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Abstract: Compact and highly sensitive near-infrared photodetectors that are operable at room
temperature are required for light detection and ranging and medical devices. Two-dimensional
(2D) PtSe2, a transition metal dichalcogenide, is a candidate material for near-infrared light detection.
However, the photoresponse properties of 2D PtSe2 are currently inferior to those of commercial
materials. The localized surface plasmon resonance of Au has been widely used for photoelectric field
enhancement and in photochemical reactions associated with phase relaxation from plasmon states
that occur at specific wavelengths. Spherical Au nanocolloids exhibit an extinction peak in the visible
light region, whereas nanorods can be tuned to exhibit the extinction peak in the near-infrared region
by controlling their aspect ratio. In this study, hybrid Au nanorod/2D PtSe2 structure was fabricated
via spin coating nanorods, with plasmon peaks in the near-infrared region, on 2D PtSe2. Furthermore,
the effect of the concentration of the nanorod solution on the photoresponse of nanorod/2D PtSe2

was investigated. The photocurrent of 5 nM Au nanorod-coated 2D PtSe2 was fivefold higher than
that of bare 2D PtSe2. The responsivity was maximum 908 µW/A at 0.5 V bias voltage. In addition,
the photocurrent enhancement mechanism by Au nanorods is discussed.

Keywords: 2D PtSe2; Au nanorods; photodetector; localized surface plasmon resonance

1. Introduction

There is an increasing demand for near-infrared-light-detecting materials that can be
operated at room temperature, for use in medical devices, analyzers, and light detection
and ranging (LiDAR) [1,2]. LiDAR has applications in biometric authentication systems and
augmented reality for electronic devices such as smartphones, which utilize a wavelength
of 950 nm installed in camera units. Therefore, developing a light-detecting material that is
compact and inexpensive and demonstrates high performance upon mounting on smart
devices is essential.

InGaAs and HgCdTe have been proposed as potential light-receiving materials for
LiDAR. However, HgCdTe is affected by low-temperature operation and contains toxic
elements, also InGaAs requires a significantly expensive production process; therefore,
alternative materials are desired [3–11]. In contrast, two-dimensional transition metal
dichalcogenides (2D TMDCs), which have attracted attention as light-detecting materials
in recent years, are chemically and physically stable and possess excellent optical and elec-
trical properties [12]. MoS2, MoSe2, WS2, and WSe2 are well-known 2D TMDC materials
that have been studied for their utilization as photodetector materials [13–16]. However,
these 2D TMDCs possess wide bandgaps that are incompatible with the near-infrared
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region; thus, their performance in the near-infrared region is limited [17]. Recently, PtSe2
and PtS2 have been proposed as 2D TMDC photodetection materials for application in
the near-infrared region, as required for LiDAR [18]. In particular, 2D PtSe2 has been
reported to have a band gap that changes from 1.2 eV for a single layer to 0.33 eV for
17 layers [19,20]. 2D PtSe2 and PtS2 have suitable bandgaps for infrared detection and high
mobility; therefore, 2D they are promising materials for use in near-infrared photodetectors.
In addition, 2D PtSe2 and PtS2 photodetectors can be operated at room temperature and
are thin and flexible owing to the characteristics of the 2D materials. Therefore, 2D PtSe2
and PtS2 are especially suitable materials for LiDAR applications in smartphones because
of the demand for downsizing and lighter system units. Photodetector devices based on
2D PtSe2 have been fabricated in previous studies, and they have exhibited photoresponse
to near-infrared light [21]. However, the photoresponse properties of 2D PtSe2 is currently
inferior to those of commercial materials such as HgCdTe, and various methods to have
been investigated for enhancing the photoresponse properties, such as the fabrication of
heterojunctions [22,23].

Research on the enhancement of sensing properties has attracted considerable at-
tention. A significant improvement was reported in the photoresponse of 2D TMDCs
upon modifying their base materials. For example, the photoresponse can be enhanced by
fabricating heterostructures, decorating the material with quantum dots, catalytic particle
modifications, or using plasmonic materials [24,25]. Among them, achieving localized
surface plasmon resonance (LSPR) using plasmonic materials is simple and is expected to
be highly effective for photodetectors. Au colloids or nanoparticles, which possess a small
imaginary part of permittivity, are typically used for LSPR [26,27]. Generally, spherical
Au exhibits LSPR peaks in the visible light region [28,29]. Recently, research has been
conducted to control the shape of particles and obtain spikes, rods, and heteromorphic
nanoparticles that can achieve localized surface plasmon effects at wavelengths different
from those of spherical nanoparticles [30,31]. In particular, it is possible to use nanorods to
obtain a localized surface plasmon effect at the desired wavelength because their absorp-
tion peak can be controlled by changing the aspect ratio [32]. The longitudinal plasmon
wavelength of Au nanorods has a high linear dependence on the length-to-diameter aspect
ratio; minor changes in their aspect ratio have a significant impact on their optical proper-
ties [25,33–36]. Therefore, it is a common practice to isolate and purify Au nanorods after
their synthesis to obtain the desired rod shape.

In this study, we fabricated 2D PtSe2, which is a promising light-detecting material
in the near-infrared region, via a one-step synthesis process involving chemical vapor
deposition (CVD). Subsequently, synthesized Au nanorods, which exhibited an LSPR peak
in the near-infrared region, were coated on 2D PtSe2. The photoresponse properties of the
obtained Au nanorods/2D PtSe2 were investigated for various applications, such as the
smartphone LiDAR system. Furthermore, the relationship between the surface coverage
of the nanorods and the photocurrent was investigated, and the enhanced photocurrent
mechanism is discussed. In addition, the effect of the precise purification of the Au
nanorods on the photoresponse was studied.

2. Materials and Methods

Hydroquinone (HQ), 99%, hydrogen tetrachloroaurate trihydrate (HAuCl4·3H2O),
≥99.9%, silver nitrate (AgNO3), ≥9%, benzyldimethyldodecylammonium chloride (BDAC),
≥95%, and cetyltrimethylammonium bromide (CTAB), ≥99%, were purchased from Sigma-
Aldrich, St. Louis, USA. Sodium borohydride (NaBH4), chemically pure, was obtained
from DaeJung Chemicals & Metals Co., Ltd., Siheung-si, Republic of Korea. Aqueous
solutions of HQ and NaBH4 were prepared freshly each day in the laboratory. All chemi-
cals were used without further purification. Deionized water (DIW) which has electrical
resistance greater than 18.0 MΩ was prepared by Milli-Q (Merck, Darmstadt, Germany).

Au nanorods were synthesized using a previously, reported method with slight
modifications [37]. First, Au nanorod seeds were prepared according to the following
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steps: 0.5 mL of 100 mM CTAB and 0.5 mL of 1 mM HAuCl4 solution were mixed well. To
this solution, 60 µL of 10 mM NaBH4 solution dissolved in ice-chilled water was quickly
added, and the mixture was vortexed for 2 min, resulting in a change in color from clear to
pale brown. This solution was stored at 30 ◦C until it was used in the subsequent growth
reaction. To a mixture of CTAB (5 mL, 200 mM) and HAuCl4 (5 nL, 1 mM), 70 µL of 100 mM
AgNO3 solution was added, followed by 500 µL of 100 mM HQ. The resulting mixture
was stirred until the color of the solution changed from yellow to colorless. Subsequently,
320 µL of the seed solution was added, and the growth solution was mixed thoroughly
and incubated overnight at 30 ◦C for the growth of particles. The synthesized Au nanorods
were centrifuged twice at 12,000× g for 10 min in DIW and then redispersed for further
purification. The as-synthesized nanorod solution contained spherical and cubic particles
as by-products. To separate these from the rods, selective refinement was performed via a
depletion-induced flocculation method [38]. BDAC and CTAB stock solutions were added
to 500 µL of crude nanorod solution, along with DIW, to achieve final concentrations of 300
and 1 mM of BDAC and CTAB, respectively, in the solution. After overnight incubation at
30 ◦C, the supernatant was carefully removed by a micropipette. The precipitate containing
pure nanorods was redispersed in DIW and centrifuged twice. The purified Au nanorod
solution was adjusted to final concentrations of 0.5, 1, 5, 10, 25, and 50 nM using DIW.

Images of Au nanorods were obtained via energy-filtering transmission electron mi-
croscopy (EFTEM, LIBRA 120, Carl Zeiss AG, Jena, Germany), and the image analysis was
performed using ImageJ [39–41]. LSPR peaks were measured using a UV-vis spectropho-
tometer (HP 8453, Agilent Technologies, Inc., Santa Clara, CA, USA).

A 2D PtSe2 film was prepared via CVD. The laboratory-made CVD equipment com-
prised a tube-type resistance-heating furnace as the chamber, a mass flow controller (MFC),
and a vacuum pump (Figure S1a). Dimethyl (N, N-dimethyl-3-butene-1-amine-N) platinum
(DDAP purity > 99%: Tanaka Kikinzoku Kogyo K.K., Tokyo, Japan) and Se powder (99.99%
purity, Sigma-Aldrich, St. Louis, MO, USA) were used as the precursor and reactant,
respectively. DDAP was heated to 67 ◦C and carried to the chamber along with 10 sccm
of Ar gas. The Se powder was placed on an alumina boat and installed it upstream of the
gas flow in the electric furnace. The Se powder was heated to 220 ◦C using a heating tape.
Ar gas (100 sccm) was flowed in the chamber. The MFC was used to control all gas flows.
The furnace temperature was set to 400 ◦C, and the processing time was 15 min. A layered
2D PtSe2 film was directly deposited on an -OH-terminated SiO2/Si substrate. The Au
nanorod solution (100 µL) was spin coated onto the 2D PtSe2 film at 2000 rpm for 30 s.

The surface morphology of the film was studied via field emission scanning electron
microscopy (FE-SEM, JSM-7610F-Plus, JEOL Ltd., Tokyo, Japan), and the image analysis
was performed using ImageJ [39–41]. The SEM image is binarized to distinguish between
nanorods and PtSe2. The nanorod coverage is then calculated by measuring the area of
the nanorods relative to the total image area. A plugin for the analysis of porous scaffolds
was used to measure the rod-to-rod distance [42]. Raman spectroscopy was performed
using a LabRAM ARAMIS with 532 nm-wavelength laser (HORIBA, Kyoto, Japan) Raman
microscope. Mobility was measured using a Hall effect measurement system (HMS3000,
Ecopia Corporation, Anyang-si, Republic of Korea) with a 0.51 T magnetic field and a 0.1 µA
current. The film thickness was measured by atomic force microscopy (AFM, NanoScope
IIIa, Digital Instruments, Bresso, Italy). Data for the absorption curves were collected from
an ultraviolet-visible-NIR (UV-Vis-NIR) spectrometer (V-670, JASCO Corporation, Tokyo,
Japan). Further, sheet resistance was measured using a probe station with a four-point
probe unit (M4P 205-System, MS TECH, Suwon-si, Korea).

LEDs (wavelength: 940 nm) were used as the light source for the photoresponse
measurement. The power density of the LED lights mounted on a universal board was
525 µW/cm2. The universal board was ON/OFF-programmed to work with the light on
for 20 s and off for 30 s. The photoresponse was measured using a voltage/current meter
(Keithley 2400, Tektronix, Inc. Keithley Instruments, Solon, OH, USA) with a bias voltage
of 0.5 V. The device was connected with alligator clips, and pressed indium grains were
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used as contacts. Short duration precise photocurrent was measured using a probe station
(M4P 205-System, MS TECH, Suwon-si, Korea).

3. Results & Discussion

Au nanorods were synthesized from a HAuCl4 solution (Sigma-Aldrich, St. Louis,
MO, USA). CTAB (Sigma-Aldrich, St. Louis, MO, USA) was used as a protectant, and it
formed a layer of 2.0 nm thickness around the Au nanorods. For the synthesis, 5.9 is the
desired aspect ratio to obtain the plasmon extinction peak at 940 nm. The Au nanorods
were dispersed in water and adjusted to an arbitrary concentration. The EFTEM images
show that the nanorods possessed a uniform rod shape (Figure 1a). The color depth of Au
nanorods is caused by the different growth directions of the faceted Au nanorods, and the
size and thickness are uniformly controlled [43]. The average size of the Au nanorods was
calculated by image analysis to be 97.5 nm × 16.9 nm (n = 200) (Figure 1b). Absorption
spectra were collected using a UV-Vis-NIR spectrophotometer, and the position of the
extinction peak was compared with that obtained using a spectral simulation method
that used a quasi-electrostatic field approximation for a spheroid. The long-axis plasmon
extinction peak at 940 nm and the short-axis peak at approximately 500 nm are in good
agreement with those of the spectrum obtained via simulation (Figure 1c).
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Figure 1. (a) TEM image of Au nanorods and (b) size distribution of purified Au nanorods. (c) Com-
parison of the extinction spectrum of purified Au nanorods and that obtained via simulation.

2D PtSe2 was prepared via CVD to control the number of layers and surface roughness.
In the CVD process, DDAP (Tanaka Kikinzoku Kogyo K.K., Tokyo, Japan) and vaporized Se
were used as the precursor and reactant, respectively (Figure S1b). The synthesized PtSe2
was confirmed to have a layered 2D structure via Raman spectroscopy, with the A1g (out-
of-plane vibration) and Eg (in-plane vibration) peaks at 208.5 and 180 cm−1, respectively
(Figure S1c) [44,45]. The 2D PtSe2 indicated 2.67 cm2/Vs mobility, which is lower than
reported value due to a fine structure with a lot of grain boundaries [46,47]. The thickness
of the 2D PtSe2 was 4.08 nm and the optical band gap was 0.88 eV, which are in agreement
with the values reported in the literature for four layer PtSe2 (Figure S1d,e) [20,48]. Then,
samples with different concentrations of Au nanorods (0.5, 1, 5, 10, 25, and 50 nM) were
used to determine the optimal amount of Au nanorods on the 2D PtSe2 surface (Figure S2).
Au nanorods were decorated on 2D PtSe2 by spin coating at 2000 rpm to obtain Au
nanorod/2D PtSe2 hybrid structures. Au nanorods on 2D PtSe2 were observed via FE-SEM.
The Au nanorods (1–50 nM) were uniformly and randomly coated on 2D PtSe2; however,
almost no Au nanorods were observed on the 2D PtSe2 surface with 0.5 nM Au nanorods
(Figure 2a–e). The Au nanorod coverage on 2D PtSe2 for each concentration of the Au
nanorod solution was calculated by image analysis. The coverage of Au nanorods on 2D
PtSe2 is almost proportional to the concentration of the Au nanorod solution (Figure 2f).
The Raman spectra after spin coating of Au nanorods show an increase in the A1g peak
compared to before coating (Figure S1c). It has been reported that the A1g mode is strongly
coupled with electrons in the functionalized 2D TMDCs by nanoparticles [49,50]. The
increase in the A1g peak suggests that the decoration of the Au nanorods affected the
electron state in 2D PtSe2.
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Figure 2. SEM image of 2D PtSe2 surface coated by (a) 1, (b) 5, (c) 10, (d) 25, and (e) 50 nM Au
nanorods. (f) Relationship between the concentration of Au nanorod solution and coverage.

A photoresponse-sensing electrode on Au nanorod/2D PtSe2 substrate was fabricated
by the thermal evaporation and deposition of Ti as the adhesion layer (thickness: 5 nm)
and Au as the electrode (thickness: 40 nm), using an interdigitated comb shadow mask
(Figures 3a and S3). Furthermore, a bare 2D PtSe2 electrode was fabricated using the same
method, to compare the photocurrent. For measuring the photocurrent, the electrodes
were clamped using alligator clips connected to a multimeter. Using the multimeter, 0.5 V
bias voltage was applied to the devices during the photocurrent measurement. The time-
dependent photoresponse of the Au nanorod/2D PtSe2 hybrid-structure photodetector
was measured using LED light with a wavelength of 940 nm.

The photocurrent was observed in all samples and the dark current increased with
higher concentration of Au nanorods (Figure 3b,c) [51]. As already reported, significantly
faster photocurrent response times of 2D PtSe2 compared to other 2D materials were
observed [52]. The photocurrent increased in the photodetectors of up to 5 nM Au nanorod-
coated 2D PtSe2. The power dependence of photocurrent, responsivity, and ON/OFF cyclic
performance test of 5 nM Au nanorod-coated 2D PtSe2, which observed the highest pho-
tocurrent, were measured (Figures 3d,e and S4). It has been reported that the responsivity
of PtSe2 on SiO2/Si substrate is 0.8 mA/W at 4.5 V bias voltage [53]. The responsivity
measured in this study was maximum 908 µW/A at 0.5 V bias voltage. Considering the
difference in bias voltage, sufficient quality Au nanorod/2D PtSe2 photodetectors were fab-
ricated. The photocurrent in 5 nM Au-nanorod-coated 2D PtSe2 is approximately fivefold
higher than that in bare 2D PtSe2. The increase in photocurrent of Au nanorod/2D PtSe2 is
remarkable and superior to that of functionalized TMDCs with metal nanoparticles [54–56].
However, the photocurrent decreased in 2D PtSe2 decorated with Au nanorods of concen-
trations higher than 10 nM. Many papers have reported an enhancement in the properties
of semiconductor materials by modifying the LSPR using plasmonic nanoparticles [57–63].
The photocurrent enhancement occurred because of the injection of hot electrons into
the semiconductor material; these electrons were generated in the charge-separated state
during specific radiative decay, such as Landau decay, from the plasmon state [64,65].
Consequently, the carrier concentration in the semiconductor increased, and the properties
of the semiconductor material were improved [57].
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concentration of the Au nanorod solution and rod-to-rod distance.

Previous studies on the decoration of semiconductors with Au nanoparticles have
found that increasing the load of nanoparticles often causes performance degradation.
These studies have proposed various explanations for the performance degradation. For ex-
ample, Lee et al. proposed that Au nanorods act as light-shielding metal masks; thus,
increasing the coverage of the Au nanorods decreases the quantum efficiency of 2D
PtSe2 [58,66]. However, in this case, although the surface coverage of the Au nanorods
was only 0.5% with a 10 nM Au nanorod coating, the photocurrent decreased. Even 50 nM
Au nanorod-coated 2D PtSe2, which demonstrated only 1/20 of the photocurrent of bare
2D PtSe2, possessed an Au nanorod coverage of 2.52%. Therefore, the photocurrent was
measured by covering 3% of the device with a light-shielding tape to check the masking
effect. The photocurrent of the 3%-covered device was almost equal to that of the bare
2D PtSe2 (Figure S5). Therefore, 3% shielding did not cause a significant decrease in
the photocurrent.

Metal nanoparticles decorated on semiconductors may also behave as recombination
centers and cause exciton quenching [67–69]. However, our synthesized Au nanorods were
capped by CTAB. CTAB surrounds the nanorods by a few nm and acts as a protectant. Gen-
erally, the thickness of the CTAB layer in solution is about 3 nm. However, on the surface
of dried nanoparticles coated on a substrate, the CTAB layer becomes much thicker [70].
Studies of core–shell particles suggest that a thickness of 7~10 nm is necessary to act like
a dielectric layer, and the thickness of the CTAB layer on the substrate is considered to
be approximately the same [71]. CTAB layer avoids direct metal–semiconductor contact
and prevents the Au nanorods from acting as recombination centers, thus preventing
exciton quenching.
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The other mechanism proposed for the decreasing photocurrent at high catalytic
performance of TiO2 and g-C3N4 catalysts decorated with Au nanoparticles is the en-
hancement of electron–hole recombination owing to leakage current caused by excess hot
electrons under high Au loading [59–62]. Furthermore, measurements of sheet resistance
showed that the leakage current increases with an increase in the Au nanoparticle loading.
It is considered that the formation of false transport channels by Au nanoparticles results
in the loss of carriers [63]. Au nanorod solutions of various concentrations were coated on
2D PtSe2 films, and the sheet resistances were measured. The sheet resistance decreased
with an increase in the concentration of Au nanorods (Figure 3f). Notably, in the 10 nM
Au-nanorod-decorated sample, which exhibited a lower photocurrent than those of sam-
ples coated with lower concentrations of Au nanorod solution, the sheet resistance was
as low as those of the 25 and 50 nM solution-coated samples that exhibited a significantly
degraded photocurrent.

Moreover, the theoretical mean free path of hot electrons in metals is 10–60 nm [72].
By measuring the distances between the nanorods from the FE-SEM images, we found
that the photocurrent decreased in devices with regions where the distance between the
nanorods was less than 60 nm (Figure 3g). Therefore, the leakage current owing to the
hot-electron mean free path is responsible for the decrease in the photocurrent. Thus, the
formation of excessive false transport channels can be avoided by maintaining a distance
greater than the mean free path of hot electrons (10–60 nm) between the Au nanorods.

In addition, the electric field around the Au nanorods was simulated by pyGDM
to discuss the effect of electric field enhancement by LSPR [73]. The simulation results
show that the electric field is enhanced in a region of about 50 nm around the nanorods
(Figure 4a). Calculations were also performed for two Au nanorods with a 10 nm gap to
simulate the electric field for high concentration nanorods are coated, and a 60 nm gap to
compare. The calculation results for a 60 nm gap indicated a slightly blue-shifted extinction
peak, while a 10 nm gap indicated a significant peak blue-shifted to approximately 850 nm
due to plasmon hybridization (Figure 4b–d) [74]. Therefore, from the viewpoint of electric
field enhancement, it was indicated that a rod-to-rod distance of more than 60 nm was
effective in enhancing the photocurrent.
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Nanoparticles with undesired shapes were produced during the synthesis of Au
nanorods. Therefore, the separation and purification of the desired nanorods is a common
procedure before using the nanorods. An unpurified (as-synthesized) Au nanorod solution
(5 nM) was prepared to investigate the significance of purification in enhancing the pho-
tocurrent of the nanorods. From the EFTEM images, 71% of the particles were Au particles
with the desired rod shape. The imperfectly shaped Au nanocolloids contained spherical
and cube-shaped lumps and nanorods with insufficient longitudinal growth (Figure 5a).
The size distribution of Au nanorods was broader than after purification (Figure 5b). Ab-
sorption spectra were recorded using a UV-vis-NIR spectrophotometer, and the long-axis
plasmon extinction peak at 940 nm and the short-axis peak at approximately 500 nm were
almost the same as those of the purified Au nanorods (Figure 5c). However, the slightly
higher intensity of the short-axis peaks around 500 nm of the as-synthesized sample com-
pared with those of the purified Au nanorods could be because of the imperfectly shaped
Au nanoparticles (Figure 5d). The short axis peak has a broad shoulder due to the long-axes
of incomplete rods.
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Figure 5. (a) TEM image of as-synthesized Au nanorods. (b) Size distribution of as-synthesized Au
nanorods. (c) Extinction spectra of as-synthesized and purified Au nanorods and that obtained via
simulation. (d) Extinction spectra of as-synthesized and purified Au nanorods and that obtained via
simulation attributed as short-axis.

The as-synthesized Au nanorod solution (5 nM) was spin coated onto 2D PtSe2 in the
same way that purified Au nanorod solutions and Au/Ti interdigitated comb electrodes
were fabricated on the surface to measure the photocurrent. A probe station was used
to measure the precise photocurrent in a short time. The maximum photocurrent of
the as-synthesized Au nanorod/2D PtSe2 was almost the same as that of the generated
Au nanorod/2D PtSe2. As for the photocurrent response time, the 10–90% rise time
of the as-synthesized Au nanorod/2D PtSe2 was measured to be approximately 0.3 s,
which was slightly slower than that of the purified Au nanorod/2D PtSe2 and bare 2D
PtSe2 of approximately 0.2 s (Figure 6a–c). However, the as-synthesized Au nanorod/2D
PtSe2 showed a continual increase after the steep increase in photocurrent in a short
time. Moreover, the photocurrent variation was large, and the standard deviation differed
greatly, i.e., σAs−synthesized = 21.20 nA and σPuri f ied = 4.23 nA, while the bare 2D PtSe2
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was σBare = 0.40 nA (Figure 6d–e). Theoretically, the injection efficiency of hot electrons
varies with the shape of the Au nanoparticles [75]. The efficiency of hot-electron injection
is less in low-aspect-ratio nanorods and spherical particles. Additionally, CTAB, which is
used as a protectant for Au nanorods, is positively charged and can trap electrons unless
sufficient hot electrons are generated in the Au nanorods [76]. The irregular/non-flat steps
are presumed to be the result of the imperfectly shaped Au nanorods acting as electron
traps as well as electron donors by generated hot electrons; hence, the photocurrent was
not stably generated.
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Figure 6. 10–90% rise time of (a) as-synthesized Au nanorod/2D PtSe2, (b) purified Au nanorod/2D
PtSe2, and (c) bare 2D PtSe2. Variation in photocurrent of (d) as-synthesized Au nanorod/2D PtSe2,
(e) purified Au nanorod/2D PtSe2, and (f) bare 2D PtSe2.

As mentioned above, imperfect nanorods in the Au nanorod solutions possessed low
aspect ratios and were cube-shaped and spherical particles. Such nanorods did not generate
sufficient hot-electron injection effect, resulting in unstable photocurrent generation due to
electron trapping by the positively charged protectant CTAB. Therefore, the purification of
nanorods has the effect of increasing the hot electron injection efficiency and generating a
fast response and stable enhanced photocurrent at 940 nm.

4. Conclusions

In this study, 2D PtSe2 was prepared via CVD using DDAP and Se as precursor
and reactant, respectively. Au nanorods with an aspect ratio of 5.9, which exhibited an
absorption peak at 940 nm, were synthesized to improve the photoresponse properties of
2D PtSe2. The extinction spectra of the synthesized Au nanorods were in good agreement
with the simulation results. Furthermore, the Au nanorod solution was diluted with pure
water to prepare solutions of six different concentrations. These solutions were spin coated
to obtain Au nanorod/2D PtSe2 hybrid structures. Then, comb electrodes were fabricated
using Au nanorod/2D PtSe2 and their time-dependent photoresponse to near-infrared
light (wavelength: 940 nm) was measured. A high photocurrent was observed in 2D PtSe2
decorated with 5.0 nM Au nanorods, which was approximately fivefold higher than that of
bare 2D PtSe2. On the other hand, the photocurrent decreased with an increase in the Au
nanorod concentration above 10 nM. The leakage current increased possibly owing to the
formation of false transport channels because the spacing between the Au nanorods was
less than the mean free path of the hot electrons. The standard deviation of photocurrent
was larger with unpurified Au nanorod coating because of the imperfectly shaped Au
nanoparticles in the Au nanorod solution. Therefore, refining the Au nanorods is important
for stable enhancement of photocurrent. The photocurrent can be improved via a simple
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method of spin coating the purified Au nanorods of appropriate concentrations onto 2D
PtSe2 films.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/photonics8110505/s1, Figure S1: (a) Schematic of the CVD process for the fabrication of 2D
PtSe2. (b) Structure of DDAP. (c) Raman spectrum of 2D PtSe2 before and after Au nanorods spin
coating. (d) AFM image of 2D PtSe2. (e) Tauc plot of 2D PtSe2 calculated from UV-vis-NIR spectra.
Figure S2: Photograph of Au nanorod solutions of various concentrations. Figure S3: Dimensional
drawing of the interdigitated comb shadow mask. Figure S4: ON/OFF cyclic performance test of
5 nM Au nanorod/2D PtSe2 at 940 nm. Figure S5: Photocurrent comparison of 3% masked Au
nanorod/2D PtSe2 and bare 2D PtSe2 at 940 nm.
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