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Abstract: Accurate three-dimensional (3D) shape reconstruction of objects from a single image is a
challenging task, yet it is highly demanded by numerous applications. This paper presents a novel
3D shape reconstruction technique integrating a high-accuracy structured-light method with a deep
neural network learning scheme. The proposed approach employs a convolutional neural network
(CNN) to transform a color structured-light fringe image into multiple triple-frequency phase-shifted
grayscale fringe images, from which the 3D shape can be accurately reconstructed. The robustness of
the proposed technique is verified, and it can be a promising 3D imaging tool in future scientific and
industrial applications.

Keywords: three-dimensional sensing; three-dimensional shape reconstruction; single-shot imaging;
height measurements; depth measurements; deep learning; convolutional neural networks

1. Introduction

Three-dimensional (3D) shape or depth perception has been a favored long-term
research topic in recent decades, driven by numerous scientific and engineering appli-
cations in many fields, due to its capability of perceiving depth information that cannot
be fulfilled by two-dimensional (2D) imaging. The 3D shape and depth perception tech-
niques are typically stereo vision- and optics-based, and the most widely used scheme
involves employing structured light to facilitate image analysis. Representative commercial
products in this category include industrial 3D scanners that provide accurate 3D shape
measurements with fringe-pattern illumination and consumer-grade 3D depth sensors
that deliver real-time depth maps with speckle-pattern or similar illuminations [1–6]. A
fringe pattern-based technique generally requires capturing multiple fringe-shifted images
in sequence to achieve high accuracy, but the measurement speed is consequently slow.
By contrast, a speckle pattern-based technique usually uses two images simultaneously
captured by two cameras; in this way, real-time measurement speed can be attained, but
the corresponding accuracy is often relatively low. Therefore, a structured-light technique
capable of providing not only high-accuracy but also fast-speed performance is always of
great interest in the research and development of new 3D scanning systems.

In recent years, deep learning has seen explosive growth in an enormous range of
challenging computer vision applications [7–12]. In particular, deep learning has been
playing an important role in enhancing the capabilities of various 3D imaging and shape
reconstruction techniques via using supervised learning and massive datasets [13–16]. In
the meantime, several artificial neural networks have been successfully utilized in optical
measurement applications such as fringe analysis, phase determination, interferogram
denoising, and deformation investigation [17–24].

Based on the successful applications of deep learning in the computer vision and
optics fields, integrating the structured-light technique and the deep learning scheme for
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accurate 3D shape reconstruction should be achievable [25–27]. As a matter of fact, a
few strategies have been proposed to transform a captured structured-light image into its
corresponding 3D shape using deep learning. For instance, an autoencoder-based network
named UNet can serve as an end-to-end network to acquire the depth map from a single
structured-light image [28–31]. Works presented in [32–36] reveal that a phase map can be
retrieved by one or multiple neural networks from structured-light images, and the phase
map is then used to calculate the depth map.

In this paper, a novel technique of 3D shape reconstruction from a single structured-
light fringe image is proposed. It is based on using a high-accuracy 3D imaging technique
known as fringe projection profilometry (FPP). The conventional FPP technique involves
using a projector to project a set of phase-shifted fringe patterns with multiple frequencies
on the target, where the surface height or depth information is naturally encoded into the
images captured by a camera at a different view from the projector. Through retrieving
phase distributions from the captured images, the height or depth map can be determined
and the 3D shape can be reconstructed. Inspired by Zhang’s work [37] of encoding three
fringe patterns of different frequencies into a single composite RGB image and a few other
researchers’ work [38,39] of using a deep learning method to transform one or two fringe
images to multiple phase-shifted fringe images, the proposed technique aims to employ
a convolutional neural network (CNN) model to transform a single-shot red–green–blue
(RGB) fringe-pattern image into a number of multi-frequency phase-shifted grayscale
fringe-pattern images, which are then used to reconstruct the depth and 3D shape map
using the conventional FPP algorithm. Due to the main purpose of transforming a single
fringe pattern into multiple fringe patterns, the CNN model is called a fringe-to-fringe
network. Compared with the conventional FPP technique, the essential difference is that
the proposed approach requires only a single-shot color image instead of multiple (e.g.,
12–20) images. Since the new technique requires only a single-shot image instead of
multiple images, the measurement speed can be remarkably improved while maintaining
equivalent accuracy. Such a highly demanded capability is technically impossible from the
conventional perspective, but is now practicable with a CNN approach.

It is noteworthy that, unlike Yu’s work [38], which uses multiple networks and one or
multiple fringe images, the proposed technique uses a single network and a single image
for fringe-to-fringe transformations. In addition, a favorable UNet-like network other than
a simple autoencoder-like network is employed to enhance the transformation performance.
Furthermore, it can deal with background fringes. More importantly, by using the multiple
phase-shifted fringes as an intermediary, the proposed approach achieves substantially
higher accuracy than the direct transformation from fringe to depth using deep learning.
Figure 1 demonstrates the fringe-to-fringe network architecture and the pipeline of the
proposed approach.
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Figure 1. Pipeline of the proposed approach.
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2. Materials and Methods

The key step of the proposed technique is to employ a CNN model to transform a
single-shot RGB fringe-pattern image into a number of phase-shifted grayscale fringe-
pattern images, which are then used to reconstruct the depth and 3D shape map using the
conventional FPP algorithm.

The required training and validation datasets, including input images and their
corresponding fringe-pattern outputs, are generated by a conventional FPP system. The
test dataset is generated in this way as well for assessment purposes. Details of the FPP
technique can be found in Ref. [40]. In this work, however, to cope with the essential phase
unwrapping issue, a four-step triple-frequency phase-shifting (TFPS) scheme is adopted
for high-accuracy phase determination. Figure 2 exhibits the schematic pipeline of the
employed conventional FPP technique, which is elaborated as follows.

Multiple triple-frequency 
phase-shifted images Wrapped phases 

Unwrapped phase 3D shape

Eq. (1) Eq. (2) Eq. (3)

f = 61

f = 70

f = 80

Figure 2. Pipeline of the FPP technique with triple-frequency phase-shifting scheme.

The initial fringe patterns fed into the projector are evenly spaced vertical sinusoidal
fringes, which are numerically generated with the following function [41]:

I(p)
in (u, v) = I(p)

0 [1 + cos(φi(u, v) + δn)] (1)

where I(p) is the intensity of the initial pattern at the pixel coordinate (u, v); the subscript i
indicates the ith frequency with i = {1, 2, 3} and n denotes the nth phase-shifted image with
n = {1, 2, 3, 4}; I(p)

0 is a constant coefficient indicating the value of intensity modulation

(e.g., I(p)
0 = 255

2 ); δ is the phase-shift amount with δn = (n−1)π
2 ; and φ is the fringe phase.

For vertical fringes, φ is independent of the vertical coordinates and can be simply defined
as φi(u, v) = φi(u) = 2π fi

u
W , where fi is the number of fringes in the ith frequency pattern

and W is the width of the generated image.
The fringes in the captured images are often distorted, following the 3D shapes of the

targets. The fringe patterns can be described as:

Iin(u, v) = Ai(u, v) + Bi(u, v)cos[φi(u, v) + δn] (2)

where A, B, and I are the background intensity, fringe amplitude, and pixel intensity of
the captured fringe image at pixel coordinate (u, v), respectively. The phase distribution
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φi(u, v) in the captured images is now a function of both u and v, and it can be determined
by using a standard four-step phase-shifting scheme as:

φw
i (u, v) = arctan

Ii4(u, v)− Ii2(u, v)
Ii1(u, v)− Ii3(u, v)

, (3)

where superscript w signifies a wrapped phase because of the arc-tangent function. (u, v)
will be omitted hereafter for simplicity.

If the three frequencies satisfy ( f3− f2)− ( f2− f1) = 1, where ( f3− f2) > ( f2− f1) >
0, the unwrapped phase of the highest-frequency fringe patterns can be calculated with the
following hierarchical equations:

φw
12 = φw

2 − φw
1 + 2π〈φw

1 − φw
2 〉

0 (4a)

φw
23 = φw

3 − φw
2 + 2π〈φw

2 − φw
3 〉

0 (4b)

φ123 = φw
23 − φw

12 + 2π〈φw
12 − φw

23〉
0 (4c)

φ23 = φw
23 + INT

(
φ123( f3 − f2)− φw

23
2π

)
2π (4d)

φ = φ3 = φw
3 + INT

φ23
f3

f3− f2
− φw

3

2π

2π (4e)

In the equations, 〈x〉0 denotes a singularity function, and it is 1 for x > 0 and is 0
otherwise; INT indicates rounding to the nearest integer. The rationale of the algorithm
is to generate an intermediate result of unwrapped phase φ123 to start a hierarchical
phase-unwrapping process. φw

12 and φw
23 are intermediate wrapped phases with ( f2 − f1)

and ( f3 − f2) fringes in the pattern, respectively. φ123 is both wrapped and unwrapped
because there is only one fringe in the pattern since ( f3 − f2)− ( f2 − f1) = 1. φ23 is an
intermediate unwrapped phase to bridge φ123 and φ3 because the ratio of their fringe
numbers is large. The phase distribution of the highest-frequency fringe patterns, φ3, is
adopted because it yields the highest accuracy for phase determination. In this work, the
three frequencies are 61, 70, and 80. This combination gives a ratio of 1:10:80 for a balanced
hierarchical calculation.

From the retrieved phase distribution, the depth map can be calculated [40] from:

zw =
C{p1 p2}ᵀ

D{p1 p2}ᵀ

C = {1 c1 c2 c3 · · · c17 c18 c19}
D = {d0 d1 d2 d3 · · · d17 d18 d19}

p1 =
{

1 φ u uφ v vφ u2 u2φ uv uvφ v2 v2φ
}

p2 =
{

u3 u3φ u2v u2vφ uv2 uv2φ v3 v3φ
}

(5)

where zw is the physical height or depth at the point corresponding to the pixel (u, v)
in the captured image, and it is also the z-coordinate of the point in the reference world
coordinate system; φ is the unwrapped phase of the highest-frequency fringe pattern at the
same pixel, which is determined from Equation (4); c1 − c19 and d0 − d19 are 39 constant
coefficients that can be pre-determined by a calibration process [40,42]. Following this,
the other two coordinates xw and yw can be easily determined upon knowing the camera
parameters [42]. For this reason, the two terms, depth (or height) measurement and 3D
shape reconstruction, can often be used interchangeably.

In the dataset generation, three original uniform fringe patterns with different frequen-
cies (i.e., 61, 70, and 80) are respectively loaded into the RGB channels of the first projection
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image, and the following 12 projection images are the four-step TFPS grayscale images
of the aforementioned three fringe patterns. For each sample, the system projects these
13 patterns onto the target and meanwhile captures 13 corresponding images. The first
captured color image serves as the fringe pattern input, and the remaining 12 grayscale
images aim to generate the corresponding ground-truth labels as previously described.
Dozens of small plaster sculptures are randomly oriented and positioned many times in
the field of view of the capturing system to serve as a large number of different samples.
In total, 1500 data samples are acquired. To ensure reliable network convergence and
avoid biased evaluation, the samples are split by a ratio of 80%–10%–10% as the training,
validation, and test datasets. Notably, a number of objects are captured solely for the
validation and test datasets to ensure that a target, regardless of rotation and position, will
appear only in one of the three datasets.

Figure 3a shows a few selected input and output pairs contained in the datasets of
the fringe-to-fringe network. Because a performance comparison of the proposed network
with the existing fringe-to-depth and speckle-to-depth networks will be conducted later,
a few examples of these two network datasets are presented in Figure 3b,c, respectively.
Furthermore, since the wrapped phase can be obtained from the numerator (N) and
denominator (D) of the arctangent function shown in Equation (3), a network capable of
determining Ns and Ds of the captured fringe images can be suitable for the 3D shape
reconstruction [43]. Such a fringe-to-ND network will also be included in the comparisons
with the proposed fringe-to-fringe network. The examples of the input and output data of
the fringe-to-ND network are shown in Figure 3d.

In the proposed approach, a UNet-based CNN network [11] is constructed for the
fringe-to-fringe transformation. In particular, the CNN model is trained to transform each
fringe pattern in the RGB channels of the input image into its corresponding four-step
phase-shifted fringe images. The appearance of the target and background remain the
same in the output images, and the only change is the shifting of the fringe patterns at
an incremental step of π

2 . The network consists of two main paths: an encoder path and
a decoder path. The encoder path contains spatial convolution (kernel size of 3× 3) and
max-pooling (pool size 2× 2) layers to extract representative features from the single-
shot input image, whereas the decoder path reverses the operations of the encoder path
with transposed convolution (strides = 2) and spatial convolution layers to upsample the
previous feature map to a higher-resolution receptive map. It is noted that all the spatial
convolution and transposed convolution layers use the same padding type, in which the
output feature maps have exactly the same spatial resolution as the input feature maps.
In addition, symmetric concatenations from the encoder path to the decoder path are
established to ensure rigorous transformation of features at different sub-scale resolutions.
Finally, a 1×1 convolution layer is attached to the last layer to transform the vector feature
maps into the desired fringe-pattern outputs.

The format of the training, validation, and test data, as well as the output data, is
a four-dimensional (4D) tensor of size s × h × w × c, where the four variables are the
number of data samples, the height and width of input and output images, and the channel
depth, respectively. Specifically, h and w are 352 and 640, respectively; c is set to 3 for
the RGB input image and 12 for the output of multiple phase-shifted grayscale fringe
images. The adopted resolution of the images is restricted by the computation system. In
the network model, a dropout function with a rate of 0.2 is added to the network to prevent
the overfitting issue. In addition, a nonlinear activation function named the leaky rectified
linear unit (LeakyReLU) [44] is applied after each spatial convolution layer in the network
to handle the zero-gradient issue. The LeakyReLU function is expressed:

h = g(Wᵀx + b) =
{

Wᵀx i f Wᵀx > 0
αWᵀx else

(6)

where x and h are the input and output vectors, respectively; weight parameters W in matrix
form and bias parameters b in vector form are optimized by the training process; and α is
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a negative slope coefficient, which is set to 0.2 in the proposed work. Table 1 details the
architecture and the number of parameters of the proposed network for fringe-to-fringe
transformation.
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Figure 3. Examples of input and output data pairs contained in the: (a) fringe-to-fringe datasets; (b) fringe-to-depth datasets;
(c) speckle-to-depth datasets; (d) fringe-to-ND datasets.
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Table 1. The proposed fringe-to-fringe architecture and layer parameters.

Layer Filters Kernel Size/
Pool Size Stride Output Size Params

input - - - 352 × 640 × 3 0

conv1a + LeakyReLU
conv1b + LeakyReLU

max pool

32
32
-

3 × 3
3 × 3
2 × 2

1
1
2

352 × 640 × 32
352 × 640 × 32
176 × 320 × 32

896
9248

0

conv2a + LeakyReLU
conv2b + LeakyReLU

max pool

64
64
-

3 × 3
3 × 3
2 × 2

1
1
2

176 × 320 × 64
176 × 320 × 64
88 × 160 × 64

18,496
36,928

0

conv3a + LeakyReLU
conv3b + LeakyReLU

max pool

128
128

-

3 × 3
3 × 3
2 × 2

1
1
2

88 × 160 × 128
88 × 160 × 128
44 × 80 × 128

73,856
147,584

0

conv4a + LeakyReLU
conv4b + LeakyReLU

max pool

256
256

-

3 × 3
3 × 3
2 × 2

1
1
2

44 × 80 × 256
44 × 80 × 256
22 × 40 × 256

295,168
590,080

0

conv5a + LeakyReLU
conv5b + LeakyReLU

dropout

512
512

-

3 × 3
3 × 3

-

1
1
-

22 × 40 × 512
22 × 40 × 512
22 × 40 × 512

1,180,160
2,359,808

0

transpose conv
concat

conv6a + LeakyReLU
conv6b + LeakyReLU

256
-

256
256

3 × 3
-

3 × 3
3 × 3

2
-
1
1

44 × 80 × 256
44 × 80 × 512
44 × 80 × 256
44 × 80 × 256

1,179,904
0

1,179,904
590,080

transpose conv
concat

conv7a + LeakyReLU
conv7b + LeakyReLU

128
-

128
128

3 × 3
-

3 × 3
3 × 3

2
-
1
1

88 × 160 × 128
88 × 160 × 256
88 × 160 × 128
88 × 160 × 128

295,040
0

295,040
147,584

transpose conv
concat

conv8a + LeakyReLU
conv8b + LeakyReLU

64
-

64
64

3 × 3
-

3 × 3
3 × 3

2
-
1
1

176 × 320 × 64
176 × 320 × 128
176 × 320 × 64
176 × 320 × 64

73,792
0

73,792
36,928

transpose conv
concat

conv9a + LeakyReLU
conv9b + LeakyReLU

32
-

32
32

3 x 3
-

3 × 3
3 × 3

2
-
1
1

352 × 640 × 32
352 × 640 × 64
352 × 640 × 32
352 × 640 × 32

18,464
0

18,464
9248

conv10 + Linear 12 1 × 1 1 352 × 640 × 12 396

Total 8,630,860

3. Results and Discussion

The hardware components used for the training process consist of an Intel Xeon Gold
6140 2.3GHz CPU, 128GB RAM, and two Nvidia Tesla V100 SXM2 32GB graphics cards.
Furthermore, Nvidia CUDA Toolkit 11.0 and cuDNN v8.0.3 are adopted to enable the
high-performance computing capability of the GPU. Tensorflow and Keras, two widely
used open-source software libraries for deep learning, are chosen in this work for network
construction and subsequent learning tasks. The datasets are captured by an RVBUST
RVC-X mini 3D camera that allows the capturing of the required fringe-pattern images and
the use of user-defined functions to determine 3D shapes.

For reliable and efficient performance, both the model parameters and the hyperpa-
rameters that control the learning process are optimized during training. The network is
trained through 300 epochs with a mini-batch size of 2. Adam optimization [45] with a
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step decay schedule is implemented to gradually reduce the initial learning rate (0.0001)
after the first 150 epochs. A data augmentation scheme (e.g., whitening) is implemented
to overcome the modulation overfitting problem. A few Keras built-in functions such as
ModelCheckpoint and LambdaCallback are applied to monitor the training performance
and save the model parameters that yield the best results.

After the training is completed, the test datasets are fed into the trained CNN
model to obtain the output fringe images. These images are then analyzed following
Equations (3)–(5) to reconstruct the depth map and subsequent 3D shapes. Table 2 summa-
rizes a few quantitative statistical metrics from the test dataset as well as the validation
dataset. The metrics include root-mean-square error (RMSE), mean error, median error,
trimean error, mean of the best 25%, and mean of the worst 25%. Because using an end-
to-end neural network to directly transform a single-shot fringe or speckle image into
its corresponding 3D shape or depth map has most recently gained a great deal of in-
terest [46,47], a comparison with such a fringe-to-depth network and a speckle-to-depth
network is conducted. Moreover, a fringe-to-ND network [32,34,43,48] is carried out for
comparison as well since it is an approach falling between the fringe-to-depth and the
proposed fringe-to-fringe network. The comparative work uses the same system configura-
tion as well as network architecture shown in Figure 1. For the fringe-to-depth network,
the difference from the proposed fringe-to-fringe one is that the channel depth of the last
convolution layer is changed from 12 to 1 to accommodate the depth map requirement (i.e.,
c = 1). For the speckle-to-depth network, the channel depth of the input is one instead of
three since the speckle image is grayscale. For the fringe-to-ND network, the channel depth
of the output is six because there are three numerator maps and three denominator maps.
The results displayed in the table clearly show that the proposed technique works well and
outperforms the fringe-to-depth network and the speckle-to-depth network methods. It
also performs slightly better than the fringe-to-ND network scheme.

Table 2. Quantitative performance of fringe-to-fringe, fringe-to-depth, and speckle-to-depth, and
fringe-to-ND networks (unit: mm).

Method Fringe-to-Fringe Fringe-to-Depth Speckle-to-Depth Fringe-to-ND

Valiation Test Valiation Test Valiation Test Valiation Test

RMSE 0.0650 0.0702 0.5673 0.6376 0.6801 0.7184 0.0667 0.0538
Mean 0.0091 0.0109 0.3363 0.3738 0.3167 0.3838 0.0216 0.0126

Median 0.0087 0.0105 0.3239 0.3511 0.3030 0.3729 0.0204 0.0105
Trimean 0.0088 0.0106 0.3310 0.3622 0.3042 0.3789 0.0207 0.0108
Best 25% 0.0053 0.0040 0.2790 0.2859 0.2150 0.2543 0.0153 0.0067

Worse 25% 0.0138 0.0181 0.4080 0.4891 0.4451 0.5289 0.0297 0.0225

Figure 4 displays the 3D results of the proposed approach with the fringe-to-fringe
network and the comparative fringe-to-depth network. In the figure, the first to fifth rows
are the plain images, the test inputs, followed by the 3D labels, the 3D shapes obtained
from the fringe-to-fringe network, and the results from the fringe-to-depth network, respec-
tively. For each of the two sample objects, a selected feature region is magnified for better
comparison purposes. It is evident that the proposed approach with the fringe-to-fringe
network is capable of acquiring 3D results with detailed textures close to the ground-truth
labels, whereas the technique with the direct fringe-to-depth network reconstructs the 3D
shape of the target with fewer details and larger errors.
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Figure 4. 3D shape reconstruction of the proposed technique and the comparative fringe-to-depth method.

Figure 5 demonstrates a qualitative comparison assessment between the proposed
fringe-to-fringe approach and the recently developed speckle-to-depth method. The top
portion of the figure shows the fringe-pattern input and speckle-pattern input required
by the fringe-to-fringe and speckle-to-depth methods, respectively. From the shape re-
construction results displayed in the bottom portion of the figure, it is evident that the
speckle-to-depth scheme reconstructs fewer surface details than the proposed fringe-to-
fringe approach.
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Single-shot fringe input Single-shot speckle input

Ground-truth 3D Fringe-to-fringe 3D Speckle-to-depth 3D

Figure 5. 3D shape reconstruction of the proposed technique and the comparative speckle-to-
depth method.

To further illustrate the performance of the proposed approach, Figure 6 shows the
results of another two representative test samples. The first column in the top portion of the
figure displays the single-shot inputs, and the next two columns are the phase distributions
retrieved from the predicted fringe patterns and their ground truth. The first two columns in
the bottom portion of the figure are the phase differences between the predicted and ground-
truth ones. The last two columns demonstrate the 3D shapes reconstructed by the proposed
technique and the conventional structured-light FPP technique. The mean values of the
phase differences obtained for the two test samples are −2.616× 10−4 and 3.958× 10−4,
respectively. It can be seen again that the proposed technique can reconstruct high-quality
3D shapes comparable to the ones reconstructed by the state-of-the-art structured-light
technique, except for some noise along the edges.

Figure 7 exhibits a comparative demonstration of the proposed fringe-to-fringe ap-
proach and the fringe-to-ND method. The first row of the figure includes the plain image,
fringe-pattern input, and ground-truth unwrapped phase distributions. The second and
third rows plot the unwrapped phase distributions obtained from the predicted outputs,
phase errors, and 3D shapes reconstructed by the fringe-to-fringe and fringe-to-ND meth-
ods. It is observed that both techniques can acquire 3D shapes close to the 3D ground-truth
label, with detailed surface information. Nevertheless, a closer inspection reveals that
the fringe-to-fringe technique can provide slightly better results than the fringe-to-ND
approach. The performance has been reflected in Table 2 previously presented.
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Figure 6. Phase distributions, phase errors, and 3D shape reconstruction of two representative test samples.
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Figure 7. Phase distributions, phase errors, and 3D shape reconstruction of the proposed fringe-to-fringe technique and the
competitive fringe-to-ND approach.
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The last experiment is accomplished to demonstrate the practicality of the proposed
technique for the 3D shape reconstruction of multiple separated objects. Conventionally,
such a task involving geometric discontinuities cannot be fulfilled by an automated single-
shot fringe-projection-based technique due to the ambiguity in determining discontinuous
fringe orders. Nevertheless, the discontinuity of fringe orders can be identified by the
proposed network since it produces multiple TFPS fringe patterns. This can be observed in
Figure 8.

Single-shot input Ground-truth 3D Fringe-to-fringe 3DPlain image

Figure 8. 3D shape reconstruction of multiple separated objects with complex shapes.

4. Conclusions

In summary, a novel, accurate single-shot 3D shape reconstruction technique inte-
grating the structured-light technique and deep learning is presented. The proposed
fringe-to-fringe network transforms a single RGB color fringe pattern into multiple phase-
shifted grayscale fringe patterns demanded by the subsequent 3D shape reconstruction
process. The characteristics of single-shot input can help to substantially reduce the captur-
ing time; meanwhile, the accuracy can be maintained since the final 3D reconstruction is
based on the conventional state-of-the-art high-accuracy algorithm.

The conventional structured-light-based FPP technique consists of a few temporal
steps to decode the fringe patterns and reconstruct the 3D shapes. Any of the intermediate
data, including phase-shifted patterns, wrapped phase distributions, fringe orders, un-
wrapped phase distributions, and height maps, may serve as the output in a deep learning
network for the 3D shape reconstruction. In other words, the deep learning approach
may be applied to any stage of the conventional FPP technique to facilitate the analysis
and processing. Technically, a direct and straightforward 2D-to-3D conversion technique
such as the fringe-to-depth method is desired. However, the complex relations between a
camera-captured 2D image and its corresponding 3D shapes make such a direct transfor-
mation challenging when high-accuracy reconstruction is demanded. The experimental
results presented in this paper show that the performance of the proposed approach is
superior to that of other deep-learning-based methods. The proposed fringe-to-fringe
technique uses the predicted multiple phase-shifted patterns as an intermediary to bridge
a single 2D image and its corresponding 3D shape. It benefits from the fact that the relation
of the single-shot input with the predicted fringe patterns is less complex than its relation
with other intermediate results.

Because RGB color images are used in the proposed technique, it is generally not
suitable for working with objects of dark colors, particularly vivid red, green, and blue
colors. This is a limitation of the proposed technique. In the meantime, it should be pointed
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out that the projector and camera were initially color-calibrated by the manufacturers, and
no special handling was applied to deal with the color cross-talk. The experimental results
have shown that the inevitable minor color cross-talk can be handled well by the technique.

The real-time and high-accuracy 3D shape reconstruction capability of the proposed
approach provides a great solution for future scientific research and industrial applications.
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