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Abstract: A photonic frequency shifter based on generalized Mach-Zehnder interferometer (GMZI)
architecture is presented and experimentally validated. The circuit consists of four Mach-Zehnder
modulators (MZM) in a 4 × 4 network bounded by two 4 × 4 multimode interference couplers and
functionally equivalent to two parallel dual-parallel MZM (DP-MZM). The circuit can offer static
bias free operation, virtual connectivity control of the components, and spatial separation of up-
and down-converted carriers, which can be collected from separate ports without using any optical
demultiplexing filters. Thus, the design permits remote heterodyning (advantages which cannot
be obtained using a commercial DP-MZM or filter based optical frequency shifter). Experimental
investigation shows deviation from ideal performance due to possible fabrication error and poor
fiber-chip coupling. A carrier suppression of >20 dB and spurious sideband suppression >12 dB
relative to the principal harmonics is achieved without any tuning for bias adjustment. In addition to
the frequency conversion, the integration feasible circuit can also perform as a sub-carrier generator,
IQ modulator, and frequency multiplier.

Keywords: generalized Mach-Zehnder interferometer; photonic frequency shifter; silicon on insulator (SOI);
multimode interference coupler; Si-based DP-MZM; multi-functional photonic integrated circuit

1. Introduction

Wireless communication has undergone rapid evolution due to exponential growth in
data traffic and demand of super broadband services. Congested lower frequency bands
and costly, complicated, and power-hungry high frequency operations dictate the wireless
access network to adopt other means in meeting the challenge of ubiquitous connection
among the end-users with energy efficiency. Hall et al. argued that in cluttered urban
environments, a digital coherent radio-over-fiber (RoF) link backed by distributed antenna
system is a viable energy efficient solution to address the evolution of broadband wireless
access systems [1]. For its effective realization, efficient single sideband (SSB) modulation
utilizing a photonic frequency shifter at the uplink is vital [2]. Photonic frequency conver-
sion has also become an integral part of applications such as frequency-shifted feedback
(FSF) lasers [3], high-resolution laser spectroscopy [4], multicarrier generation [5,6], true
time delay beam steering in frequency domain continuous wave (FMCW) rada rs [7],
Doppler lidar systems [8], and ultra-high-Q photonic crystal nanocavities [9].

Diverse methods such as serrodyne translation [8,10], TE/TM mode conversion [11],
stimulated Brillouin scattering [12,13], and acousto-optic deflection [14,15] have been
adopted to realize a high-performance frequency shifter. The serrodyne technique can
offer high spectral purity, but demands that the modulator and driving circuit have a
very high bandwidth. Low frequency limited acousto-optic approaches requires delicate
phase matching. All-optical frequency shifting offered by stimulated Brillouin scattering is
limited by the fixed Brillouin frequency of a fiber and a complicated pump wave locking
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procedure. For heterodyne light communication systems, the conventional choice is an
OSSB modulator followed by filter structure to isolate the desired shifted band [16–19].
The frequency response of the filter and temperature control to maintain alignment among
the source, modulator, and filter make the conversion procedure complicated and power
hungry. To the best of the authors’ knowledge, an IQ modulator based filterless integrated
frequency shifter was first introduced by Izutsu et al. [20]. After that, numerous inves-
tigations on Mach-Zehnder interferometric IQ modulator-based frequency conversion
techniques have been reported in the scientific literature [21–29]. Most of these circuits
employ single LiNbO3 dual-parallel Mach-Zehnder modulator (DP-MZM) based archi-
tecture realizing single sideband-suppressed carrier (SSB-SC) modulation [20–24]. The
conventional LiNbO3 modulator can offer high extinction ratio, high bandwidth, and linear
electro-optic effect, but it suffers from high drive voltage and severe dc bias drift due to
charge screening and dielectric relaxation. In addition, the LiNbO3 platform is not suitable
for large-scale photonic integration. The CMOS compatible Si platform can offer a compact
footprint. Recent demonstrations of single DP-MZM based frequency converters on Si plat-
form show impressive performance in terms of suppression of unwanted sidebands [26,27].
All of these circuits are optimized for one output which results in either up-conversion
or down-conversion to be achieved at a time. Yamazaki et al. utilized a 2 × 2 coupler
instead of a Y-junction at the output side of the DP-MZM to spatially separate the first
order up- and down-converted frequency components [23,24]. Hasan et al. proposed
a two-stage series parallel MZM architecture which is capable of spatial separation of
higher order frequency components [28]. Spatially separated frequency shifting operation
offers simultaneous up- and down-conversion which translates to coherent sub-carrier
generation and separation without any need of an inflexible optical demultiplexing filter.
Two DP-MZMs configured in parallel have also been applied to frequency shifting [30–32].
While these architectures offer high order frequency conversion, the employment of a
polarization division multiplexing scheme render their integration feasibility complicated.

In this report, an experimental demonstration of a generalized Mach-Zehnder interferometer-
based architecture capable of frequency conversion is presented. The circuit consists of
four parallel differentially driven MZMs connected in an interferometer structure bounded
by two 4 × 4 multimode interference (MMI) couplers. The circuit is functionally equivalent
to two parallel DP-MZMs with a lower coupler count: two 4 × 4 couplers are needed
in the outer stages instead of six 2 × 2 couplers [32]. The intrinsic phase relationship of
MMI couplers enables a static bias free operation; all MZMs are biased at null point and
each functionally equivalent DP-MZM is biased at its quadrature point by design, and
thus the DC bias drift problem can be avoided. Spatial separation between the up- and
down-converted signals is obtained simultaneously which can also be applied as coherent
subcarrier generation scheme without multiplexing filter. The hardwired connections
from the MZMs to the outer-stage MMI couplers and the default null point biasing offer a
mechanism of withdrawing any MZM from the operation without physically disconnecting
it (a degree of freedom much desired for a photonic integrated circuit). The circuit is
fabricated on silicon-on-insulator (SOI) platform in a multi-project wafer (MPW) facility
using ‘off the shelf’ components. Wideband operation of MMI coupler supported by
ideal fabrication process can lead to a tuning-free, temperature insensitive operation. An
experiment is conducted to validate the theoretical prediction of its ability to shift the carrier
frequency by the modulating frequency. A series of tests have also been conducted to
identify the fabrication errors and their effects on the performance of the circuit. Although
the discussion presented in this report is focused on its frequency shifting capability, the
circuit can offer other functionalities such as complex modulation, frequency multiplication,
sub-carrier generation, and more.

The remainder of this paper is organized as follows. In Section 2, the theoretical
framework of operating principle of the circuit under discussion is provided and validation
by simulation is presented. Section 3 provides information on device fabrication and
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structure. Section 4 presents the experimental setup and analyzes the measured results.
Finally, the work is summarized in Section 5.

2. Theory

The conventional waveguide-based frequency shifter follows the principle of single
sideband modulation (SSB). A dual parallel Mach-Zehnder modulator (DPMZM) with
null-point biased differentially driven MZMs on its two arms and the outer Mach-Zehnder
interferometer (MZI) structure biased at its quadrature point can perform the SSB frequency
electro-optical up-conversion function [20]. The structure is basically an I-Q modulator
with an RF electrical signal is applied to the I channel and a π/2 phase-shifted replica
of the same RF electrical signal is applied to the Q channel. Figure 1 shows the circuit
and its corresponding output spectrum showing the carrier shifted by the first harmonic
of the RF drive frequency. Spurious side-harmonics can be suppressed effectively by
restricting operation in small signal modulation range at the expense of lower conversion
efficiency [26]. Figure 1b shows the carrier’s shift to upper sideband (USB) which can
be switched to lower sideband (LSB) by simply changing the polarity of the phase in the
outer MZI.

Photonics 2021, 8, x FOR PEER REVIEW 3 of 13 
 

 

The remainder of this paper is organized as follows. In Section 2, the theoretical 
framework of operating principle of the circuit under discussion is provided and 
validation by simulation is presented. Section 3 provides information on device 
fabrication and structure. Section 4 presents the experimental setup and analyzes the 
measured results. Finally, the work is summarized in Section 5. 

2. Theory 
The conventional waveguide-based frequency shifter follows the principle of single 

sideband modulation (SSB). A dual parallel Mach-Zehnder modulator (DPMZM) with 
null-point biased differentially driven MZMs on its two arms and the outer Mach-
Zehnder interferometer (MZI) structure biased at its quadrature point can perform the 
SSB frequency electro-optical up-conversion function [20]. The structure is basically an I-
Q modulator with an RF electrical signal is applied to the I channel and a π/2 phase-shifted 
replica of the same RF electrical signal is applied to the Q channel. Figure 1 shows the 
circuit and its corresponding output spectrum showing the carrier shifted by the first 
harmonic of the RF drive frequency. Spurious side-harmonics can be suppressed 
effectively by restricting operation in small signal modulation range at the expense of 
lower conversion efficiency [26]. Figure 1b shows the carrier’s shift to upper sideband 
(USB) which can be switched to lower sideband (LSB) by simply changing the polarity of 
the phase in the outer MZI. 

 
Figure 1. (a) Schematic diagram of conventional optical frequency shifter; (b) optical spectrum of the circuit showing the 
up-converted carrier shifted by RF frequency 30 GHz. Simulation is carried out using Virtual photonics Inc. (VPI) software 
package. MZM, Mach-Zehnder modulator; OSA, optical spectrum analyzer; LD, laser diode. 

In principle, the photonic circuit reported here consists of two IQ modulators in 
parallel. The configuration supports simultaneous down- and up-conversion while 
spatially separating them. Figure 2 depicts the proposed circuit which consists of four 
differentially driven MZMs in the intermediate stage of a 4 × 4 network. The outer stages 
providing the function of distribution and combination of signals are realized by two 4 × 
4 MMI couplers, respectively. Two 2 × 2 MMI couplers are used for connecting each pair 
of phase modulators of the individual MZI structure, as shown in Figure 2. 

Figure 1. (a) Schematic diagram of conventional optical frequency shifter; (b) optical spectrum of the circuit showing the
up-converted carrier shifted by RF frequency 30 GHz. Simulation is carried out using Virtual photonics Inc. (VPI) software
package. MZM, Mach-Zehnder modulator; OSA, optical spectrum analyzer; LD, laser diode.

In principle, the photonic circuit reported here consists of two IQ modulators in
parallel. The configuration supports simultaneous down- and up-conversion while spatially
separating them. Figure 2 depicts the proposed circuit which consists of four differentially
driven MZMs in the intermediate stage of a 4 × 4 network. The outer stages providing
the function of distribution and combination of signals are realized by two 4 × 4 MMI
couplers, respectively. Two 2 × 2 MMI couplers are used for connecting each pair of phase
modulators of the individual MZI structure, as shown in Figure 2.
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Figure 2. Schematic diagram of the photonics frequency shifter circuit. Each MZM is driven dif-
ferentially with modulating signals ϕa, ϕb, ϕc and ϕd, respectively. PM, phase modulator; MMI,
multimode interference coupler.

Figure 2 shows that each MZM has one of the ports at its input-output couplers
unused. The intrinsic relative phase relationships between the ports of MMI coupler and
the choice of input-output ports enable each individual MZM to be biased at its minimum
transmission point (MITP) by design. The transfer matrix of an individual MZM can be
expressed as: [

b1
b2

]
= T2×2

[
exp(iϕ1) 0

0 exp(iϕ2)

]
T2×2

[
a1
a2

]
(1)

where T2×2 = 1√
2

[
1 −i
−i 1

]
is the transfer matrix of a 2 × 2 MMI coupler and ϕn is the

phase shift applied to the nth arm of an MZM. Based on the input/output ports of each
MZM chosen and the phase shift applied to drive each MZM differentially, the transmission
function of each MZM is transformed to:

fMZMn = i sin(ϕn) (2)

To realize the framework of two parallel DP-MZMs, each functionally equivalent to
the circuit shown in Figure 1a, the quadrature bias for individual DP-MZM is provided by
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the intrinsic relative phase relationships among the ports of the 4 × 4 MMI couplers at the
outer stages. The total transfer matrix of the architecture can be expressed as:


O1

O2

O3

O4

 = i T4×4


sin(ϕa)

0

0

0

0

sin(ϕb)

0

0

0

0

sin(ϕc)

0

0

0

0

sin(ϕd)

T4×4


I1

I2

I3

I4

. (3)

where

T4×4 = 1√
4


1
−ζ

ζ
1

−ζ
1
1
ζ

ζ
1
1
−ζ

1
ζ
−ζ
1

 ; ζ = eiπ/4

is the transfer matrix of a 4 × 4 MMI coupler.
It is possible to achieve different configurations where each DP-MZM has different

sets of MZMs as its constituents by varying the modulating signal. Figure 2 shows one
example which retains a mirror symmetry in terms of circuit connection. If two modulating
signals V1 = VI1 + iVQ1 and V2 = VI2 + iVQ2 are applied in such a way that ϕa = πVI1/vπ,
ϕb = πVQ1/vπ, ϕc = πVQ2/vπ and ϕd = πVI2/vπ, the upper two MZMs form one IQ
modulator and the lower two MZMs form the other one. Assuming only I1 to be connected
to the optical source, the outputs of the architecture can be expressed as:


O1

O2

O3

O4

 =
i
4


sin(πVI1/vπ) + i sin

(
πVQ1/vπ

)
+ sin(πVI2/vπ) + i sin

(
πVQ2/vπ

)
ζ{− sin(πVI1/vπ) − sin

(
πVQ1/vπ

)
+ sin(πVI2/vπ) + sin

(
πVQ2/vπ

)
}

ζ{sin(πVI1/vπ) − sin
(
πVQ1/vπ

)
− sin(πVI2/vπ) + sin

(
πVQ2/vπ

)
}

sin(πVI1/vπ)− i sin
(
πVQ1/vπ

)
+ sin(πVI2/vπ)− sin

(
πVQ2/vπ

)

[I1] (4)

For
(
VI1/vπ, VQ1/vπ, VI2/vπ, VQ2/vπ

)
� 1, Equation (4) can be written as:

O1
O2
O3
O4

 ≈ iπ
4vπ


V1 + V2

ζ
{
(VI2 −VI1) +

(
VQ2 −VQ1

)}
ζ
{
(VI1 −VI2) +

(
VQ2 −VQ1

)}
V1
∗ + V2

∗

[I1] (5)

where (*) stands for complex conjugate. In the case of a pure tone modulating signal, i.e.,
ϕa = ϕd = m cos(ωRFt) and its companion π/2 phase shifted replica, i.e., ϕb = ϕc =
m cos(ωRFt + π/2), the outputs of the architecture can be expressed as:


O1

O2

O3

O4

 =



−i
∞
∑

n=1
J2n−1(m)

{
(−1)n cos[(2n− 1)ωRFt] + i sin[(2n− 1)ωRFt]

}
0

0

−i
∞
∑

n=1
J2n−1(m)

{
(−1)n cos[(2n− 1)ωRFt]− i sin[(2n− 1)ωRFt]

}


[I1]

⇒
O1

O2

O3

O4

 =


i{J1(m) exp[−jωRFt]− J3(m) exp[j3ωRFt] . . .}

0

0

i{J1(m) exp[jωRFt]− J3(m) exp[−j3ωRFt] . . .}

[I1]

(6)

It can be observed from Equation (6) that an electrical to optical frequency up-conversion
is achieved with the lower optical sideband available from output port O1 and the upper
optical sideband available from output port O4. Figure 3 shows the shifted optical spectrum
for a RF drive frequency of 10 GHz. It can be observed that all even order harmonics,
including the carrier are suppressed. Among the odd order harmonics, for output port
O1, positive orders equal to (2p + 1), with p even, and negative orders equal to −(2p + 1),
with p odd, are suppressed and vice versa for output port O4. Interchanging the local
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oscillator setting, i.e., ϕa = ϕd = m cos(ωRFt + π/2) and ϕc = ϕb = m cos(ωRFt) leads the
LSB-USB operation to swap their respective output ports, maintaining their distinct spatial
separation. Flexibility in choosing other output ports for LSB-USB operations can also be
obtained by simply choosing other input ports for optical carrier.
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The circuit offers a mechanism for removing any MZM from the operation without
physically disconnecting it; identical phase shift at both arms forces the MZI to act as a
cross-over. Due to the unused cross-ports as shown in Figure 2, any MZI can be cut-off
completely at the expense of optical power. For example, assigning ϕc = ϕd = 0 leads the
removal of the lower IQ modulator. Thus, Equation (3) is modified to:


O1

O2

O3

O4

 = i T4×4


sin(ϕA)

0

0

0

0
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0

0
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}
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∑

n=1
J2n−1(m)

{
(−1)n cos[(2n− 1)ωRFt]− i sin[(2n− 1)ωRFt]

}


[I1]

⇒
O1

O2

O3

O4

 = 1
2


i{J1(m) exp[−jωRFt]− J3(m) exp[j3ωRFt] . . .}√

2ei3π/4{−J1(m) cos(ωRFt + π/4) + J3(m) cos(3ωRFt− π/4)}√
2ei3π/4{J1(m) cos(ωRFt− π/4)− J3(m) cos(3ωRFt + π/4)}

i{J1(m) exp[jωRFt]− J3(m) exp[−j3ωRFt] . . .}

[I1]

(7)

Both Equations (6) and (7) offer a spatial separation of lower and upper optical first-
order harmonics. Proper selection of RF amplitude can suppress third order harmonics.
The convenience of spatially separated coherent carrier facilitates remote heterodyning
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for wireless access network using a digital coherent RoF system. One of the two first-
order harmonics can be modulated by a second IQ modulator and the two harmonics
combined and propagated through the optical fiber. After its transmission to a high-speed
photodetector at the remote antenna, the two harmonics beat to produce a modulated RF
carrier with a center frequency equal to the double of the RF frequency.

3. Device Fabrication

A top-view microscope image of the frequency up-converter is shown in Figure 4.
Device fabrication was performed using the A*Star Institute of Microelectronics (IME)
CMOS compatible process on a SOI wafer. The SOI wafer has a top Si thickness of 220 nm
and buried oxide thickness of 2 µm [33]. It can be observed that path-length matching is
a critical design objective due to the larger length of the electro-optic modulator stack in
comparison to the I/O-end-MMIs. A racetrack method has been applied where concentric
circles are used to ensure that each lane encounters compensating short and long paths
around bends. Each phase modulator is realized by a reverse biased p-n diode. An efficient
mechanism for coupling of light to and from the circuit at the edges of the chip is absent.
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Figure 4. Top-view microscopic image of the fabricated circuit.

4. Experimental Result and Discussion

Figure 5 depicts the experimental setup of the fabricated frequency shifter. The built-in
laser diode of an optical modulation analyzer (Agilent N4391A, Keysight Technologies,
Santa Rosa, CA, USA). provides the optical input to the circuit. The same OMA is used
to analyze the output and thus, coherency is maintained. A polarization controller (PC)
followed by a polarization beam-splitter (PBS) is used to maintain TE polarization input
to the chip. The other port of the PBS is attached to an optical power meter (Anritsu
ML910B, Anritsu Corporation, Atsugi, Japan) which is used to monitor the power of the
TM component. By adjusting the PC, the TM component can be minimized and the stability
of the polarization state of the input light can be observed and maintained. Lensed fibers
are used for input-output coupling. A digital storage oscilloscope (Infiniium DSO-20-
91604A, Keysight Technologies, Santa Rosa, CA, USA) is used after the OMA. For dynamic
operation, four RF drive signals with phase sequence shown in Figure 5 are taken from
an arbitrary waveform generator (Fluke 294, Fluke Corporation, Everett, WA, USA). A
combination of 1 × 2 RF splitter and a 180◦ RF phase shift is used to differential drive each
pair of phase modulators. A DC signal is also applied via a bias tee to provide the voltage
required for the reversed-biased p-n junction operation of individual optical phase shifters.
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4.1. Static Assessment

Due to the absence of test structures on the chip, it is not possible to isolate one MZI
and conduct experiments to derive its characteristics. As discussed in Section 2, the circuit
provides a degree of freedom where any MZM can be disconnected by applying no or
identical modulating signals to its both arms. An experiment is designed based on this
feature. A DC voltage is applied to one arm of a single MZI where the other MZIs are
biased at null point by design, acting as crossovers. In an ideal situation, light should
propagate from input to output through the single MZI which is biased by the DC voltage.
Variation of DC voltage should show peaks and notch in its optical transmission spectrum
depicting maximum and minimum transmission. Application and variation of the DC
voltage to the other arm should result in a contrasting transmission.

Figure 6 shows the variation of optical output power of the circuit due to the variation
of DC voltage. For MZMa, input is applied to the port I1 and output is taken from port O3.
For MZMb, the output port remains the same, but the input port is changed to I2. Both
MZMs shows complementary optical transmission characteristics when the DC bias is
interchanged between the arms. Significant amount of light at 0 V indicates that the null
point biasing has not been achieved by design only. The off-state, imbalanced MZMs may
also contribute which is also reflected in the small extinction. Balanced operation with
null point biasing needs precise splitting ratio and phase relationship of MMI couplers
and equal path length for the phase modulators. Any minute width deviation in the
high contrast SOI platform due to fabrication tolerance or poor design can create huge
phase error. So, in practice, for SOI one might as well assume every MZI can be randomly
unbalanced. Fine tuning is needed for individual MZM.
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of the corresponding MZM. PM, phase modulator.

4.2. Dynamic Assessment

An ideal differentially driven MZM biased at its null point provides the operation
of an intensity modulator. When a pure tone modulating signal is applied to one arm
and its π phase shifted counterpart to another arm of the MZM, only odd numbered
harmonics, spaced by the value of modulating frequency, are retained. Carrier and even
order harmonics are completely suppressed without any RF amplitude adjustment. To
examine individual MZM of the fabricated circuit, two 10 MHz sinusoidal signals with
relative π phase difference between them are applied to MZMb. An arbitrary waveform
generator (Fluke 294, Fluke Corporation, Everett, WA, USA) is used as the RF source and the
amplitude of the signal has not been adjusted. Figure 7 shows the output optical spectrum.
It can be observed that the optical spectrum is corrupted by the presence of carrier and
even order harmonics alongside the desired odd order harmonics. Carrier breakthrough
reflects the contribution of other off-state MZMs. The imperfect suppression of even
order harmonics suggests imbalance in MZMb. The dual-drive MZM configuration can be
utilized to manipulate suppression of unwanted harmonics by individual adjustment of
the modulation voltage of each phase shifter.
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Figure 7. Optical spectrum of the circuit when only MZMb is acting as an intensity modulator. The
reference frequency is 193.4125 THz and the resolution bandwidth of the OMA is 477.42 kHz.

To investigate the frequency shifting capability of the circuit, an experimental setup, as
shown in Figure 5, is prepared. RF modulating signals from four channels of the arbitrary
waveform generator are applied with the proper relative phase requirement. Although
Figure 7 suggests a way to improve the desired harmonics and suppress the spurious
harmonics by critically adjusting the RF amplitude and thus the modulation index of each
modulator, it needs isolated characterization of individual MZM. Possible phase imbalances
in the MMI couplers prohibit this and so, the same RF amplitude is used for all MZMs.
Outputs are taken from port one and four while light is launched through input port one.
The measured optical spectrums at these output ports are shown in Figure 8. It can be
observed that frequency down- and up-conversion is achieved. The carrier breakthrough
and appearance of unwanted spurious harmonics limit the circuit’s performance predicted
theoretically in Equation (6). A carrier suppression of ~20 dB relative to the desired
harmonic with a shifted frequency has been achieved. The most prominent undesired
sideband’s frequency is also shifted by the same amount as the desired signal, albeit at the
opposite direction. A spurious harmonic suppression of ~12 dB has been measured for
both LSB and USB operations.

From the experimental demonstration, it can be conjectured that the deviations from
the theoretical prediction can be attributed to imbalanced splitting ratio resulting in finite
extinction ratio and phase errors among the ports of the MMI couplers. To circumvent this,
tuning mechanisms such as additional phase shifter [27] or integrated variable coupler and
variable attenuator [24] can be adopted. A self-adjustment approach described by Miller
can also compensate imperfect extinction ratio [34]. Digital signal processing (DSP) enabled
solution can also be utilized [29]. Furthermore, broadband sub-wavelength engineered
MMI offering a significant reduction in phase error and power imbalance has also been
demonstrated [35,36].
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High insertion loss (~20–30 dB) is also limiting the operation. Insertion loss of in-
dividual component cannot be measured due to lack of test structure on the fabricated
chip. A high index contrast material platform with relatively large sidewall roughness
of the narrow ridges can lead to relatively high waveguide propagation loss (~2–6 dB).
A similar loss may be contributed by the doped phase shifters and MMI couplers. The
principal contributor to the high insertion loss is the huge coupling loss due to lack of any
mechanisms for matching between the access guide mode and the fiber mode (~12–14 dB).
Significant improvement can be attained by adopting a proper coupling mechanism at the
access guides [37,38].

5. Conclusions

In summary, an optical SSB modulation-based frequency shifter on SOI platform has
been demonstrated. Different experiments and observations project imbalanced MMI
couplers and high insertion loss to be the limiting factor of the desired performance. A
carrier suppression ratio of ~20 dB and spurious sideband suppression ratio of ~12 dB has
been achieved without any external DC bias for quadrature phase requirement or tuning
mechanism for imbalance compensation in MMI couplers. Although the performance
has been evaluated by applying 10 MHz RF signal, the low frequency demonstration is
imposed by the frequency limit of the available RF generator; the circuit should be capable
of operating at the full bandwidth of the modulators (~10 GHz).

The functionality of the fabricated circuit is not limited to optical frequency shifting
only. The architecture can also deliver complex modulation, frequency multiplication for
millimeter-wave generation, and sub-carrier generation for high data rate transmission
using OFDM technology. Any functionality can be implemented by controlling the bias
of the MZM and RF phase and thus no modification is needed inside the circuit. These
functionalities are being investigated and will be reported in the future. The circuit has
been fabricated using ‘off-the-shelf’ components as a proof of implementation feasibil-
ity. To achieve a low loss, low power, spectrally pure, and high bandwidth operation,
improvement in component design and fabrication level is necessary.
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