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Abstract: All pseudo-Schell model sources have been shown to possess the same continuous set of
circularly symmetric modes, all of them presenting a conical wavefront. For keeping energy at a finite
level, the mode amplitude along the radial coordinate is modulated by a decreasing exponential
function. A peculiar property of such modes is that they exist in the Laplace transform’s realm. After
a brief discussion of the near-zone, we pass to the far-zone, where the field can be evaluated in closed
form. The corresponding features of the intensity distribution are discussed.
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A partially coherent source whose degree of coherence between two points is shift-
Citation: Santarsiero, M.; invariant (i.e., depends only on the difference between the position vectors of the two
Martinez-Herrero, R ; Piquero, G.; points) is said to be of the Schell-model type [1]. Sources of this class have found application
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in the study of the radiation emitted by many natural sources and, since they can always
be synthesized starting from spatially incoherent sources, they have represented for a long
time the main tool for experimentally validating results of the scalar theory of coherence.

More general sources, though, can be envisaged with different behaviors of the
correlation function. In particular, since their coherence properties affect the features
of the radiated beam [2-18], this opens a new way to searching for particular light sources
that best fit for specific applications, such as particle trapping [12,19], free space optical
communications [20,21], or sub-Rayleigh imaging [22-25], among others.

Here we deal with a wide class of nonconventionally correlated partially coherent
sources, the so called pseudo-Schell model sources [11] that are characterized by a degree
of coherence that depends only on the difference of the radial coordinates between the
published maps and institutional affil-  NVOIved points. The cross-spectral density (CSD) of the fields produced by such sources
{ations. was found to possess several peculiar properties [11,12].

In the present paper, we investigate the structure of the modes underlying pseudo-

Schell sources and study their behavior upon free propagation. It will be found that such

modes have a universal conical form regardless of the particular function representing the
degree of coherence, thus establishing a connection with the subject of circular gratings.
This suggests the use of an exponentially decreasing window function on accounting for
the finite radius of the grating instead of the Gaussian or rectangular windows typically
used when utilizing circular gratings for light concentration (axicons [26]). This leads to
the unusual occurrence of the Laplace transform as the proper mathematical tool to study
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ation. In the far zone instead the propagation integrals are solved exactly and reveal the
nature of the field. Contrary to many far-zone field distributions, which are real (except
for simple factors, like curvature or twist-phase functions), we find intrinsically complex
disturbances where the connection between real and imaginary parts will be investigated.

2. Mode Evaluation
Pseudo-Schell model sources have a CSD [1] of the form [11]

Wo(ry,12) = T (r1)T(r2) po(r1 = r2), @

where 1; = (r},0;) (with j = 1,2) are the position vectors of two arbitrary points across
the source plane. While the transmission function 7 can depend on the direction of the
position vectors, the degree of coherence is assumed to depend only on the difference of
the radial distances of the two points from the origin.

Whatever the specific form of the degree of coherence . across the source we can
assume that a Fourier expansion

~ 00

polri—r2) = [ fio(B)e*)dp, @

holds. The degree of coherence is genuine if fip(p) is non-negative [27]. This amounts
to saying that we can always assume the field associated to pg to be the superposition
of uncorrelated fields (pseudomodes) [28] belonging to a continuous family with conical

wavefronts of the form
vop(r) = \/fo(B)e ", ®)
with real B. The CSD associated to a single pseudomode (3) is

wap(01,72) = Gy (r1)00g(02) = Fo(B)eP ), @

and, of course, specifies a coherent contribution [1]. The universal structure of the modes (3)
for all pseudo-Schell model sources gives to such modes a peculiar importance. Hence it is
of interest to study their features.

The right-hand side of Equation (3) can be read as the transmission function of a
circular phase grating with constant radial period. This kind of object, as well as its
variations, has been studied in numberless papers, which began almost a century ago and
kept appearing up to the present (for a sample through decades see [26,29-38]).

Since modes (3) have a diverging norm an important role is played by the windowing
function 7 appearing in Equation (1) for which from now on a dependence on r = |[r|
will be assumed. The need of a windowing function has been faced in various ways, a
frequent choice in the literature being a Gaussian filter. Often the propagation integrals
had to be treated numerically. It is to be noted that in previous studies major importance
has been given to the near (Fresnel) region. This is because that is the region where energy
concentration around the z-axis can occur, which is the aim of axicons [26], one of the most
relevant applications of circular gratings. We are ultimately interested instead in coherence
propagation, and we shall pay attention to the far-zone where closed form expressions for
the propagated disturbance can be derived. Furthermore, in partially coherent light the
so-called far-zone is known to be reached at shorter distances from the source than in the
case of coherent light [39]. Nonetheless, we devote some space to the near-zone.

As for the windowing function we shall assume a circularly symmetric real decreasing
exponential function. Accordingly, the complete field distribution across the source plane
has the simple form

vp(r) = Ae™ ", (5)

where A is a complex amplitude and

v =a+ip, (6)
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with positive « and real B. This kind of distribution does not seem to have been frequently
used in previous research. Yet, in a sense, the real decreasing exponential function is
the natural completion of the simple exp(—ipr) structure. In fact the complete form of
Equation (5) shows that the spatial part of the pseudomode exp(—1r) is ruled by a single
complex number. When we look at Equation (5) as a function of ¢y we can generalize it by
assuming A to be a function of <. Furthermore, since exp(—-r) is an analytic function [40],
we can assume A to be an analytic function of <, too, so that Equation (5) is replaced by an
equation of the form

Vo(r) = A(y)e". %

It will be noted that in this view Equation (2) could be replaced by an integral in the y
complex plane, done along the imaginary axis. In other words, the integral of (2) can be
thought of as an inverse Laplace transform [41], i.e., by an integral along a suitable path in
the v plane. This type of superposition process is well known in coherence theory [28,42]
and is mathematically specified in reproducing kernel Hilbert spaces [43]. In the following
however, since we shall work at a fixed v, we shall simply assume the amplitude A() to
be constant. Then note that we can say the pseudomode to depend only on the angle that
characterizes the complex number v in the Argand-Gauss plane. The modulus |7y| can in
fact be modified at will by using a suitable unit of length for r.

Let us begin our analysis about the expression of the propagated field. A relevant
question is: does the structure in Equation (7) of the field keep holding upon free propaga-
tion? Let us assume the answer is positive. In particular, let us make the hypothesis that
the field produced at a plane z = z; > 0 has the same form of that across the plane z = 0,
possibly with different parameters. In other words, if the field at z = 0 is

Vo(r) = Age™ ™", (R{70} >0), ®)
we assume the field at z = z; to be of the form
Vi(r) = A1, (R{m} >0), )

where A; and y; could differ from Ag and 7y, respectively.

Note that since we deal with circularly symmetric functions the two-dimensional
Fourier transform goes over the Hankel transform of zero order. The Fourier Trans-
forms (FT) of Vy(r) and Vi(r), say Vp(v) and V;(v), respectively, are deducible from
Formula (6.623.2) of [41], which gives

ApYo
Vo(v) = W , (10)

and

A
) = ———F=7, 11
l( ) (’)/%—FVZ)B/Z ( )
Then the FT Vy(v) and V; (v) are equal to each other, apart from scale and proportion-
ality factors. In fact from Equations (10) and (11) we have

5N T __ GAmo
Vi(v) = G Vp(gv) = 2+ g2

(12)
with 5
Ayy Y0
G = g ; 8= —.
AO'Yl 1

(13)
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Then, the ratio between V; (v) and V;(v) can be expressed as

. 3/2
Vi(v) 'y%+v2
¢l .y I (14)
Yo T8V

Now, assuming paraxial propagation along the z axis (passing through the center of
symmetry of the grating), V;(r) is the convolution of V() with the Fresnel wavelet

ikek#1 .k
flr)=— 2 exp <1221r2>, (15)

where k = 271/ ) is the wavenumber. Then, by virtue of the convolution theorem, Vy(v)
and V; (v) are connected by the relation

Vi(v) = f(v)Vo(v), (16)
where 5
f(v) = me* exp (—iznkzl 1/2) (17)

is the FT of Equation (15).
Accordingly, from Equation (16) we have

Vi(v) ikzg ( 272 2>
= = — . 18
7o) e lexp| —1 ? v (18)

Since the functional structures of the right-hand sides of Equations (14) and (18) are
different the equality cannot hold for any v. Then the hypothesis is false. Therefore,
if a wavefront is conical across a certain plane, it cannot be conical in any other plane.
Since we have shown that the modes of a pseudo-Schell source must be conical, the
property of a partially coherent source of being of the pseudo-Schell model is not preserved
during propagation.

3. Mode Propagation in Near Zone

The propagated field at the observation point 7,z can be evaluated in the paraxial
approximation. Using the Fresnel integral and denoting the radial distance in the source
plane by p, we have [44]

. 2 o 2
V(r,z,v) = —1k7A etz exp <1kzrz) /0 e "Pexp (ikzpz)]o <k;p)pdp , (19)
which is seen to have the form of a (direct) Laplace transform [41]. If read as a function of 7,
V turns out to be an analytic function. This could lead us to deduce some of its properties.
Nonetheless, we shall use a more elementary approach.
Some general features can be deduced from integral (19). Note that the « and S
parameters appearing in 7y (see Equation (6)) have a clear physical meaning. In fact, we

can let
1

Z/
where L is the decay length of the function T and P is the radial period of the phase modu-
lation (the positive and negative sign in 8 corresponding to a converging or a diverging
wavefront, respectively). We then give v the form

n=-, B= i%”, (20)

v =—(1+ie), (1)

==
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with 8
== 22
€= (22)
and introduce the Fresnel number )
L
Ngp = —. 23
F=og (23)
In such a way, the integral in Equation (19) takes the form
V(r,z;v) = U(s, Np;€) = —i2tNpA elk? ¢lNes* x
(24)

/ ¢ (146t oy (mNth) Jo(2mNgst)tdt
0

where the normalized radial coordinates s = r/L and t = p/L have been used.

Although in general the integral in Equation (24) cannot be given a closed form, it
shows that the shape of the propagated field depends only on two real parameters, namely,
the Fresnel number and the ratio € between § and a. As an example, Figure 1 shows the
intensity calculated by means of numerical evaluation of Equation (24) at several z—planes
for two different values of the grating periodicity P and a fixed value of the attenuation
length L.

L=16)\/x

1
s=r/L 2 0 10

104

107
zZ/A
Figure 1. Evolution of the field. The curves for z/A = 10* are multiplied by a factor 100 and their s
axis is compressed by a factor 5.

A closed form for the propagated field is obtained if we limit ourselves to points ¥ = 0,
i.e., points of the z-axis, in which case the propagated field takes the form

U(0, Ni;€) = —i27tNpA / o~ (1HiE) TNy gy (25)
0

Here, for brevity, the unessential phase term exp(ikz) has been omitted.
Solving Equation (25) with the aid of Equation (17.13.27) of [41] yields

1+ie [ i  (1+ie)? 1+ie | i
Np;e) = A<1— — ~———~ | Erf —_ 26
U(0, Ng;¢) { 7 Ne exp {1 IN: rfc| — e | (7 (26)

where Erfc is the complementary error function [41]. Actually, Equation (17.13.27) of [41]
would require the quadratic exponent in Equation (25) to include a real negative coefficient.
According to symbolic evaluation software codes this condition can be omitted provided
that the real coefficient of ¢ in the first exponential function, 1 in our case, is (strictly) >0. As
a matter of fact, numerical evaluations of Equation (26) coincide with numerical estimates
of the integral (25).
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Plots of the axial intensity |U(0, Ng;¢)|? are shown in Figure 2a (for positive ¢) and
Figure 2b (for negative €) as a function of the normalized coordinate

7= 1 Az @7
47Ng  4ml?
for several values of ¢.
10 . . . .
(a) —e=0.1
—c =1
[ 8T e=2 | o
i —c=4 i
 Or —e=6 1 n
I e =8 I
Zz 4l =
S S
SIS / ] SR
_— —~—
0 I 1
0 0.1 0.2 0.3 0.4 05 0 0.1 0.2 0.3 0.4 0.5
Az/(4m L?) Az/(4m L?)

Figure 2. Axial intensity for (a) positive and (b) negative values of e.

Qualitatively different behaviors can be noticed, depending on the sign of e. When
¢ is positive (Figure 2a), the diffracted wavefronts are inclined toward the z-axis and this
produces an intensity increase along the axis itself (principle of axicons). Such an effect
cannot be observed when the effective length of the beam (L) is small with respect to the
grating period (P), i.e., when ¢ tends to zero. Changing sign to € the wavefronts are inclined
to outside and a drop of intensity is seen, as in Figure 2b (note the change of scale in the
vertical axis).

4. Mode Propagation in Far Zone

Let us now pass to the far-zone. Using Equation (19), introducing the dimensionless
coordinate, and disregarding proportionality and curvature terms, the far-field can be
written as

Uw(R;€) = /0 Ve O (R (28)
with rL
R=""r. 29)

Using Formula (17.13.104) of [41] we find

1+ie

Ho(Roe) = [(1+ie)2+R2?’

(30)

which corresponds to Equation (10) with different symbols. Equation (30) is fairly simple.
At first it could even seem a trivial monotonically decreasing function of R. Actually, since
Uw is a complex function, its behavior is far richer than that. We begin by examining the
intensity, which, up to a constant, is given by |Us (R, €)|?>. We then find

1+ ¢
[(1— €+ R2)2 +4e2P/%

Io(R,8) = [Uw(R, &) = (31)

Let us discuss the behavior of this expression as a function of R depending on the
values of the parameter e. When |¢| < 1 the maximum intensity is reached for R = 0, while
if |e| > 1, the maximum intensity is reached at R = Ry = V&2 — 1.

A few curves of I(R, €), normalized to its maximum value are shown in Figure 3.
Since the horizontal coordinate is proportional to r, the corresponding two-dimensional
figures are annular rings (except for the first two values of ¢), whose radius increases
with B.
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8 10 12

Figure 3. Far-zone intensity (normalized to its maximum value) for several values of e.

Using now physical quantities (L and P) we look at the intensity plots when P is kept
fixed and L is varied. (see Figure 4).

1

0.8F

2mr/z

Figure 4. Far-zone intensity (normalized to its maximum value) for P/A = 27 and several values
of L.

It is seen that on increasing L, i.e., the grating extent, the curves become slimmer and
slimmer. We could think that when L tends to infinity the curve of the far-zone field Ue
tends to an (annular) Dirac delta function (use of half-integer order delta functions has
been suggested in [35]). A moment’s thought however reveals that this cannot be true. An
annular delta in the far-field in fact corresponds in the near-field to a Bessel function of
zero order [45] and not to an exponential function as in Equation (7).

For a more complete description let us consider the real and imaginary parts of Ue.
We shall limit ourselves to the case in which |¢| is much greater than 1. Then, the most
significant region for R in Equation (30) is around R = |¢|. Accordingly, we consider the
function Ve (x) = Uw(|e| + x,€) where |x| < [e|. Neglecting x? and 1 with respect to |e|,
Equation (30) can be approximated by

x) — 14 1ie N i(8|5|)71/2
Voo(x) = [(1+x2)+2|€|(X:|:i)]3/2 ~+ (xj:i)3/2'

(32)

where = refers to the sign of ¢.

Figure 5 shows the squares of the real and imaginary parts of Ve (x) separately. It
is seen that the two functions are symmetrical with respect to the vertical axis. It will be
also noted that ¢ (provided it is much greater than 1) only determines a proportionality
factor, so that the shapes of the curves of Figure 5 do not depend on . It is to be stressed
though that their width is to be compared with their mean abscissa, which equals |¢|. Hence
the two curves become more and more narrow with respect to their mean abscissa when
|e| increases.
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For |e| > 1, an interesting feature of the far-zone field is that its squared real and
imaginary parts have clearly separated maxima and minima. This opens the way to
experiments where the corresponding peaks can be altered in phase thus leading to additive
or subtractive combinations. It can be further noticed that if the basic field exp(—~r) is
replaced by its real (or imaginary) part the same will occur to the far-zone field.

10

(Re{Vx})Z; (Im{Vx})Z(a.u.)

Figure 5. Squared real (blue) and imaginary (red) parts of Vo (x) for large ||, in arbitrary units.

5. Discussion

We found that the modes of pseudo-Schell model sources form a continuous set. Dif-
ferently from other cases, like that of plane or spherical waves though their analytical struc-
ture changes upon propagation until the rather simple asymptotic form of Equation (30) is
reached. It could be expected that the latter would take on the form of an annular delta
function, but this is not the case because, even for L — oo, the squared real and imaginary
parts have maxima and minima at different positions.

The occurrence of the Laplace transform in the evaluation of propagated modes was
evident even if slightly surprising. At the origin of its appearance there was indeed the
kernel (5), but the other key element was the single sided integration domain (0, ), implied
by circular symmetry, but readable as a trademark of customary Laplace transform [41].
These elements make it likely that this type of mathematical tool can play a role in several
other cases.

Author Contributions: Conceptualization, M.S., RM.-H., G.P, ].C.G.d.S. and F.G.; Formal analysis,
MS., RM.-H.,, G.P, J.C.G.d.S. and FE.G.; Funding acquisition, R.M.-H.; Investigation, M.S., RM.-H.,
G.P,].C.G.dS. and EG.; Methodology, M.S., RM.-H., G.P, ].C.G.d.S. and F.G.; Software, M.S., G.P,,
J.C.G.d.S. and EG,; Supervision, M.S., RM.-H., G.P, J.C.G.d.S. and EG. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Spanish Ministerio de Economia y Competitividad under
grant number PID2019 104268GB-C21.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CSD  Cross spectral density
FT Fourier Transform



Photonics 2021, 8, 449 90of 10

References

1.  Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK, 1995. [CrossRef]

2. Ponomarenko, S.A. A class of partially coherent beams carrying optical vortices. J. Opt. Soc. Am. A 2001, 18, 150-156. [CrossRef]

3.  Lajunen, H.; Saastamoinen, T. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt. Lett.
2011, 36, 4104-4106. [CrossRef] [PubMed]

4. Cai, Y; Chen, Y.; Wang, F. Generation and propagation of partially coherent beams with nonconventional correlation functions: A
review [Invited]. J. Opt. Soc. Am. A 2014, 31, 2083-2096. [CrossRef] [PubMed]

5. Cai, Y,; Chen, Y; Yu, ].; Liu, X,; Liu, L. Generation of Partially Coherent Beams. Prog. Opt. 2017, 62, 157-223. [CrossRef]

6.  Santarsiero, M.; Martinez-Herrero, R.; Maluenda, D.; de Sande, ].C.G.; Piquero, G.; Gori, F. Partially coherent sources with circular
coherence. Opt. Lett. 2017, 42, 1512-1515. [CrossRef] [PubMed]

7.  Santarsiero, M.; Martinez-Herrero, R.; Maluenda, D.; de Sande, ].C.G.; Piquero, G.; Gori, F. Synthesis of circularly coherent
sources. Opt. Lett. 2017, 42, 4115-4118. [CrossRef] [PubMed]

8.  Hyde, M.W,, IV. Controlling the Spatial Coherence of an Optical Source Using a Spatial Filter. Appl. Sci. 2018, 8, 1465. [CrossRef]

9.  Piquero, G.; Santarsiero, M.; Martinez-Herrero, R.; de Sande, ].C.G.; Alonzo, M.; Gori, F. Partially coherent sources with radial
coherence. Opt. Lett. 2018, 43, 2376-2379. [CrossRef]

10. Wu, D.; Wang, E; Cai, Y. High-order nonuniformly correlated beams. Opt.  Laser Technol. 2018, 99, 230-237.
[CrossRef]

11. de Sande, J.C.G.; Martinez-Herrero, R.; Piquero, G.; Santarsiero, M.; Gori, F. Pseudo-Schell model sources. Opt. Express
2019, 27, 3963-3977. [CrossRef]

12. Martinez-Herrero, R.; Piquero, G.; de Sande, J.C.G.; Santarsiero, M.; Gori, F. Besinc Pseudo-Schell Model Sources with Circular
Coherence. Appl. Sci. 2019, 9, 2716. [CrossRef]

13. Hyde, M.W. Stochastic complex transmittance screens for synthesizing general partially coherent sources. J. Opt. Soc. Am. A
2020, 37, 257-264. [CrossRef] [PubMed]

14. Wang, R.; Zhu, S.; Chen, Y.; Huang, H,; Li, Z.; Cai, Y. Experimental synthesis of partially coherent sources. Opt. Lett.
2020, 45, 1874-1877. [CrossRef]

15. Dong, M.; Zhao, C,; Cai, Y.; Yang, Y. Partially coherent vortex beams: Fundamentals and applications. Sci. China Phys.
Mech. Astron. 2020, 64, 224201. [CrossRef]

16. Hyde, M.W. Independently Controlling Stochastic Field Realization Magnitude and Phase Statistics for the Construction of Novel
Partially Coherent Sources. Photonics 2021, 8, 60. [CrossRef]

17. Mei, Z.; Korotkova, O. Linear Combinations of the Complex Degrees of Coherence. Photonics 2021, 8, 146.
[CrossRef]

18. Li, P;Yin, Y,; Zhu, S.; Wang, Q.; Li, Z.; Cai, Y. Constructing light with high precision using source coherence. Appl. Phys. Lett.
2021, 119, 041102. [CrossRef]

19. Zhao, C,; Cai, Y. Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam. Opt. Lett.
2011, 36, 2251-2253. [CrossRef]

20. Korotkova, O.; Andrews, L.C.; Phillips, R.L. Model for a partially coherent Gaussian beam in atmospheric turbulence with
application in Lasercom. Opt. Eng. 2004, 43, 330-341. [CrossRef]

21. Ma, L.; Ponomarenko, S.A. Free-space propagation of optical coherence lattices and periodicity reciprocity. Opt. Express
2015, 23, 1848-1856. [CrossRef]

22.  Tong, Z.; Korotkova, O. Beyond the classical Rayleigh limit with twisted light. Opt. Lett. 2012, 37, 2595-2597. [CrossRef]

23. Liang, C.; Wu, G.; Wang, E; Li, W,; Cai, Y.; Ponomarenko, S.A. Overcoming the classical Rayleigh diffraction limit by controlling
two-point correlations of partially coherent light sources. Opt. Express 2017, 25, 28352-28362. [CrossRef]

24. Liang, C.; Monfared, Y.E; Liu, X.; Qi, B.; Wang, F.; Korotkova, O.; Cai, Y. Optimizing illumination’s complex coherence state for
overcoming Rayleigh’s resolution limit. Chin. Opt. Lett. 2021, 19, 052601. [CrossRef]

25. Martinez-Herrero, R.; Santarsiero, M.; Piquero, G.; Gonzalez de Sande, ].C. A New Type of Shape-Invariant Beams with Structured
Coherence: Laguerre-Christoffel-Darboux Beams. Photonics 2021, 8, 134. [CrossRef]

26. McLeod, J.H. The Axicon: A New Type of Optical Element. ]. Opt. Soc. Am. 1954, 44, 592-597. [CrossRef]

27. Riesz, F,; Sz-Nagy, B. Functional Analysis; Dover Publications: Mignola, NY, USA, 1955.

28. Martinez-Herrero, R.; Mejias, PM.; Gori, E. Genuine cross-spectral densities and pseudo-modal expansions. Opt. Lett.
2009, 34, 1399-1401. [CrossRef] [PubMed]

29. Ronchi, V. Das Okularinterferometer und das Objektivinterferometer bei der Auflésung der Doppelsterne. Z. Phys. 1926, 37, 732-757.
[CrossRef]

30. Dyson, J. Circular and spiral diffraction gratings. Proc. R. Soc. Lond. A 1958, 248, 93-106. [CrossRef]

31. Tichenor, D.; Bracewell, R.N. Fraunhofer diffraction of concentric annular slits. J. Opt. Soc. Am. 1973, 63, 1620-1622. [CrossRef]

32. Fedotowsky, A.; Lehovec, K. Far Field Diffraction Patterns of Circular Gratings. Appl. Opt. 1974, 13, 2638-2642. [CrossRef]

33. Khonina, S.; Kotlyar, V.; Soifer, V.; Shinkaryev, M.; Uspleniev, G. Trochoson. Opt. Commun. 1992, 91, 158-162. [CrossRef]

34. Friberg, AT. Stationary-phase analysis of generalized axicons. J. Opt.  Soc. Am. A 1996, 13, 743-750.
[CrossRef]

35. Amidror, I. Fourier spectrum of radially periodic images. J. Opt. Soc. Am. A 1997, 14, 816-826. [CrossRef]


http://doi.org/10.1017/CBO9781139644105
http://dx.doi.org/10.1364/JOSAA.18.000150
http://dx.doi.org/10.1364/OL.36.004104
http://www.ncbi.nlm.nih.gov/pubmed/22002400
http://dx.doi.org/10.1364/JOSAA.31.002083
http://www.ncbi.nlm.nih.gov/pubmed/25401450
http://dx.doi.org/10.1016/bs.po.2016.11.001
http://dx.doi.org/10.1364/OL.42.001512
http://www.ncbi.nlm.nih.gov/pubmed/28409785
http://dx.doi.org/10.1364/OL.42.004115
http://www.ncbi.nlm.nih.gov/pubmed/29028026
http://dx.doi.org/10.3390/app8091465
http://dx.doi.org/10.1364/OL.43.002376
http://dx.doi.org/10.1016/j.optlastec.2017.09.007
http://dx.doi.org/10.1364/OE.27.003963
http://dx.doi.org/10.3390/app9132716
http://dx.doi.org/10.1364/JOSAA.381772
http://www.ncbi.nlm.nih.gov/pubmed/32118906
http://dx.doi.org/10.1364/OL.388307
http://dx.doi.org/10.1007/s11433-020-1579-9
http://dx.doi.org/10.3390/photonics8020060
http://dx.doi.org/10.3390/photonics8050146
http://dx.doi.org/10.1063/5.0057666
http://dx.doi.org/10.1364/OL.36.002251
http://doi.org/10.1117/1.1636185
http://dx.doi.org/10.1364/OE.23.001848
http://dx.doi.org/10.1364/OL.37.002595
http://doi.org/10.1364/OE.25.028352
http://dx.doi.org/10.3788/COL202119.052601
http://dx.doi.org/10.3390/photonics8040134
http://dx.doi.org/10.1364/JOSA.44.000592
http://dx.doi.org/10.1364/OL.34.001399
http://www.ncbi.nlm.nih.gov/pubmed/19412285
http://dx.doi.org/10.1007/BF01397577
http://dx.doi.org/10.1098/rspa.1958.0231
http://dx.doi.org/10.1364/JOSA.63.001620
http://dx.doi.org/10.1364/AO.13.002638
http://dx.doi.org/10.1016/0030-4018(92)90430-Y
http://dx.doi.org/10.1364/JOSAA.13.000743
http://dx.doi.org/10.1364/JOSAA.14.000816

Photonics 2021, 8, 449 10 of 10

36.

37.

38.

39.
40.
41.
42.
43.

44.
45.

Topuzoski, S.; Janicijevic, L. Diffraction characteristics of optical elements designed as phase layers with cosine-profiled periodicity
in the azimuthal direction. J. Opt. Soc. Am. A 2011, 28, 2465-2472. [CrossRef] [PubMed]

Wang, Y.; Yan, S.; Friberg, A.T.; Kuebel, D.; Visser, T.D. Electromagnetic diffraction theory of refractive axicon lenses. J. Opt. Soc.
Am. A 2017, 34,1201-1211. [CrossRef] [PubMed]

Yu, J.; Miao, C.; Wu, J.; Zhou, C. Circular Dammann gratings for enhanced control of the ring profile of perfect optical vortices.
Photon. Res. 2020, 8, 648-658. [CrossRef]

Gori, F. Far-zone approximation for partially coherent sources. Opt. Lett. 2005, 30, 2840-2842. [CrossRef]

Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis; Cambridge University Press: Cambridge, UK, 1996. [CrossRef]
Gradshteiin, 1.S.; Ryzhik, LM. Table of Integrals, Series, And Products, 4th ed.; Academic Press: Cambridge, MA, USA, 1965.

Gori, F; Santarsiero, M. Devising genuine spatial correlation functions. Opt. Lett. 2007, 32, 3531-3533. [CrossRef]

Gori, F.; Martinez-Herrero, R. Reproducing Kernel Hilbert spaces for wave optics: Tutorial. J. Opt. Soc. Am. A 2021, 38, 737-748.
[CrossRef]

Born, M.; Wolf, E. Principles of Optics, 6th ed.; Cambridge University Press: Cambridge, UK, 1980.

Bracewell, RN. The Fourier Transform and Its Applications; McGraw-Hill: New York, NY, USA, 1978.


http://dx.doi.org/10.1364/JOSAA.28.002465
http://www.ncbi.nlm.nih.gov/pubmed/22193260
http://doi.org/10.1364/JOSAA.34.001201
http://www.ncbi.nlm.nih.gov/pubmed/29036130
http://doi.org/10.1364/PRJ.387527
http://doi.org/10.1364/OL.30.002840
http://dx.doi.org/10.1017/CBO9780511608759
http://dx.doi.org/10.1364/OL.32.003531
http://dx.doi.org/10.1364/JOSAA.422738

	Introduction
	Mode Evaluation
	Mode Propagation in Near Zone
	Mode Propagation in Far Zone
	Discussion
	References

