed resist can then be washed away,
leaving only the unexposed resist on the substrate. Metal layer is then evaporated onto
the whole substrate and the unexposed polymer is then removed together with its metal
over-layer, leaving only the metal pattern on the substrate. SERS substrates with various
geometries such as nanoparticle dimers have been fabricated using E-beam lithography,
see Figure 4a–e.
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Figure 4. TEM and SEM images of top down approaches including E-beam fabricated (a) gold
nanodisks [104], (b) Au star-like arrays [112], (c) Au diamond shaped structures [112], (d) Au dimple
structures on PEN films treated by ion beam irradiation [113], (e) Au NPs distributed on the nanotips
of canonical nanopores rims [114]; AAO templated structures: (f) Au nanostructure arrays [115],
(g) Nano-flower like Ag/AAO [116], (h) Au nano-island @ Ag-frustum arrays [117], and (i) Au
nanobipyramids self-assembled onto the AAO substrate [118]. Scale bars are all 100 nm without
further indication in graphs.

Besides, Hu et al. fabricated polymer nanofinger structures on Si wafers using nanoim-
print lithography, and coated the nanofingers with 70 nm of gold by e-beam evaporation,
followed by exposure to solvent, inducing a leaning or self-closing of the nanowires, creat-
ing hot spots [119]. The fabricated arrays of electromagnetically coupled Ag nanoparticles
on Si, could increase Raman efficiency by controlling the interparticle separation between
Ag nanoparticles. These substrates showed high SERS enhancement with good control and
reproducibility. However, lithography based methods, although extremely tuneable and
scalable, suffer from high cost, slow throughput and are time consuming.

Laser-induced fabrication of SERS substrates has attracted research attention as it is
scalabe and cost-effective. The fabrication of laser-induced SERS substrates always involves
two steps. Firstly, fabrication of a nano/micro patterned substrate using ultra-fast laser
pulses followed by physical vapor deposition to deposite the metal layer on the nano/micro
patterned substrates in order to get plasmonic structures. Yang et al. used a nanosecond
pulsed laser (1064 nm, pulse duration (τ) (full width at half maximum, FWHM) 5 ns, pulse
repetition rate (PRR) 100 kHz, spot size~20 µm and laser ablation speed (ν) 100 mm/s)
ablation system to create micropatterns and generate different size nanoparticles [108].
The ablated Si surfaces were then deposited with Ag by electron beam evaporation. The
enhancement factor of the fabricated substrates was estimated to be ~5.5 × 106. Diebold
et al. fabricated Ag SERS substrate using a femtosecond laser (100-fs pulses at a repetition
rate of 1 kHz, 800-nm center wavelength) structuring process [120]. This pulse train was
frequency-doubled to a center wavelength of 400 nm through a thin BiBO3 crystal. They
used an n-type silicon wafer as the substrate. These laser pulses had an average fluence
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of 10 kJ/m2 at the surface of a silicon wafer. A thermal deposition at a rate of 0.15 nm/s
onto the structured silicon with different thicknesses of 10, 30, 60, 80, 100, and 200 nm was
undertaken to get the optimized Ag nanostructure sizes for enhanced SERS performance.
Similarly, Indrė Aleknavičienė et al. fabricated fast and scalable SERS substrates at low cost
using ultrashort-pulse laser-induced (280 fs, 100 kHz, 350–380 nJ) plasma-assisted ablation
(LIPAA) of soda-lime glass. The fabrication speed was as fast as 150 mm/s [121]. After the
amorphous nanostructure formation on the glass surface, deposition of a 170 nm silver
layer by vacuum deposition (around 100 nm in diameter, forming 1–3 µm size dendrimers)
was applied to the glass substrate. This SERS substrate achieved an average enhancement
factor (EF) of 3.0 × 105 evaluated using thiophenol.

Inkjet printing combined with electrochemical deposition is more convenient than
e-beam lithography in terms of time and cost, and allows larger area fabrication at the
same time. Inkjet printing method can be used both on solid substrate or on flexible
substrate [122–134]. However, the choices of ink for inkjet printing are currently limited.

SERS substrates fabricated by templating methods is another widely used approach and
has been demonstrated by a number of groups, see Figure 4f–i. Shanshan Shen et al. have
studied substrates based on CdTe quantum dots modified polystyrene (PS) spheres with Ag
nanoparticle caps. These substrates showed high enhancement factor (0.71 × 106) by using
4-ATP as the model molecule. [135]. Another very popular method is to use Anodised Alu-
minium Oxide (AAO) as a template to produce nanotubes [136]. Aluminium foil is anodised
in acid to create nanopores, which are then used as a template to fabricate SERS substrates.
Metals can be pulsed electrodeposited inside the template channels [137], or deposited via
electron beam evaporation [138]. Alternatively, polymers can be employed to template the
AAO. Lovera et al. fabricated super hydrophobic PS nanotubes by wetting commercial AAO
filters and depositing silver onto the resulting PS nanotube structures [65]. Similarly, Zhang
et al. patterned Polyethylene terephthalate (PET) on a nanostructured AAO template and
deposited Au onto the polymer to create Au ananosturcture arrays. [115]. Other templates
used for the fabrication of nanowires and nanotubes for SERS substrates include Polycar-
bonate membranes (PCM) [139–141], Polystyrene microspheres (PSM) [142–144] and nano-
channel glasses. Charconnet et al. fabricated superlattices by templated self-assembly of
gold nanoparticles on a flexible support, with tunable lattice-plasmon resonances through
macroscopic strain. They found that the highest SERS performance was achieved by match-
ing the lattice plasmon mode to the excitation wavelength, by post-assembly fine-tuning of
long-range structural parameters [145]. The above substrates fabricated with “top-down”
methods are manufactured reproducibly with high throughput, but often produced weaker
signals than ‘bottom-up’ method due to larger distance between the nano structures and
smaller surface density for nano particles that contribute to SERS signal. It involves also
the use of expensive equipment and/or complex procedures. Combination of bottom-up
and top-down fabricate method could increase the Raman intensity by creating a rougher
and more homogeneous plasmonic surface [146].

4. Chemical Functionalization of SERS Substrates

SERS substrates without functionalization have limitations when dealing with real
samples, e.g., strong background noise from the environment, or dealing with macro
molecular such as DNA/proteins, which would block the SERS signal. For this reason,
functionalization of SERS substrates is often undertaken to improve the selectivity or sensi-
tivity in identifying the specific target analyte, which could lower detection time and limit
of detection (LOD) [147]. The most widely used functionalization method is the attachment
of self-assembled monolayer (SAM) of thiols to the silver or gold metallic nano structures.
Functional groups along the thiol are used to phyisorb or chemically bind the analyte of
interest to the substrate, thereby pre-concentrating the analyte at the surface leading to a
subsequent increased in sensitivity. The thiol attaches to the metal nano structure surface
owing to the strong affinity of sulphur with metals. However, the mechanism for the thiol
group binding to the metal surface is not totally understood yet. One theory is that the
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thiol moieties chemisorb to planar gold surfaces, with the loss of hydrogen during the
formation of the bond [148]. In 2003, Meirav Cohen-Atiya et al. studied adsorption of
thiols on different metal surfaces by potentiometric measurements [149]. This adsorption
process involves several complex steps including negative charge transfer and discharge
through a reduction process. These steps related to the metal, the surface state of the metal,
and the end functional groups in thiols. In 2014, Xue et al. used AFM to study the force
between Au NPs and thiols under different experimental condition including oxidized
Au surface and reduced Au surface with different pH effects; they stated that the bond
between Au and thiol is a covalent bond [150]. In 2019, Inkpen and colleagues suggested
that in gold–thiol SAMs prepared from solution deposition of dithiols, the gold–sulfur
coupling had a physisorbed character, by both experiment and density functional theory
(DFT) caculation [151]. Henrik Grönbeck et al. suggested the role of the thiol chain length
must be considered when accessing the stability of monolayer systems on surfaces and
clusters [152]. The formation of the Metal-S bond was not always very strong and the
attachment of the thiol to the metal surface often happens in a few seconds. In order to gain
homogeneous thiol self-assembly layer, longer incubation times, typically 24 h, are required.
Thiol concentration affects binding result [153], and spacing between thiols can be adjusted
by adding different thiols. Some bio-sensors based on thiolated single stand-DNA [154] or
thiolated anti-body [155] have been used to detect DNA/RNA/antigen in environment,
while thiol-aptamers are also used for DNA detection, see Figure 5.

Figure 5. Different functionalisation thiols applied to metal nanoparticles: thiol-ss-DNA, thiol-
anti-body, thiol-ds-DNA, thiol-PEG.

The interaction between antibody-antigen is considered strong due to the presence of
electrostatic forces such as hydrophobic interactions, hydrogen bonds, van der Waals forces
or ionic bonds [156]. Functionalization of SERS substrates with antibodies has gained much
interest in recent years because of the significant level of sensitivity and selectivity that can
be achieved with them [157]. Aptamers are single-stranded DNA sequences that can be
designed to capture specific chemicals. Thiolated aptamers conjugated onto metal nano
structures can capture and combine with the targeted chemicals to get surface enhanced Ra-
man spectra. Sensors based on aptamers and SERS have been used for detecting pesticides,
DNAs, RNAs, uranyl, biotoxin, pathogen, hazard foodborne etc. [158–163]. Gold/silver
nanoparticles modified with polyethylene glycol (thiol-PEG) provide a capping system
that stabilizes the antibody and avoid the reticular endothelial system [129,164,165].

5. Application of SERS in Agri-Food
5.1. Detection of Pesticide Residues

According to The United Nations Population Division, it is estimated that in 2050, the
global population will reach ~9.7 billion, 30% more people than in 2017. A key challenge
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therefore, is that food production must keep pace with population growth. To this end,
a variety of interventions have been put in place over the years to reduce losses due to
disease and pests. Pesticide usage is essential in modern agricultural practices to protect
crops and increase yield. There are currently more than 1000 pesticides used commercially
around the world to ensure food is not damaged or destroyed by pests. Each pesticide
has different properties and toxicological effects. The main drawbacks of pesticides is
their potential toxicity to humans and other non-targeted organisms, which can result in
significantly reduced biodiversity, through environmental contaminations in soil, water,
and other vegetation [166,167]. The widespread use of pesticides therefore needs to be
monitored and controlled [168].

Pesticides are classified by (i) the mode of entry, (ii) their function and the pest
organism they kill, and (iii) their chemical composition. Based on chemical composition,
pesticides are classified into four main groups, namely, organochlorines, organophosphorus,
carbamates and pyrethrin/pyrethroids; see Table 1. Organochlorines pesticides (also
known as chlorinated hydrocarbons) are organic compounds attached with five or more
chlorine atoms. Organophosphates are derivatives of phosphoric acid, while carbamates
derived from carbamic acid. Synthetic pyrethroid pesticides are group of organic pesticide
that can be synthesized by duplicating the structure of natural pyrethrins.

Table 1. Four categories of pesticides classified by chemical composition.

Pesticides Category Examples Degradation in the Environment

Organo-chlorines
DDT, Chlorinated cyclodienes (aldrin, dieldrin, endrin,
heptachlor, chlordane and endosulfan), dicofol, mirex,

kepone, and pentachlorophenol

Long term residual effect in the
environment

Organo-phosphates

Parathion, malathion, methyl parathion
chlorpyrifos, diazinon, dichlorvos, phosmet,

fenitrothion, tetrachlorvinphos, azamethiphos,
azinphos-methyl, terbufos

Biodegradable

Carbamates Aldicarb, carbofuran, carbaryl, ethienocarb,
fenobucarb, oxamyl, and methomyl.

Easily degraded under natural
environment with minimum

environmental pollution

Pyrethroids delatmethrin, cyfluthrin, befenthrin,
lambda-cyhalothrin, permethrin.

Non-persistent, and break down easily on
exposure to light.

Current detection methods of pesticides include high pressure liquid chromatography
(HPLC), gas chromatography (GC), liquid chromatography (LG), mass chromatography
(MC), spectrofluorimetric techniques as well as electrochemical methods. Han et al., for
example, reported 302 targeted contaminants in catfish muscle by fast low-pressure GC–
MS/MS and UHPLC-MS/MS methods [169]; Velkoska-Markovska, L. et al. detected
malathion using liquid chromatography [170]; Wang et al. detected organic phosphates
(OPs) using fluorescent probe [118]. Geto et al. used screen-printed carbon electrodes
electrochemical sensors to detect bentazone in water source [171]. Santana et al. detected
Carbendazim using electrochemical detection [172].

There are growing demands for the development of novel analytical techniques for a
variety of pollutants affecting crops, for example, pesticides. In this respect, methods based
on SERS have attracted attention. The first SERS study of pesticides was the detection of
organophosphorus pesticides in 1987 by Alak et al. [173]. Since then, the potential toxicity
to humans, animals, and the environment has been reported, and tolerance levels were
introduced for a large number of harmful pesticides [174,175]. SERS detection methods
have developed considerably, resulting in a large number of the more recent reports em-
ploying in-situ SERS detection methods on the surface of different foods [93,176]. A search
on Web of Science with key words combining the topics of “surface enhanced Raman” and
“pesticides” revealed 432 publication results up to 12 November 2021. The majority of SERS
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and pesticide-related researches demonstrated detection of organophosphate (OP) insec-
ticides, for example, phosmet [176,177], parathion-methyl [178], malathion [170,179,180],
chlorpyrifos [181–183]; see Table 2. Other SERS pesticide studies included fungicides
(thiram [184], thiabendazol [185,186]), herbicides [179,180,187,188], and neonicotinoids
insecticides (imidacloprid [189], thiacloprid [190], acetamiprid [191,192]).

Amongst the pesticides, organophosphates (OP) represent the largest class, mak-
ing up to 50% of the neurotoxic agents in chemical pesticides [193]. Most OP usage is
agricultural, since the Environmental Protection Agency banned their residential use in
2001 [194]. However, their human and animal toxicity still make them a societal health and
environmental concern [195–197]. Moreover, pesticides at low concentration have been
detected in food and drinking water [182,198–201]. Liu et al. reported on the use of silver-
coated gold bimetallic nanoparticles; their Raman Enhancement depends on the silver
shell thickness, for in situ detection of a range of pesticides on fruit peels without further
sample preparation, with a limit of detection (LOD) below the required maximum residue
levels (MRL) [202]. However, as described above, colloidal based solutions are not ideal
for portable applications while solid SERS substrates that can be prepared in advance are
more suitable. For example, Chen et al. used “SERS tape” to extract OP pesticides (thiram,
chlorpyrifos, methyl parathion) from different kinds of fruit and vegetable peels [102]. The
tape is placed on to the surface of the produce and peeled off for SERS analysis. This is
non-invasive and requires no sample or substrate preparation. Additionally, Li et al. have
created a ‘smart dust’ that easily spreads over a probed surface for in-situ SERS measure-
ments [203]. This method requires no preparation or particle aggregation/concentration
on the substrate. Their shell-isolated nanoparticles are used to analyse residues of OP
pesticide parathion, on a fresh orange. They present comparable results between a normal
Raman and a portable Raman, demonstrating the substrates potential use in-field.

Table 2. Organophosphates (OP) detection by SERS in food industry and environment monitoring.

Organophosphates (Matrix) SERS Substrate LOD (Reported) LOD
(Normalised)

Excitation
Wavelength

Phosmet

Ooling tea [204] Ag NPs 0.1 mg/kg 0.1 ppm 633 nm

fruit [205] multi-walled carbon
nanotubes 0.5 mg/kg 0.5 ppm 785 nm

paddy water [206] Au nanorods 0.25 mg/L 0.25 ppm
Portable Raman

spectrometer,
785 nm

fruit skin [207] polyurethane-Ag NPs 0.6 µg/mL 0.6 ppb 785 nm

Plant Surfaces [208] polyurethane
micelle/Ag NP 0.08 g/mL 80 ppm /

Parathion-methyl

fruit or vegetable
peels [209]

Snowflake-like Au
NPs 0.026 ng/cm / 638 nm

solvent [210] Ag NP decorated
ZnO-nanorods 10−8 M 2.63 ppb 532 nm

solvent [211] nanoporous structure 12 ppb 12 ppb 785 nm

Malathion solvent [212] nanostructured Ag 10 nM 3.30 ppb 632.8 nm

Chlorpyrifos

tomato surface [183] Ag colloid 10−9 mol/L 0.35 ppb 638 nm

soil [213] Au NP 10 ppm 10 ppm 785 nm

fruits [214] Ag NP 10 ng/mL 10 ppb 633 nm

Neonicotinoids are a more recent and relatively powerful class of insecticide, and
since the introduction of imidacloprid in 1991, they have been the fastest-growing class
of insecticides in modern crop protection [215], representing almost 17% of the global
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market [216]. Typical detection methods of neonicotinoids are based on enzyme linked
immuno-sorbent assays (ELISA) [217,218], HPLC- or GC- mass spectrometry [219,220],
surface plasmon resonance [221], and fluorescence spectroscopy [222], none of which are
suitable for field analysis. Neonicotinoids are extremely effective against herbivorous
insects [223], while having perceived low toxicity to mammals, birds and fish [224]. This
has led to their widespread uptake for use on a variety of crops. However, concerns have
been raised recently about environmental impact in affecting the homing capacity of honey
bees, resulting in global colony collapse of the pollinator population [2,225]. Consequently,
the European Union enforced a temporary ban (Dec 2013) [226] reducing the MRL of
neonicotinoids to between 0.01 to 3 mg/kg for many fruits and vegetables [227,228].

Studies of detection of neonicotinoids are shown in Table 3. For example, Cao et al. syn-
thesized three types of AuNP/MOF (metal–organic framework) composite to investigate
the interaction between acetamiprid and the bridging molecules of the MOFs. Acetamiprid
in this case was used to evaluate the characteristics of the SERS substrates. LODs of 0.02 µM,
0.009 µM, and 0.02 µM were achieved for the three composites, which could satisfy the
requirement of detection according to the MRLs of acetamiprid. [229] Yang et al. used
SERS to evaluate the penetration behaviors of four pesticides (acetamiprid, thiabendazole,
ferbam and phosmet) in a variety of fresh produce matrices. They used a pesticide/AgNP
complex deposited onto the external surfaces of different fresh produce and measured the
penetration depth of the complex using SERS [230]. Although the results are promising,
this method requires complex sample preparation with the pesticide and AgNP, including
washing steps, and is not ideal for farm-side analysis. On the other hand, Wijaya et al.
employed silver dendrites for SERS-based detection of acetamiprid in apple juice and from
swabs of the apple surface [231]. The TQ Analyst Software (Thermo Fisher Scientific) was
used for SERS spectral data analysis, with second-derivative transformation employed
to remove baseline and separate overlapped peaks. Outlier peaks were also removed
to gain a more accurate quantification results. Acetamiprid detection was determined
using principal component analysis (PCA) and retains the principal components (PCs) that
capture the variation between sample treatments. This method does not need pre-treatment
for the apple juice samples and the use of the swab is non-invasive to the fruit. This method
therefore has the potential to be used for on-site pesticide detection.

Table 3. Neonicotinoids detection by SERS in food industry and environment monitoring.

Neonicotinoids SERS Substrate LOD (Reported) LOD
(Normalised)

Excitation
Wavelength

Acetamiprid

Solvent [229]
AuNP/MOF

(metal–organic
framework) composite

0.009 µM 2 ppb 780 nm

apple juice [232]

Gold nanoparticles
(AuNPs) bonded with

polyadenine
(polyA)-mediated aptamer

and Raman tag
(MMBN-AuNPs-aptamer)

6.8 nM 1.514 ppb 532 nm

solvent [233] co-doped N/Ag carbon
dot 0.006 µg/L 6 ppt 633 nm

green tea [234] Au NPs 1.76 × 10−8 M 3.91 ppb
micro-Raman
spectroscopy,

785 nm
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Table 3. Cont.

Neonicotinoids SERS Substrate LOD (Reported) LOD
(Normalised)

Excitation
Wavelength

Imidacloprid

solvent [235] 3-D Ag dendrites on Paper
substrate 0.02811 ng/mL 0.02811 ppb 633 nm

extract solution
from apple [214] Ag NP coated glass 50 ng/mL 50 ppb 633 nm

green tea [236] flower shaped Ag
nanostructure 10−4 µg/mL 10−4 ppm 785 nm

waste water
treatment [237]

r-GO supporting Ag
meso-flowers and

phenyl-modified graphitic
carbon nitride

10 mg/mL 104 ppm 632.8 nm

Solvent [238] Ag nanostructures on
PVDF 1 ng/mL 1 ppb 514 nm

fresh tea leaves;
apple peels [239] Au NPs 0.5 mg/kg;

0.02 mg/kg
0.5 ppm;
0.02 ppm 780 nm

Thiamethoxam
solvent [240] Au NPs 0.1 ng/mL 0.1 ppb 785 nm

solvent [241] Ag nano structure g/mL order 106 ppm order 532 nm

Thiacloprid fruit [242] Au@Ag NPs 0.1 mg/kg 0.1 ppm 633 n

5.2. Detection of Chemical Additives
5.2.1. Dye Molecules

Dye molecules are used in industries to colour different materials such as silk, wool,
cotton and paper. Unfortunately, the wasted water from these industries cause pollution in
aquaculture and also cause serious toxic, carcinogenic and mutagenic effects in mammalian
cells [243]. Besides, Malachite green and Crystal violet have been used for the treatment of
fungal, parasitic and protozoan diseases in fish, and it is found to absorb and metabolise
in tissues of fish [244]. The detection of dye molecules such as rhodamine 6G (R6G),
malachite green, crystal violet (CV) and 4-aminobenzenthiol are the most reported chemical
contaminants due to their ease of detection. These dye molecules are highly Raman
active and used indiscriminately as antimicrobials in aquaculture. Moreover, the most
significant and influential papers in this field have employed these dye molecules to study
single molecular SERS detection [245], enhancement factors [37], and the mechanisms of
SERS [246].

5.2.2. Melamine

In 2008, a sanitary scandal involved the intentional contamination of milk powder
with melamine to give a false appearance of high protein levels [247]. Monitoring the level
of residual melamine has since become important for the dairy industry. Regarding SERS,
melamine is probably the most widely documented food adulterant, with Web of Science
literature search revealing 309 articles up to 12 November 2021. The majority of melamine
detection researches that employ SERS substrates are based on Au and Ag nanoparticle
fabrication. Gold substrates include: Au colloids [248], Au NP agglomerates [249–251],
4-mercaptopyridine-modified Au NPs [252], and magnetic Au NPs [253], to name a few.
Similarly the silver SERS substrates include: Ag Colloids [254], Ag NP agglomerates [255],
Ag NP coated Ag/C nanospheres [256], Ag NP coated polystyrene nanospheres [144,257],
cyclodextrin-coated Ag NPs [258], functional graphene/Ag nanocomposite [259].

Peng et al. used self-assembled vertical arrays of nanorods to detect melamine
in methanol [260] and similarly, Hu et al. coated Ag nanoparticles on the surfaces of
Fe3O4@SiO2 composite microspheres to detect a melamine methanol solution [261]. Nei-
ther of these articles demonstrated melamine detection in real samples. Zhang et al.
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demonstrated melamine detection in milk using silver colloid solution. They reported on
an easy pre-treatment for the milk, which, however, still required large instrumentation
and, additionally, the colloid NPs required mixing with the diluted and filtered milk [246].
Alternatively, Guo et al. developed self-assembled hollow gold nanospheres to detect
melamine in milk on a solid chip platform, which is ideal for remote sensing. However,
they employed centrifugation as their only method of sample pre-treatment, which is
complex and not suitable for transporting [262].

Another novel method by Betz et al. used a copper tape and a penny coin to fabricate
Ag micro- and nanostructures. It was used to analyse infant formula adulterated with
melamine [255]. The fact that these substrates form in five minutes on-site without the need
for complex equipment, sample pre-treatment, or harsh chemicals enabled the possibility
of remote point-of-sampling. However, their LOD (5 ppm) is not sufficient for remote
melamine detection.

Finally, Chen et al. reported on the detection of melamine in egg white using fabricated
ZnO/Au composite nanoneedle arrays, see Figure 6. The results showed some background
interferences from the egg proteins but the characteristic peak for melamine at ~682 cm−1

remained detectable and was well resolved [263]. The only sample preparation is a filtering
of the egg solution through four layers of gauge, which can easily be employed on-site
as it requires no complex instrumentation. Similarly, Kim et al. applied their previously
reported gold nanofingers to melamine detection in milk [264]. Although they also require
sample pre-treatment, the authors avoid using centrifugation, as it is neither portable nor
low cost. Instead, they employ a mini dialysis kit and detect characteristic melamine peaks
from the dialysis filtered solutions at 1 ppm. They also demonstrate melamine detection at
100 ppb in infant formula using a solution gel filtration chromatography treatment. These
are a few articles that report SERS substrates and methods of sample pre-treatment, that
both are fully compatible for field applications in a limited-resource environment.

Figure 6. (a) SEM image of ZnO/Au composite nanoneedle arrays; (b) SERS spectra of egg white solution (6 g/L) (a) and
the melamine-tainted egg white solution (b) on ZnO/Au nanoneedles. The concentration of melamine and egg white in the
mixture is 1.0 × 10−5 M and about 6 g/L, by Chen et al. [263].

6. Conclusions and Perspective

In this review paper, SERS as a useful technology for Agri-Food and environmen-
tal sensing has been investigated. Compared to other detecting technologies such as
chromatography or electrochemical based methods, SERS has the potential to deliver
rapid, ultra-sensitive and highly specific detections of a wide range of chemicals and
biomolecules. SERS substrates fabrication methods include bottom-up and top-down.
Bottom-up approaches refer to the fabrication of nanostructures by chemical synthesis,
colloid aggregation, electrochemical deposition and self-assembly; top-down methods
include lithography techniques (electron-beam (E-beam) and nanoimprint lithography,
laser etching together with metal film deposition (sputtering, metal evaporation, atomic
layer deposition), templating (e.g., anodic aluminium oxide), inkjet printing, etc. The
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combination of top-down and bottom-up methods could improve SERS intensity. The
common plasmonic materials are Ag, Cu, Au or their composite material. A wide choice of
the support substrate is variable Si, Cu, tissue, paper, leaves and aluminium cans, etc. SERS
related devices could widely be used in agri-food and environment monitoring, following
the SERS device fabrication method section; this review paper presents SERS applications
in detection of pesticides such as organophosphate (OP) insecticides and neonicotinoids
insecticides as well as illegal food additive such as dyes and melamine.

However, despite the advancement and strategies presented above, some challenges
still need to be overcome for SERS to be widely used in agri-food and environment ana-
lytical applications. These include (i) repeatability of SERS substrates and SERS signals
for each Raman measurements; (ii) weak interaction—or even repulsion because of the
surface energy—between some analytes and SERS surface; (iii) stability of SERS substrate
and functional layers that can in some instance react with the targeted analytes or degrade
over time (e.g., oxidation) or under continuous laser excitation; (iv) general non suitability
for direct detection of heavy metal or macromolecular such as protein; (v) current lack
of standardised optical setup or methodologies to compare results obtained by different
research groups and (vi) in real sample verification, SERS devices performance could be
affected by contamination or interferences from the environment.

Regarding sample reproducibility, SERS substrates could benefit from constant ad-
vances in nanofabrication processes and instrumentation as well as in surface chemistry.
Regarding quantification, techniques such as isotope labelling [265] or standard addition
method have proven promising. Also, new emerging techniques such as electrochemical
SERS (EC-SERS), shifted excitation Raman difference spectroscopy (SERDS) or surface
enhanced spatially offset resonance Raman spectroscopy (SESORRS) such could help
overcome the limitations mentioned above.

All in all, SERS devices benefit from a wide range of choice of plasmonic structures
such as Ag/Au NPs, nano rods, nano flowers, nano cubes, and their composite materials
etc; supporting substrate, fabrication method and functionalization method. Besides, they
also have a numerous of advantages such as rapid response time, high sensitivity and
selectivity and possibility to use handheld devices for onsite measurements. However,
several challenges still exist in terms of reliability and durability for SERS sensing platform.
Ongoing advances in nanofabrication and chemistry have the potential to overcome the
current limitations of SERS sensing. As a result, we believe that SERS will soon be a
widespread analytical technique for sensitive detection of contaminants in agri-food and
environmental applications.
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155. Kamińska, A.; Winkler, K.; Kowalska, A.; Witkowska, E.; Szymborski, T.; Janeczek, A.; Waluk, J. SERS-based Immunoassay in a
Microfluidic System for the Multiplexed Recognition of Interleukins from Blood Plasma: Towards Picogram Detection. Sci. Rep.
2017, 7, 10656. [CrossRef]

156. Oss, C.J.V. Antibody-Antigen Intermolecular Forces. In Encyclopedia of Immunology, 2nd ed.; Elsevier: Amsterdam, The Nether-
lands, 1998; pp. 163–167.

157. Kim, H.; Kang, H.; Kim, H.-N.; Kim, H.; Moon, J.; Guk, K.; Park, H.; Yong, D.; Bae, P.K.; Park, H.G.; et al. Development of 6E3
antibody-mediated SERS immunoassay for drug-resistant influenza virus. Biosens. Bioelectron. 2021, 187, 113324. [CrossRef]

158. He, D.Y.; Wu, Z.Z.; Cui, B.; Xu, E.B. Aptamer and gold nanorod-based fumonisin B1 assay using both fluorometry and SERS.
Microchim. Acta 2020, 187, 215. [CrossRef]

159. He, X.; Zhou, X.; Liu, Y.; Wang, X.L. Ultrasensitive, recyclable and portable microfluidic surface-enhanced raman scattering
(SERS) biosensor for uranyl ions detection. Sens. Actuators B Chem. 2020, 311, 127676. [CrossRef]

160. Huang, D.D.; Chen, J.M.; Ding, L.; Guo, L.H.; Kannan, P.; Luo, F.; Qiu, B.; Lin, Z.Y. Core-satellite assemblies and exonuclease
assisted double amplification strategy for ultrasensitive SERS detection of biotoxin. Anal. Chim. Acta 2020, 1110, 56–63. [CrossRef]
[PubMed]

161. Wang, J.R.; Xia, C.; Yang, L.; Li, Y.F.; Li, C.M.; Huang, C.Z. DNA Nanofirecrackers Assembled through Hybridization Chain
Reaction for Ultrasensitive SERS Immunoassay of Prostate Specific Antigen. Anal. Chem. 2020, 92, 4046–4052. [CrossRef]
[PubMed]

162. Wang, Q.; Hu, Y.J.; Jiang, N.J.; Wang, J.J.; Yu, M.; Zhuang, X.M. Preparation of Aptamer Responsive DNA Functionalized
Hydrogels for the Sensitive Detection of alpha-Fetoprotein Using SERS Method. Bioconjugate Chem. 2020, 31, 813–820. [CrossRef]
[PubMed]

163. Zhou, S.S.; Lu, C.; Li, Y.Z.; Xue, L.; Zhao, C.Y.; Tian, G.F.; Bao, Y.M.; Tang, L.H.; Lin, J.H.; Zheng, J.K. Gold Nanobones Enhanced
Ultrasensitive Surface-Enhanced Raman Scattering Aptasensor for Detecting Escherichia coil O157:H7. ACS Sens. 2020, 5, 588–596.
[CrossRef] [PubMed]

164. Šimáková, P.; Gautier, J.; Procházka, M.; Hervé-Aubert, K.; Chourpa, I. Polyethylene-glycol-Stabilized Ag Nanoparticles for
Surface-Enhanced Raman Scattering Spectroscopy: Ag Surface Accessibility Studied Using Metalation of Free-Base Porphyrins.
J. Phys. Chem. C 2014, 118, 7690–7697. [CrossRef]

165. Lin, D.; Hsieh, C.-L.; Hsu, K.-C.; Liao, P.-H.; Qiu, S.; Gong, T.; Yong, K.-T.; Feng, S.; Kong, K.V. Geometrically encoded SERS
nanobarcodes for the logical detection of nasopharyngeal carcinoma-related progression biomarkers. Nat. Commun. 2021, 12,
3430. [CrossRef]

166. Jeyaratnam, J. Acute pesticide poisoning: A major global health problem. World Health Stat. Q. 1990, 43, 139–144.
167. Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol.

2009, 2, 1–12. [CrossRef]
168. Food Agriculture Organization. International Code of Conduct on the Distribution and Use of Pesticides; United Nations: Rome, Italy,

2005.
169. Han, L.J.; Sapozhnikova, Y. Semi-automated high-throughput method for residual analysis of 302 pesticides and environmental

contaminants in catfish by fast low-pressure GC-MS/MS and UHPLC-MS/MS. Food Chem. 2020, 319, 126592. [CrossRef]

http://doi.org/10.1002/smtd.202100453
http://doi.org/10.1038/am.2017.230
http://doi.org/10.1155/2012/319038
http://doi.org/10.1021/jp102036r
http://doi.org/10.1016/S0022-0728(02)01145-2
http://doi.org/10.1038/ncomms5348
http://doi.org/10.1038/s41557-019-0216-y
http://doi.org/10.1021/ja993622x
http://doi.org/10.1021/ac060041z
http://doi.org/10.1016/j.bios.2020.112758
http://doi.org/10.1038/s41598-017-11152-w
http://doi.org/10.1016/j.bios.2021.113324
http://doi.org/10.1007/s00604-020-4192-0
http://doi.org/10.1016/j.snb.2020.127676
http://doi.org/10.1016/j.aca.2020.02.058
http://www.ncbi.nlm.nih.gov/pubmed/32278400
http://doi.org/10.1021/acs.analchem.9b05648
http://www.ncbi.nlm.nih.gov/pubmed/32048509
http://doi.org/10.1021/acs.bioconjchem.9b00874
http://www.ncbi.nlm.nih.gov/pubmed/31977189
http://doi.org/10.1021/acssensors.9b02600
http://www.ncbi.nlm.nih.gov/pubmed/32037808
http://doi.org/10.1021/jp5005709
http://doi.org/10.1038/s41467-021-23789-3
http://doi.org/10.2478/v10102-009-0001-7
http://doi.org/10.1016/j.foodchem.2020.126592


Photonics 2021, 8, 568 21 of 24

170. Velkoska-Markovska, L.; Petanovska-Ilievska, B. Rapid Resolution Liquid Chromatography Method for Determination of
Malathion in Pesticide Formulation. Acta Chromatogr. 2020, 32, 256–259. [CrossRef]

171. Geto, A.; Noori, J.S.; Mortensen, J.; Svendsen, W.E.; Dimaki, M. Electrochemical determination of bentazone using simple
screen-printed carbon electrodes. Environ. Int. 2019, 129, 400–407. [CrossRef]

172. Santana, P.C.A.; Lima, J.B.S.; Santana, T.B.S.; Santos, L.F.S.; Matos, C.R.S.; da Costa, L.P.; Gimenez, I.F.; Sussuchi, E.M. Semicon-
ductor Nanocrystals-Reduced Graphene Composites for the Electrochemical Detection of Carbendazim. J. Braz. Chem. Soc. 2019,
30, 1302–1308. [CrossRef]

173. Alak, A.M.; Vo-Dinh, T. Surface-enhanced Raman spectrometry of organo phosphorus chemical agents. Anal. Chem. 1987, 59,
2149–2153. [CrossRef]

174. European Food Safety Authority. The 2010 European Union Report on Pesticide Residues in Food. EFSA J. 2013, 11, 3130.
175. Song, D.; Yang, R.; Long, F.; Zhu, A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS)

detection of environmental pollutants. J. Environ. Sci. 2019, 80, 14–34. [CrossRef] [PubMed]
176. Fan, Y.X.; Lai, K.Q.; Rasco, B.A.; Huang, Y.Q. Analyses of phosmet residues in apples with surface-enhanced Raman spectroscopy.

Food Control 2014, 37, 153–157. [CrossRef]
177. Liu, B.; Zhou, P.; Liu, X.M.; Sun, X.; Li, H.; Lin, M.S. Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy

Coupled with Gold Nanostructures. Food Bioprocess Technol. 2013, 6, 710–718. [CrossRef]
178. Yaseen, T.; Pu, H.B.; Sun, D.W. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl)

residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Food Addit. Contam. A—Chem. Anal. Control Expo. Risk
Assess. 2019, 36, 762–778. [CrossRef]

179. Benitta, T.A.; Kapoor, S.; Christy, R.S.; Raj, C.I.S.; Kumaran, J.T.T. Surface Enhanced Raman Spectra and Theoretical Study of an
Organophosphate Malathion. Orient. J. Chem. 2017, 33, 760–767. [CrossRef]

180. Nie, Y.H.; Teng, Y.J.; Li, P.; Liu, W.H.; Shi, Q.W.; Zhang, Y.C. Label-free aptamer-based sensor for specific detection of malathion
residues by surface-enhanced Raman scattering. Spectrochim. Acta A—Mol. Biomol. Spectrosc. 2018, 191, 271–276. [CrossRef]

181. Banks, K.E.; Hunter, D.H.; Wachal, D.J. Chlorpyrifos in surface waters before and after a federally mandated ban. Environ. Int.
2005, 31, 351–356. [CrossRef]

182. Feng, S.L.; Hu, Y.X.; Ma, L.Y.; Lu, X.N. Development of molecularly imprinted polymers-surface-enhanced Raman spec-
troscopy/colorimetric dual sensor for determination of chlorpyrifos in apple juice. Sens. Actuators B Chem. 2017, 241, 750–757.
[CrossRef]

183. Ma, P.; Wang, L.Y.; Xu, L.; Li, J.Y.; Zhang, X.D.; Chen, H. Rapid quantitative determination of chlorpyrifos pesticide residues in
tomatoes by surface-enhanced Raman spectroscopy. Eur. Food Res. Technol. 2020, 246, 239–251. [CrossRef]

184. Hussain, A.; Sun, D.W.; Pu, H.B. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandi-
amide contaminants in liquid milk using SERS. Food Chem. 2020, 317, 126429. [CrossRef]

185. Hu, X.N.; Bian, X.Z.; Yu, S.Z.; Dan, K. Magnetic Fe3O4@SiO2@Ag@COOH NPs/Au Film with Hybrid Localized Surface
Plasmon/Surface Plasmon Polariton Modes for Surface-Enhanced Raman Scattering Detection of Thiabendazole. J. Nanosci.
Nanotechnol. 2020, 20, 2079–2086. [CrossRef]

186. Wang, K.Q.; Sun, D.W.; Pu, H.B.; Wei, Q.Y. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices
with surface-enhanced Raman spectroscopy technique. Food Chem. 2020, 310, 125923. [CrossRef] [PubMed]

187. Costa, J.C.S.; Ando, R.A.; Sant’Ana, A.C.; Rossi, L.M.; Santos, P.S.; Temperini, M.L.A.; Corio, P. High performance gold nanorods
and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides. Phys. Chem. Chem. Phys. 2009, 11, 7491–7498.
[CrossRef] [PubMed]

188. Dowgiallo, A.M. Trace level pesticide detection utilizing gold nanoparticles and surface enhanced Raman spectroscopy (SERS).
In Synthesis and Photonics of Nanoscale Materials XVI; Kabashin, A.V., Dubowski, J.J., Geohegan, D.B., Eds.; SPIE: Washington, DC,
USA, 2019; Volume 10907.

189. Wang, Q.; Zhao, Y.; Bu, T.; Wang, X.; Xu, Z.; Zhangsun, H.; Wang, L. Semi-sacrificial template growth-assisted self-supporting
MOF chip: A versatile and high-performance SERS sensor for food contaminants monitoring. Sens. Actuators B Chem. 2022, 352,
131025. [CrossRef]

190. Canamares, M.V.; Feis, A. Surface-enhanced Raman spectra of the neonicotinoid pesticide thiacloprid. J. Raman Spectrosc. 2013,
44, 1126–1135. [CrossRef]

191. Wu, J.; Xi, J.; Chen, H.; Li, S.; Zhang, L.; Li, P.; Wu, W. Flexible 2D nanocellulose-based SERS substrate for pesticide residue
detection. Carbohydr. Polym. 2022, 277, 118890. [CrossRef]

192. Lu, Y.; Tan, Y.; Xiao, Y.; Li, Z.; Sheng, E.; Dai, Z. A silver@gold nanoparticle tetrahedron biosensor for multiple pesticides detection
based on surface-enhanced Raman scattering. Talanta 2021, 234, 122585. [CrossRef]

193. Zaim, M.; Jambulingam, P. Global Insecticide Use for Vector-Borne Disease Control; World Health Organization: Geneva, Switzerland,
2007.

194. Kozawa, K.; Aoyama, Y.; Mashimo, S.; Kimura, H. Toxicity and actual regulation of organophosphate pesticides. Toxin Rev. 2009,
28, 245–254. [CrossRef]

195. Rosenstock, L.; Keifer, M.; Daniell, W.E.; McConnell, R.; Claypoole, K.; The Pesticide Health Effects Study Group. Chronic central
nervous system effects of acute organophosphate pesticide intoxication. Lancet 1991, 338, 223–227. [CrossRef]

http://doi.org/10.1556/1326.2019.00713
http://doi.org/10.1016/j.envint.2019.05.009
http://doi.org/10.21577/0103-5053.20190026
http://doi.org/10.1021/ac00144a030
http://doi.org/10.1016/j.jes.2018.07.004
http://www.ncbi.nlm.nih.gov/pubmed/30952332
http://doi.org/10.1016/j.foodcont.2013.09.014
http://doi.org/10.1007/s11947-011-0774-5
http://doi.org/10.1080/19440049.2019.1582806
http://doi.org/10.13005/ojc/330223
http://doi.org/10.1016/j.saa.2017.10.030
http://doi.org/10.1016/j.envint.2004.08.007
http://doi.org/10.1016/j.snb.2016.10.131
http://doi.org/10.1007/s00217-019-03408-8
http://doi.org/10.1016/j.foodchem.2020.126429
http://doi.org/10.1166/jnn.2020.17323
http://doi.org/10.1016/j.foodchem.2019.125923
http://www.ncbi.nlm.nih.gov/pubmed/31837530
http://doi.org/10.1039/b904734d
http://www.ncbi.nlm.nih.gov/pubmed/19690724
http://doi.org/10.1016/j.snb.2021.131025
http://doi.org/10.1002/jrs.4339
http://doi.org/10.1016/j.carbpol.2021.118890
http://doi.org/10.1016/j.talanta.2021.122585
http://doi.org/10.3109/15569540903297808
http://doi.org/10.1016/0140-6736(91)90356-T


Photonics 2021, 8, 568 22 of 24

196. Eskenazi, B.; Bradman, A.; Castorina, R. Exposures of children to organophosphate pesticides and their potential adverse health
effects. Environ. Health Perspect. 1999, 107 (Suppl. 3), 409–419. [CrossRef] [PubMed]

197. Stephens, R.; Spurgeon, A.; Calvert, I.A.; Beach, J.; Levy, L.S.; Harrington, J.; Berry, H. Neuropsychological effects of long-term
exposure to organophosphates in sheep dip. Lancet 1995, 345, 1135–1139. [CrossRef]

198. Fries, E.; Püttmann, W. Occurrence of organophosphate esters in surface water and ground water in Germany. J. Environ. Monit.
2001, 3, 621–626. [CrossRef]

199. Karalliedde, L.; Eddleston, M.; Murray, V. The Global Picture of Organophosphate Insecticide Poisoning; World Scientific: Singapore,
2001; pp. 431–471.
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