
photonics
hv

Article

Numerical Analysis of Nonlinear Dynamics Based on
Spin-VCSELs with Optical Feedback

Tingting Song 1, Yiyuan Xie 1,2,*, Yichen Ye 1, Bocheng Liu 1, Junxiong Chai 1, Xiao Jiang 1 and Yanli Zheng 1

����������
�������

Citation: Song, T.; Xie, Y.; Ye, Y.; Liu,

B.; Chai, J.; Jiang, X.; Zheng, Y.

Numerical Analysis of Nonlinear

Dynamics Based on Spin-VCSELs

with Optical Feedback. Photonics 2021,

8, 10. https://doi.org/10.3390/

photonics8010010

Received: 2 December 2020

Accepted: 29 December 2020

Published: 4 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronic and Information Engineering, Southwest University, No. 2 Tiansheng Road, Beibei
District, Chongqing 400715, China; ttsong53@email.swu.edu.cn (T.S.); ycye451@swu.edu.cn (Y.Y.);
lbc0367@email.swu.edu.cn (B.L.); cjxx6688@email.swu.edu.cn (J.C.); jxyy5520@email.swu.edu.cn (X.J.);
zhengyanlis@email.swu.edu.cn (Y.Z.)

2 Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, No. 2 Tiansheng
Road, Beibei District, Chongqing 400715, China

* Correspondence: yyxie@swu.edu.cn

Abstract: In this paper, the nonlinear dynamics of a novel model based on optically pumped spin-
polarized vertical-cavity surface-emitting lasers (spin-VCSELs) with optical feedback is investigated
numerically. Due to optical feedback being the external disturbance component, the complex nonlin-
ear dynamical behaviors can be enhanced and the regions of different nonlinear dynamics in size
can be extended with appropriate parameters of spin-VCSELs. According to the equations of the
modified spin-flip model (SFM), the comparison of bifurcation diagrams is first presented for the
clear presentation of different routes to chaos. Meanwhile, numerous bifurcation diagrams in color
are illustrated to demonstrate the rich dynamical regimes intuitively, and the crucial effects of optical
feedback strength, feedback delay, linewidth enhancement factor, and spin-flip relaxation rate on
the region evolvement of complex dynamics of the proposed model are revealed to investigate the
dependence of dynamical behaviors on external and internal parameters when the optical feedback
scheme is introduced. These parameters play a remarkable role in enhancing the mechanism of com-
plex dynamic oscillations. Furthermore, utilizing combination with time series, power spectra, and
phase portraits, the various dynamical behaviors observed in the bifurcation diagram are simulated
numerically. Correspondingly, the powerful measure 0–1 test is employed to distinguish between
chaos and non-chaos.

Keywords: nonlinear dynamics; optical feedback; spin-flip model (SFM); spin-polarized vertical-
cavity surface-emitting lasers (spin-VCSELs)

1. Introduction

The nonlinear dynamics of semiconductor lasers (SLs) [1–6] has received extensive
attention thanks to their high complex dynamical behaviors and the widespread application
in fields such as random bit generation [7,8], reservoir computing [9,10], chaos-based optical
communications [11–14], chaotic radar [15,16], and other relevant areas [17–19]. Therefore,
an in-depth investigation and analysis of the different dynamical regimes is very crucial
for the parameter optimization and application exploration in research.

Due to the significant study in the spintronics field, employing the electron spin to
carry information and combining it with SLs are the current research trend. Consequently,
a specific spintronic device, spin-polarized vertical-cavity surface-emitting laser (spin-
VCSEL), exhibits the advantages over conventional VCSELs in threshold reduction and
much easier control of the lasing output by spin-polarized electrons [4,20]. In addition,
spin-VCSELs have attracted more attention for the strength of much faster polarization
dynamics oscillating [21]. For instance, the alternating circular polarization with oscillation
frequency 120 GHz can be achieved when spin-VCSEL is in strong external magnetic
fields [22]. Recently, an ultrafast spin-VCSEL with a polarization oscillation frequency of
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up to 200 GHz was proposed to potentially provide a single channel data transmission
rate of more than 240 Gbits/s [23]. With the high polarization oscillation frequency, the
bandwidth of spin-VCSELs can also be drastically increased to overcome the limitations
due to relaxation oscillation [24,25]. Besides, the polarization modulation bandwidth of
the spin-VCSEL is nearly independent of its pumping conditions. In other words, even
closely above threshold, the extremely high bandwidth can be achieved, resulting in an
ultralow energy per bit operation [26]. For spin-VCSELs, the injection of spin-polarized
electrons can control their output polarization, and the implementation of this injection
method includes the electrical injection with magnetic contacts and the carrier generation
through optical pumping adopting circularly polarized light [27–29]. It has demonstrated
that the output of spin-VCSELs can be well applied in spectroscopy systems and optical
secure communication [14].

Nowadays, a large number of attractive studies on dynamic behaviors of spin-VCSELs
are widely built on the spin-flip model (SFM) [1,30]. For instance, the numerical stability
and asymptotic analysis have been studied based on optically pumped spin-VCSELs to
demonstrate the polarized switching behavior between left circular polarization (LCP)
and right circular polarization (RCP) [31], which shows consistency between the theories
and experiments. The theoretical analysis and experimental results about the regions of
stability and instability in optically pumped 1300 nm dilute nitride spin-VCSELs have
been reported in detail [32], in which the importance of the linewidth enhancement factor
and linear birefringence rate for high-frequency applications has also been revealed. A
systematic and detailed research of the abundant instabilities of spin-VCSELs has been
theoretically analyzed [33], where the dynamical characteristics are uncovered by the
largest Lyapunov exponent (LLE). Additionally, a detailed stability of spin-VCSELs has
been presented in [34], in which the different dynamic states have been explored and the
different bifurcations have also been revealed through the bifurcation analysis, such as
Hopf bifurcation, period-doubling bifurcation, torus bifurcations, and so on. The stability
and instability analysis of optically pumped quantum dot spin-VCSELs has also been
investigated numerically in [35,36], and various bifurcation diagrams have been presented
to demonstrate the impact of key parameters on the dynamical properties in this laser
system [37].

Furthermore, some theoretical and experimental simulations show that the nonlinear
dynamics behavior of SLs can be influenced by an external perturbation such as optical
feedback [38–40], optoelectronic feedback [41–44], mutual coupling [45–47], and optical in-
jection [12,48–50]. Then the regions of more complex dynamics can be expanded with these
external perturbations. Thereinto, optical feedback as external disturbance component has
attracted extensive researches and applications thanks to simple architecture, less required
components and the capacity to generate complex high-dimensional chaos, which can be
implemented only with a simple external mirror [51]. More importantly, the sensitivity
to optical feedback is very important in the applications of optical fiber communication.
Therefore, combining the advantages of spin-VCSELs and optical feedback as external dis-
turbance component, a novel model based on optically pumped spin-VCSELs with optical
feedback is first proposed in this paper. With the help of the modified SFM equations,
the dynamic behaviors of the proposed model are investigated comprehensively through
direct numerical simulations. The route from period to chaos can be observed clearly
from the presented bifurcation diagrams, and various mappings in color are plotted to
clarify the abundant dynamical behaviors. At the same time, the effects of optical feedback
delay, optical feedback strength, linewidth enhancement factor, and spin-flip relaxation
rate on the regions of complex dynamics of the proposed model are revealed to investigate
the dependence of dynamical behaviors on external and internal parameters through the
optical feedback scheme introduced. It can be found that these parameters have remarkable
significance in intensifying the regime of complex dynamical oscillation. In addition, the
characteristics of the different dynamical behaviors such as period, quasiperiodicity, and
chaos observed in the mapping are contrasted in time series, power spectra, and phase
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portraits. Correspondingly, as the supplementary, the 0–1 test is also utilized to recognize
the characteristic of chaos and non-chaos of lasers more intuitively. The results of the 0–1
test are consistent with the characteristics of different dynamic states and the corresponding
regimes in the mapping.

2. The Theoretical Model

Figure 1 is the schematic diagram of spin-VCSEL with optical feedback. It shows that
the output of spin-polarized VCSEL is feedback by the Mirror to enhance the complexity of
its nonlinear dynamics. Here, the expanding SFM is utilized in our proposed model, and
the modified rate equations for optically pumped spin-VCSEL with optical feedback are
described as follows:

dE+

dt
= κ(N + m− 1)(1 + iα)E+ −

(
γa + iγp

)
E− + kE+(t− τ)e−iωτ (1)

dE−
dt

= κ(N −m− 1)(1 + iα)E− −
(
γa + iγp

)
E+ + kE−(t− τ)e−iωτ (2)

dN
dt

= γ
[
η −

(
1 +

∣∣E+

∣∣2 + ∣∣E−∣∣2)N −
(∣∣E+

∣∣2 − ∣∣E−∣∣2)m
]

(3)

dm
dt

= γPη −
[
γs + γ

(∣∣E+

∣∣2 + ∣∣E−∣∣2)]m− γ
(∣∣E+

∣∣2 − ∣∣E−∣∣2)N (4)

where optical feedback component is indicated by the last terms in Equations (1) and (2).
The spin-down + and spin-up − represent the RCP and LCP components in complex
electric fields E+ and E−. The normalized carrier variables N and m can be defined by the
normalized densities of electrons corresponding to spin-down (n+) and spin-up (n−), that
is N = (n+ + n−)/2 and m = (n+ − n−)/2. The parameter k in the optical component
is the optical feedback coefficient, τ is time delay of optical feedback severally, both k
and τ have great importance for investigating the nonlinear dynamics of our proposed
scheme. ω = 2πc/λ is angular frequency of laser, in which c represents the light velocity
in vacuum and λ stands for the central wavelength of the corresponding laser. Other
parameters are listed below: α is the linewidth enhancement factor. κ denotes the optical
field decay rate, 2κ = τ−1

p , τp is the photon lifetime. γ is the decay rate of N, γ = τ−1
n , τn

is the electron lifetime. The gain anisotropy or dichroism γa and linear birefringence rate
γp can collectively couple the polarized fields. γs is the spin-flip relaxation rate between
spin-up and spin-down electrons. It assumes that η+ and η− are respectively the right
and left circularly polarized components which can describe polarized optical pumping.
Then the total normalized pump intensity is expressed as η = η+ + η−, and the pump
ellipticity P can be indicated as the following equation. Noted that the pump ellipticity
P = 0 corresponds to the conventional VCSELs.

P =
η+ − η−
η+ + η−

(5)

Figure 1. Schematic diagram of spin-VCSEL with optical feedback.
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3. Discussion

The fourth-order Runge–Kutta algorithm is adopted to numerically solve the ordi-
nary differential rate Equations (1) to (4). In the simulation, the central wavelength of
spin-VCSEL with optical feedback is 1550 nm, and the internal parameters are given as
follows [31,33,34]: κ = 150 ns−1, γ = 0.75 ns−1, γp = 8.8π ns−1, γa = 0.1 ns−1, and α = 3.
Noted that only the results for RCP component are presented here owing to the almost
identity of results calculated by RCP and LCP components.

The effects of important parameters including optical feedback coefficient k and
feedback delay time τ on nonlinear dynamics of 1550 nm spin-VCSEL with optical feedback
are explored in detail. Considering γs = 40 ns−1, P = 0.1, and η = 1.5, under the
condition of different optical feedback delay time, some representative examples of the
bifurcation diagrams of RCP intensity extrema versus optical feedback coefficient are
plotted in Figure 2. For τ = 0.79 ns, a successive period-doubling route to chaos is clearly
shown in Figure 2a. Note that the state of chaos has changed suddenly when k reaches the
critical value, and it can be observed that the windows of steady state and periodicity are
embedded in the chaos region for different strengths of optical feedback. The bifurcation
diagram in Figure 2b for τ = 1 ns is similar to Figure 2a, the system begins to turn
into unstable through a stable steady state, period-one (P1) oscillation, period-two (P2)
oscillation, higher periodic oscillations, and chaos in turn along with the optical feedback
coefficient increases. Differently, the windows of steady state and P1 embedded in chaos
region become obviously narrower but the window of P2 embedded in chaos region gets
wider. For large values of feedback delay such as 3 ns, the chaos crisis in Figure 2a,b can
be restrained and the periodic orbits embedded in the chaos region will be disappeared.
As depicted in Figure 2c,d, the bifurcation diagrams when τ = 3 ns and τ = 5 ns show a
similar mechanism, in which the routes to chaos are common in various nonlinear dynamic
systems and the systems will gradually lose their periodic behavior into quasiperiodic
to chaos after exceeding the threshold value of k, but the region of pitchfork bifurcation
in Figure 2d is smaller and period state gets shorter. From the above, it can be observed
that optical feedback intensity and optical feedback delay time are important factors that
significantly affect the dynamical behaviors of spin-VCSELs with optical feedback.

It is well known that the mapping in color can be obtained from a direct numerical
simulation according to the rate equations, and it can give a comprehensive overview
of the different dynamic states of lasers. Figure 3 illustrates the calculated mapping of
the different dynamic states of spin-VCSEL with optical feedback in the parameter plane
of (τ, k), in which the parameters are identical with Figure 2. Noted that the different
numbers and colors represent the different dynamic states of the laser. The numbers 1,
2, and 3 corresponding to dark blue, blue, and cyan in the color scale bar represent the
steady state, P1, and P2, respectively. The numbers 4 and 5 corresponding to light green
and yellow in the color scale bar represent the multi-period (period-four and even more).
The numbers 6 and 7 corresponding to red and dark red in the color scale bar represent
the chaos pulsation. Here, steady state, P1, and P2 correspond to a constant intensity,
two intensity extrema, and four intensity extrema respectively, and even more intensity
extrema are classified into complex dynamics. For a weak strength of optical feedback,
roughly k ≤ 0.4 ns−1, the status of multiple state violent switching does occur with the
change of optical feedback delay τ. Moreover, the system corresponds to a constant steady
state when k ≤ 0.2 ns−1 roughly. In addition, it is easy to obtain that the dynamical
regions of spin-VCSELs with optical feedback become more complicated and stronger
with the increase of k and τ, and the region of chaos is observed with longer delay times
and larger feedback strengths. Note that the regions of steady and other periodicity states
are embedded in the region of chaos as k and τ gradually increases, this phenomenon is
consistent with the analysis of bifurcation diagrams in Figure 2. It is also demonstrated
by previous studies that a similar phenomenon occurs based on conventional SLs with
external optical feedback [40,52,53]. The mappings in color can provide a guide for the
obtainment of desired nonlinear dynamics behavior.
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Figure 2. Bifurcation diagrams of the RCP intensity extrema versus optical feedback coefficient k: (a)
τ = 0.79 ns; (b) τ = 1 ns; (c) τ = 3 ns; (d) τ = 5 ns.

Figure 3. Mapping of the different dynamic states (DSs) of spin-VCSEL with optical feedback in the
parameter space of (τ, k), in which the other parameters are the same as in the basic set of model
parameters. 1: steady state; 2: P1; 3: P2; 4, 5: multi-period; 6, 7: chaos pulsation.

In order to demonstrate the characteristics of spin-VCSEL with optical feedback in
different dynamic states in detail, the time series, power spectra, and phase portraits
corresponding to different nonlinear regions are numerically simulated in Figure 4. In the
simulations, the optical feedback coefficient k is set to 1 ns−1 but optical feedback delay τ is
changed, the other parameters are the same as those given in the preceding discussion. As
demonstrated in Figure 4a, when τ = 1.6 ns, the system is in the region of periodic state. It
is observed that the time series is a regular pulse sequence with a constant time interval and
equal amplitude in intensity. Besides, there is a dominant peak in the power spectrum and
a single dot occurs in the corresponding phase portrait. Based on all these characteristics,
it can be concluded that the system is in the periodic state. When τ is increased to 2.3 ns,
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as shown in Figure 4b, a series of pulses with an envelope in intensity can be observed in
the time series, some different orders of frequencies appear in the corresponding power
spectrum, and a clear ring is exhibited in the phase portrait. The system is in the region of
quasiperiodicity oscillation. Finally, the system enters into chaos region as the values of
feedback delay increase, the time series, power spectrum, and phase portrait of this region
are shown in Figure 4c. For τ = 4.6 ns, the time series presents the noise-like intensity
fluctuation and random intensity pulses, the power spectrum has the continuous and broad
spectrum in this state, more densely packed and randomly distributed dots are observed in
phase portrait, which showed the typical characteristics of chaos state. It can be seen that
all these characteristics in different dynamic states are consistent with the corresponding
regions in Figure 2. Additionally, as described in the preceding conclusion, the dynamic
behavior of the laser will be more complicated and stronger with the increase of k and τ.
Here k and τ are increased to 4.6 ns−1 and 3.5 ns, respectively. As shown in Figure 4d, it
shows the more complicated and stronger chaos properties.

Figure 4. Numerically simulated time series, power spectra, and phase portraits of the proposed
model in different dynamic states, where k = 1 ns−1 and (a) τ = 1.6 ns; (b) τ = 2.3 ns; (c) τ = 4.6 ns;
(d) τ = 4.6 ns and k = 3.5 ns−1.

Furthermore, the 0–1 test is employed to distinguish non-chaos states and chaos states
for the purpose of avoiding phase space reconstruction. The 0–1 test was proposed by
Gottwald and Melbourne for the analysis of deterministic dynamical systems [54]. The
input of 0–1 test is time-series data and the output is 0 or 1, depending on whether the
dynamics is in non-chaos state or chaos state. It does not require phase space reconstruction,
the dimension of the dynamical system and the form of the underlying equations are
irrelevant. More importantly, it is universally applicable to any deterministic dynamical
system [55]. It has been applied in a wide range of fields, such as general studies of
dissipative [56] and Hamiltonian [57] dynamical systems and multi-agent systems [58].
Here, we briefly explain how the 0–1 test is implemented.



Photonics 2021, 8, 10 7 of 13

Consider a dynamical system characterized by a scalar times series xi, i = 1, 2, ..., N.
The 0–1 test performs the following sequence of steps [59,60]:

Step 1. Firstly, the 0–1 test computes the translation variables

p(t) =
t

∑
i=1

xi cos(ic), q(t) =
t

∑
i=1

xi sin(ic) (6)

where c ∈ (0, π) is randomly chosen constant and t = 1, 2, ..., N. The points in the
translation variables (p, q) plane are bounded motion when the dynamics are in no-chaos
state. And for chaotic dynamics, the points in the translation variables (p, q) plane are
asymptotic Brownian motion.

Step2. Then in order to analyze the diffusive (or non-diffusive) behavior of p and q,
the 0–1 test computes the mean square displacement M(t).

M(t) = D(t)− E[x]2
1− cos(tc)
1− cos(c)

(7)

where the expectation D(t) is

D(t) = lim
N→∞

1
N

N

∑
i=1

[p(i + t)− p(i)]2 + [q(i + t)− q(i)]2 (8)

and the expectation E[x] is defined as

E(x) = lim
N→∞

1
N

N

∑
i=1

xi (9)

If the dynamics are regular, then the mean square displacement M(t) is a bounded function,
whereas if the dynamics are chaotic then the mean square displacement M(t) is a linear
function about t. In practice, we do not have an infinite number of time series data, so
instead of the limit t � N, the condition is required and of course the E[x] is estimated
with the time series average x̄ = ∑N

i=1 xi/N. It is suggested to take t ≤ Ncut = N/10.
Step 3. The asymptotic growth rate K of the mean square displacement is calculated

in this step. Here, the asymptotic growth rate K is defined as the correlation coefficient

K =
cov(t, M(t))√

var(t)var(M(t))
(10)

Here t and M(t) are considered as Ncut-dimensional vectors with components t =
(1, 2, ..., Ncut) and M(t) = (M(1), M(2), ..., M(Ncut)). Covariance cov(v, u) and variance
var(v) for d-dimensional vectors v and u are defined as the following expressions:

cov(v, u) =
1
d

d

∑
i=1

(vi − v̄)(ui − ū), var(v) = cov(v, v) (11)

where v̄ = ∑d
i=1 vi/d and ū = ∑d

i=1 ui/d. The asymptotic growth rate K measures the
strength of the correlation of with linear growth. It is noteworthy that STEPS 1–3 need to
be executed for various values of c. In practice, providing 100 choices for c is sufficient. The
values of c are chosen randomly in the interval c ∈ (1/5π, 4/5π) to avoid resonances [61].
The asymptotic growth rate K for regular dynamics equals to 0 and K = 1 for chaotic
dynamics. So according to the value of the asymptotic growth rate K, the 0–1 test can
accurately distinguish the different dynamic states, which is of great help to differentiate
the non-chaos states and chaos state of lasers.

The examples of 0–1 test method for the different dynamic states of the laser are shown
in Figure 5, where the parameters are the same as those given in Figure 4. It can be seen
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from Figure 5a that the system is in the periodic state, the values of K are mostly distributed
between 0 and 0.2, the trajectory of M resembles a sawtooth, and a clear ring is observed
in (p, q) plane. As shown in Figure 5b, when the output of laser is in the quasiperiodicity
state, K gradually becomes larger and distributes to 1, the outlines of M are analogous to
the sinusoid and the amplitudes of bend gradually decrease. The points in (p, q) plane
have spread around the previously mentioned ring to become a pile of dense points. When
the system is in the chaos state, as depicted in Figure 5c,d, it is observed that almost all of
the values of K are close to 1, and the stronger chaos state, the more K values are closed to
1. M and t show a good linear relation in the strong chaos state, and the range of points
distribution in (p, q) plane have extended greatly compared with other non-chaos states.
The results of the 0–1 test are exactly consistent with the characteristics of different dynamic
states in the time series, power spectra, and phase portraits, it indicates that our method
used to calculate bifurcation maps can provide an accurate prediction for chaos. Therefore,
the influence of other key parameters on the complex dynamics is investigated only based
on bifurcation maps in the following content.

Figure 5. The 0–1 test for observing the different dynamic states, where k = 1 ns−1 and (a) τ = 1.6 ns;
(b) τ = 2.3 ns; (c) τ = 4.6 ns; (d) τ = 4.6 ns and k = 3.5 ns−1. The parameters in this figure are the
same as in Figure 4. K: asymptotic growth rate; M: mean square displacement; p and q: translation
variables; c: random constant; t: sampled data.

In the cause of further investigation for how optical feedback delay and feedback
intensity affect the complicated dynamical regions of nonlinear dynamics, the mapping of
the different dynamic states of spin-VCSEL with optical feedback in the parameter space
of (η, P) under different τ and k are shown in Figure 6. When the intensity of optical
feedback is increased gradually as optical feedback delay τ is fixed as 0.8 ns and 2 ns
respectively, it can be seen from Figure 6d to Figure 6f and Figure 6g to Figure 6i that
the regions corresponding to complex dynamics are expanded obviously and the region
in steady state (dark blue) shrinks greatly. Noted that due to the existence of feedback
strength, P1 surprisingly appears in steady state region at a weak pump intensity and
even complex dynamical regions are observed although narrowly. Furthermore, the more
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expansions of complex dynamics are observed for the larger feedback intensity, such as
k = 2 ns−1 in Figure 6c,f,i. When optical feedback intensity is set as 0.4 ns−1, 0.8 ns−1, and
2 ns−1, correspondingly, through the comparisons of Figure 6d (τ = 0.8 ns) and Figure
6g (τ = 2 ns), Figure 6e (τ = 0.8 ns) and Figure 6h (τ = 2 ns), Figure 6c (τ = 0.4 ns),
Figure 6f (τ = 0.8 ns) and Figure 6i (τ = 2 ns), it can be concluded that the regions of
complex dynamics are also expanded by the increase of optical feedback delay, but the
variation of the regions corresponding to complex dynamics is not remarkable for the weak
feedback strength such as 0.4 ns−1. Combining the cases where τ and k are both enhancing,
it is obvious that the regions corresponding to more complex dynamics are expanded
remarkably in Figure 6i and it is easier to enter into complex dynamics and chaos in a weak
pump intensity with stronger feedback strength. Based on the above analysis for mappings
in Figure 6, optical feedback as the external perturbation element of spin-VCSELs can
realize the more complex dynamical oscillation easily, in which optical feedback delay has
a positive effect as well to produce complex dynamical behaviors but the strength of optical
feedback plays a relatively dominant role.

Figure 6. Mapping of the different dynamic states of spin-VCSEL with optical feedback in the
parameter space of (η, P), in which (a) τ = 0.1 ns, k = 0.1 ns−1; (b) τ = 0.4 ns, k = 0.4 ns−1; (c)
τ = 0.4 ns, k = 2 ns−1; (d) τ = 0.8 ns, k = 0.4 ns−1; (e) τ = 0.8 ns, k = 0.8 ns−1; (f) τ = 0.8 ns,
k = 2 ns−1; (g) τ = 2 ns, k = 0.4 ns−1; (h) τ = 2 ns, k = 0.8 ns−1; (i) τ = 2 ns, k = 2 ns−1. The other
parameters are the same as those given in the preceding discussion. 1: steady state; 2: P1; 3: P2; 4, 5:
multi-period; 6, 7: chaos pulsation.

Finally, the effects of linewidth enhancement factor α and relaxation rate γs on the size
of regions of complex dynamics are also investigated in detail. Corresponding mappings
under different α and γs are shown in Figure 7, where the parameters τ and k in the
feedback delay component are set as τ = 0.5 ns and k = 0.4 ns−1 respectively. For
linewidth enhancement factor α, some changes in the region of complex dynamics can be
observed from the bifurcation maps of each column in Figure 7. From the comparison
among Figure 7a (α = 2 and γs = 20 ns−1), Figure 7d (α = 3 and γs = 20 ns−1), Figure 7g
(α = 4 and γs = 20 ns−1), it can be seen that Figure 7g shows the most complex dynamics
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region in size and its upper limit of oscillation region is expanded observably. Noted that
this phenomenon also occurs in other values of γs, such as γs = 40 ns−1 and γs = 50 ns−1,
and it is especially obvious for a larger relaxation rate in Figure 7c,f,i. Distinctly, the regions
of P2 and complex dynamics are significantly extended due to the increase of α, that is
because the amplitude-phase coupling effect is enhanced with a slightly larger value of
α. Furthermore, by observing the size of the regions of different nonlinear dynamics of
each row in Figure 7, it can be concluded that a larger γs (γs = 50 ns−1 in Figure 7c,f,i) can
lead to the remarkable size shrink of complex dynamics and chaos regions. Namely, the
complicated dynamical regions and chaos region can be shrunken due to the increase of
γs and complex oscillations are easier to achieve for a small relaxation rate. Consequently,
it can be summarized that both linewidth enhancement factor α and relaxation rate γs
strongly influence the regions of complex dynamics and chaos in size, and decreasing α
and increasing γs tend to stabilize the output of spin-VCSELs with optical feedback. The
research of mappings has great significance to the expansion of complex dynamic regions
of lasers and realize complex dynamical oscillation easily.

Figure 7. Mapping of the different dynamic states of spin-VCSEL with optical feedback in the
parameter space of (η, P) with τ = 0.5 ns and k = 0.4 ns−1, where (a) α = 2, γs = 20 ns−1; (b) α = 2,
γs = 40 ns−1; (c) α = 2, γs = 50 ns−1; (d) α = 3, γs = 20 ns−1; (e) α = 3, γs = 40 ns−1; (f) α = 3,
γs = 50 ns−1; (g) α = 4, γs = 20 ns−1; (h) α = 4, γs = 40 ns−1; (i) α = 4, γs = 50 ns−1. The other
parameters are the same as those given in the preceding discussion. 1: steady state; 2: P1; 3: P2; 4, 5:
multi-period; 6, 7: chaos pulsation.

4. Conclusions

In summary, based on the presented expanding SFM equations, we have first inves-
tigated the nonlinear dynamics of optically pumped spin-VCSELs with optical feedback
through numerical simulations. We have demonstrated the effect of some important pa-
rameters on the nonlinear dynamical behaviors of the proposed model by the bifurcation
analysis, including the intensity of optical feedback, optical feedback delay, linewidth en-
hancement factor, and relaxation rate in this paper. The mappings of the different dynamic
states in the parameter spaces of (τ, k) and (η, P) have been presented from direct numerical
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simulation to observe the regimes of generated chaos and reveal its rich dynamical regimes
intuitively. Furthermore, the characteristics of period, quasiperiodicity, and chaos under
the different values of optical feedback intensity and delay are compared in the time series,
power spectra, and phase portraits respectively. Correspondingly as supplementary, we
employ the 0–1 test to validate the validity of chaos and non-chaos of lasers more intu-
itively. The results of 0–1 test are consistent with the characteristics of different dynamic
states and the corresponding regimes in the mapping, which indicate the effectiveness
of our method used to calculate bifurcation maps for spin-VCSELs with optical feedback.
The current study can provide potential applications in future optical chaos-based secure
communications, image encryption, and biomedical sensing.
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