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Abstract: As the Internet of Things (IoT) develops, applying machine learning on optical communications
has become a prospective field of research. Scholars have mostly concentrated on algorithmic
techniques or specific applications but have been unable to address the distribution of machine-learning
technologies and the development of its applications in optical communications from a macro
perspective. Therefore, in this paper, machine-learning patents in optical communications are taken
as the analytical basis for constructing a patent technology network. The study results revealed that
key technologies were primarily in data input and output devices, data-processing methods, wireless
communication networks, and the transmission of digital information in optical communications.
Such technologies were also applied to perform measurement for diagnostic purposes and medical
diagnoses. The technology network model proposed in this paper explores the technological
development trends of machine learning in optical communications and serves as a reference for
allocating research and development resources.
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1. Introduction

Optical communications have greatly advanced in signal serial communication speed, agile
channel spacing, modulation formats, and coding schemes. However, relevant technologies have
yet to fully meet the complexity and performance requirements of future optical communication
system networks. The distinguishing features of machine learning are its autonomous learning and
evolution ability. With new information, a system can modulate its structure and parameters to build
a new mapping network and enable new skills [1]. At present, machine-learning technologies play
a significant role in network planning, failure prediction, and optical performance monitoring in
optical communication systems [2–4]. In the future, intelligent optical communication system networks
will be automated and adaptive and become capable of predicting traffic demands to maximize
performance. To achieve this goal, the integration of machine-learning mathematics, programming,
and algorithms is necessary in optical communications, and these are the key directions of future
optical communication development.

Integrating machine learning and optical communication technologies—in essence, combining
computer science with communication—is a forward-looking research field. Machine-learning
technologies have been highly effective in classification tasks, particularly when signals are non-linear
and distorted [5]. Machine learning predicts and eliminates defects in a system by learning its properties.
Current signal analysis systems are ineffective in classifying signals. However, machine learning can
be applied to such systems to identify patterns in collected data and boost the systems’ signal analysis
performance. In truth, more scholars have begun to focus on developing this technology [2,4,6].
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Studies have mainly focused on algorithmic techniques [4,7] or specific applications [2,8]; however,
these studies have not addressed the technological distribution and application development of machine
learning in optical communication from a macro perspective. In particular, the rapid development
of machine learning has gradually rendered relevant technologies a powerful tool for enterprises in
smart manufacturing to increase output value. The development of the Internet of Things (IoT) and its
high-speed, low-latency, and large-data transmission characteristics will drive optical communication
needs. Integrating the machine-learning and optical communication technologies will unlock unlimited
business opportunities in the future; thus, defining key technologies and their applications are critical.
In the current phase of machine learning, where personnel and funds should be directed, is the most
crucial consideration in optical communications for government and industry actors. Machine learning
was applied for interface arrangements, image capture, encoding, decoding, and code conversion.
Governments may consider investing more research funds and resources toward academic research for
developing technologies in this field. This study addressed this topic through employing technology
network analysis to analyze and identify key technologies.

This paper focuses on technology networks for machine learning in optical communications
and constructs a technology network model through patent analysis. Patents are the most direct
method of measuring the industrialization of technology, and previous measurements of technology
transfers [9,10] and studies on technology development trajectories [11,12] and industrial technology
development maps [13,14] have used patents. Therefore, patent information is one of the most direct
metrics for technological development. Patent information forms the basis of this paper’s observation
of technological development trends and key technological fields. In terms of the screening of machine
learning and optical communications patents, a prior art search for patents in the past mainly involved
the use of keywords [15,16], similarities in International Patent Classification (IPC) codes [17,18], or the
establishment of a topic-dependent citation graph [19]. The patents were retrieved using Derwent
smart search (SSTO), which involves hundreds of experts who read and translate the open information
of official patents in various databases before rewriting the key abstracts, eliminating content errors,
and normalizing the patentees. The revised and normalized data are logged into a database after
manual browsing and sorting.

This study differs from previous explorations of algorithmic techniques and applications by
mainly exploring key technologies and applicable developments for machine learning in optical
communications. It focuses on building a technology network model and identifying technological
development trends. The study results can serve as a reference for government and industry actors.

2. Literature Review

2.1. Current Development of Machine Learning in Optical Communications

The two vital forces driving the advancement of the overall communications industry are
fifth-generation mobile communication system (5G) and artificial intelligence (AI) technologies.
To increase communication transmission speeds, the application of optical communications technology
has gradually increased in the 5G field. A study by MarketsandMarkets stated, “The global optical
communication and networking equipment market size was valued at USD 18.9 billion in 2020 and is
projected to reach USD 27.8 billion by 2025; it is growing at a compound annual growth rate (CAGR) of
8.0% from 2020 to 2025” [20]. AI fulfills critical roles in optical communication industries, including
optical network planning and operations in transport and access networks [21]. Machine learning is
the basis of AI, and studies have argued that machine-learning techniques are used for many optical
network applications. The applications of machine learning are classified by their use in cases, which
are categorized into optical network control and resource management and optical network monitoring
and survivability [22]. Therefore, methods of improving the performance of optical communications
through mathematical methods and algorithms related to machine learning may become the trend of
future research.
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To satisfy the growing traffic demands of mobile communications and transmitting diverse and
high-quality data through methods such as IoT, the goal of developing optical communications is
to integrate machine learning and create deeply intelligent control management systems. Topics on
involving machine learning in optical communications are diverse and include optical performance
monitoring, fiber non-linearity compensation, cognitive network failure prediction, dynamic planning,
the cross-layer optimization of software-defined networks, the quality of transmission estimation,
and the physical layer design of optical communication systems [23]. These techniques involve
optics, mathematics, computer science, communications, and semiconductors and belong to
cross-disciplinary technical fields. Developments in IoT technologies, mobile communications,
and optical communications have led multiple governments to focus on machine-learning applications
in optical communications. Optical communications will gradually become widespread among most
users. The sending of large volumes of sound, video, and image data is reliant on AI technologies
such as machine learning for computing and transmission, and the range of applicable fields is wide.
Therefore, this study analyzed the technological development and applicable fields of machine learning
in optical communications, and patents were examined to identify key technologies. The exploration
into these key technologies was conducted through network analysis, which is further explained in the
following section.

2.2. Technology Network Analysis Model

In recent years, studies have explored the development and trends of technological innovation
through network analysis methods [24,25] or sought to understand the technical partnership between
institutions or inventors through network analysis [26,27] to explore the flow of knowledge [28,29].
Network analysis can be used to accurately illustrate the transmission paths and evolution of technology
and knowledge. Analysis of patent data in particular can provide objective and feasible data, such as
the year the patent was approved, the quantity of the patent, and the type of technology used [13].
Therefore, this study used patent data to analyze the development of specific technologies, and based
on the features of network analysis, the relationship between technical fields were analyzed using
co-classification. Because each patent may be involved in multiple technical fields, co-classification can
be used to define the relationship between technical fields [30,31] and pinpoint key technologies on
the basis of technology networks. The classification framework of technical fields was based on the
current the IPC system, and this study used the technology network analysis model to explore key
technical fields in machine learning in optical communications.

3. Research Design

3.1. Retrieval Strategy and Data Source

In this study, the patent analysis was based on data from the United States Patent and Trademark
Office (USPTO), a historic organization whose development and data can be traced back to 1975.
Because the United States is the largest commercial trade market in the world, most inventors who
apply for patents in other countries also submit patent applications in the United States. Therefore,
researchers generally use the USPTO database to examine global innovation activities [13,14]. Patents
explored in this study were limited to US patents that were announced between January 2015 and
December 2019. In this study, the patents were retrieved using SSTO, and the search criteria were
(SSTO/Machine Learning) and (SSTO/Optical Communications), which returned 824 patents in total.

3.2. Network Centrality Analysis

In this study, key technologies in patent technology networks were identified through technology
network centrality. The methods of measuring network centrality are explained as follows.
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3.2.1. Degree Centrality

Degree centrality is the number of nodes that are adjacent a specific node and can be used to
evaluate the core of a patent technology network. High degree centrality represents a greater number
of connected nodes in a network, and degree centrality in specific networks of links represents critical
transitions that will become a hot spot in the network [32].

Cd(i) =
∑

j

m ji (1)

If nodes i and j are connected, then m ji = 1.

3.2.2. Eigenvector Centrality

Eigenvector centrality measures the influence of a node in a network. In addition to whether
a node is connected with other nodes, relevant analysis focuses on whether the nodes connected to
this nodes are linked with other nodes. The centrality of a node is determined by the centrality of
its adjacent nodes. If a node is connected to nodes with high centrality, the node in question has
higher degree centrality. This indicates that degree centrality differs between adjacent nodes. Analysis
of eigenvector centrality can determine the relative importance of a node and constitutes a crucial
research field in technology networks.

Ce(i) = λ−1
n∑

j=1

ai jCe( j) (2)

where Ce(i) and Ce( j) are the eigenvector centrality of nodes i and j, respectively; ai j represents the
node entering the adjacency matrix A; and λ is a constant and the largest eigenvalue in the adjacency
matrix A.

In this equation, eigenvector centrality views the centrality of a single node as the linear
combination of the centrality of all other nodes to derive a linear function [33].

3.2.3. Structural Hole

Structural holes can be used to assess the ability of a node as a mediator in the overall network.
This concept describes the characteristics of a node that occupies the main communication and
information channels in the network, which is associated with the hole effect [34]. This is the degree to
which the connections between clusters depend on the node in question. The gaps between clusters
provide opportunities to build a network of bridges. If any technology becomes a bridge to connect
two non-overlapping technology clusters, that bridging technology gains a spatial advantage in the
overall technology network. Burt [34] argued that structural hole effects can be measured using a
network constraint index, with a value between 0 and 1. A high network constraint index indicates
low autonomy and a low structural hole effect in the entity.

Ci j = (Pi j +
∑

k

P jkPkj)
2

(3)

where Ci j is the score of the constraint on node i by node j; Pi j is the proportion of connections with
node j among the connections of node i; P jk is the relational ratio of node j with the other connections
of all nodes; and Pkj is the ratio of all other nodes with node j connections.

This equation sums all node j totals, and this sum is the total constraint on node i in the network [34];
ergo, Ci =

∑
j

Ci j.
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4. Results

4.1. Patent Retrieval Results

Before performing technology network analysis, the patent retrieval results were analyzed to
gain a preliminary overview of technological development. Machine-learning technologies in optical
communications involved 407 four-digit IPCs, which indicated a wide scope of involvement. Table 1
presents the quantity of the top 10 four-digit IPCs.

Table 1. Top 10 International Patent Classifications (IPCs) to the fourth digit.

Ranking IPC Classification Frequency Percentage

1 G06F17 170 5.17%
2 G06F3 142 4.31%
3 G06K9 108 3.28%
4 H04L29 102 3.10%
5 A61B5 89 2.70%
6 G06F9 82 2.49%
7 H04L12 75 2.28%
8 G10L15 71 2.16%
9 H04B10 69 2.10%

10 G06T7 58 1.76%

In Table 1, the frequency denotes the number of patents that have appeared in the IPC classification;
for example, 170 patents under G06F17 belonged to the IPC classification. The percentage represents
the proportion accounted for by an IPC classification out of the total number of IPC classifications;
for example, the 824 patents contained 3291 IPC classifications (one patent might have more than
two IPC classifications), and G06F17 appeared 170 times, accounting for 5.17%. The results indicated
that that the technologies were mostly concentrated under the classifications G06F17, G06F3, G06K9,
H04L29, and A61B5 (Table 1); Appendix A displays the definition of each IPC code. According to the
IPC definitions, G06F17 refers to data-processing methods, and G06F3 is the classification for data input
and output devices (e.g., interface arrangements). G06K9 covers methods and devices for recognizing
patterns, and H04L29 is communication control. A61B5 is the classification for measuring diagnostic
purposes, among which G06F17 was more related to AI [35] because it appeared the most frequently.

The analysis results of the top ten patentees revealed that Apple Inc., which focuses on AI and
communication technology development, holds the greatest number of patents, followed by SAS
Institute Inc., Intel Corporation, and International Business Machines Corporation, which are global
leaders in intelligent software and services (Table 2). The next patentee, Volcano Corporation, develops
biological diagnostic systems with ultrahigh resolution and holds numerous patents to technologies
that can be applied for medical diagnostics.

Table 2. Top 10 patentees.

Ranking Patentee Patents Percentage No. of Inventors

1 Apple Inc. 67 8.15% 142
2 SAS Institute Inc. 51 6.20% 92
3 Intel Corporation 33 4.01% 65
4 International Business Machines Corporation 24 2.92% 67
5 Volcano Corporation 29 3.53% 29
6 Elwha LLC 28 3.41% 33
7 Microsoft Technology Licensing, LLC 17 2.07% 51
8 Google LLC 16 1.95% 42
9 Fitbit, Inc. 14 1.70% 10
10 HPS Investment partners, LLC, as Collateral Agent 13 1.58% 18
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Furthermore, G06N in three-digit IPCs describes computer systems based on specific computational
models, and G06N will be subdivided into four-digit IPCs, which is further explained different
computational models. Therefore, the patents collected in this study reveal computational models
(i.e., G06N). In this study, four-digit IPCs related to G06N appeared 131 times, and the distribution
of the four-digit IPCs, including computer systems based on biological models (G06N3), computer
systems using knowledge-based models (G06N5), subject matter not provided for in other groups of
this subclass (G06N99), as shown in Table 3.

Table 3. Computational models classification results.

Methods Frequency Percentage

Computer systems based on biological models 36 27.48%
Computer systems using knowledge-based models 28 21.37%

Subject matter not provided for in other groups of this subclass 28 21.37%
Others 39 29.77%

4.2. Technology Network Analysis

The results of previous studies have suggested that technology co-classification analysis can be
used to analyze the relationship between fields of technology [30,31]. Because patents may be subject to
multiple patent classification codes, co-classification information can be used to define the relationship
between technical fields, as shown in Figure 1.
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Figure 1. Technical field co-classification analysis schematic. Note: P1 and P2 represent two patents;
IPC1, IPC2, IPC3 . . . IPC6 represent six technical fields.

The numbers in the matrix in Figure 1 represent the frequencies of different IPCs appearing in the
same patent. A greater number represents a stronger technical connection between IPCs. For example,
the IPCs of P1 belong to IPC1, IPC2, IPC3, and IPC4. Because IPC1, IPC2, IPC3, and IPC4 simultaneously
appear in P1, a technical connection exists among IPC1, IPC2, IPC3, and IPC4. Moreover, regarding
the relationship between IPC1 and other technical fields, because IPC1, IPC2, IPC3, and IPC4 only
appear simultaneously in P1, the technical connections between IPC1 and IPC2, IPC3, and IPC4 were
consistently “1”, as shown in the first column of the matrix. Because IPC1 does not concurrently appear
with IPC5 and IPC6 in patents, the technical connection of IPC1 to IPC5 and IPC6 is “0”. This approach
was adopted to gradually develop co-classification matrices of all technical fields. Therefore, the present
study can facilitate plotting of the technology network map through the matrix.

Table 4 presents all parameters used in the technology network analysis. Figure 2 presents the
network model of key technologies, and the key IPCs are listed in Table 5. The centrality performance
index of the top 10 IPC codes in the frequency analysis (Table 1) has been added to Appendix B.
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Table 4. Parameters related to technology network analysis.

Items Technology Network Analysis

Nodes 407
Links 206,194

Average path length 2.688
Network density 0.159

The average degree 16.015
Compactness 0.377
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Table 5. Top 5 IPC codes for machine learning in optical communications.

IPC Degree Centrality IPC Eigenvector Centrality IPC Structural Hole

G06F3 126 G06F3 0.206 G06F3 0.063
G06K9 109 H04W4 0.183 A61B5 0.076
G06F17 102 H04L29 0.182 G06F19 0.077
H04W4 100 H04L12 0.176 H04W4 0.082
H04L12 97 H04B10 0.169 G06F17 0.085

The overall network, as shown in Table 4, was composed of 407 nodes and 206,194 links; a total of
407 IPCs were related to machine learning technologies in optical communications. The network density
and compactness were 0.159 and 0.377, respectively, indicating that the network was sparsely distributed
and that the interaction frequency between nodes was low. The average path length was 2.688, meaning
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that connecting a node to other nodes required nearly 3 steps, on average. The technology nodes
depicted in Figure 1 are crucial technology nodes linking more than 60 different technology nodes;
that is, they represent the more critical technology fields in patents for machine-learning technologies
in optical communications. Regarding degree centrality, eigenvector centrality, and structural hole,
the IPCs G06F3, G06F17, H04W4, and H04L12 had more than two indices in the top five technology fields
(Table 5). In the overall IPC codes, the mean eigenvector centrality was 0.028, and a larger value indicated
greater relative importance of a node. The structural hole effect was measured using the network
constraint index. The mean of said index was 0.519, and a higher value indicated a lower structural hole
effect. This suggested that key machine-learning technologies in optical communications are mainly
concentrated in data input and output devices (e.g., interface arrangements; G06F3), data-processing
methods (G06F17), wireless communication networks (H04W4), and the transmission of digital
information (H04L12). The IPCs A61B5 and G06F19 only appeared in the structural hole column,
which signified that these two technology fields belonged to different technology clusters and played a
cross-disciplinary role. Thus, key technologies in the cross-disciplinary uses of machine learning in
optical communications were for measurements for diagnostic purposes (A61B5) and information and
communication technology (ICT) specially adapted for specific application fields (G06F19).

Additional insights available through network centrality metrics were as follows. Despite the
slightly lower frequency of certain technology fields appearing in patents, in terms of the overall
technology network, the connected technology nodes were more diverse and had an interdisciplinary
nature in terms of applications. For example, although H04W4 and G06F19 are not listed in the top
10 technology fields with the highest frequency in Table 1, H04W4 was observed to connect to more
different nodes in terms of degree centrality. Eigenvector centrality considered whether H04W4 was
connected to a node with relatively high centrality, whereas structural holes revealed that G06F19
and H04W4 occupied the main channel of network communication; that is, the degree to which the
connection between technology clusters depended on G06F1 and H04W4 was revealed.

4.3. Country-Technology Two-Mode Network Analysis

To include more interesting findings, country-technology two-mode network analysis and
factionalization analysis were used to understand the strategic cluster of patent technology deployment
of each country. Factions analysis was employed to conduct a complete survey of small-world
structures. Factions analysis is an explorative tool used to identify subclusters in a social network [36].
In all, four factions were present. The final proposition correct was 0.703, suggesting a favorable fit
value. The faction analysis results are presented in Table 6 and Figure 3.

Table 6. Faction analysis results.

Faction Actors

Faction 1 G06F1, G06Q50, H04L9, H04N5, AU, BE
Faction 2 G06F17, G06K9, H04B10, H04L12, H04L29, CH, FI, GB, IL, IN, NL
Faction 3 A61B5, G06F9, G06F15, AT, CA, CN, DE
Faction 4 G06F3, G06F19, G06Q10, G06T7, G10L15, H04N7, H04W4, FR, IE, IT, JP, KR, LU, NO, PL, SG, US

Note: To simplify the table, only technology nodes that appear in Tables 1 and 5, and Figure 2 are presented.

Table 6 and Figure 3 can be used to identify the technology clusters of invention in the most
prominent countries and the proximity of technical fields. For example, China and Germany belong
to the same technology cluster, with their patents presenting high technical closeness in the A61B5
field. Australia and Belgium have high connectivity in the G06Q50 and H04L9 fields. Switzerland,
the United Kingdom, and Israel have high connectivity in the G06F17, G06K9, and H04B10 fields. The
United States and Japan have high technical closeness in the G06F3 and H04W4 fields.
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4.4. Key Machine-Learning Technologies in Optical Communications over the Years

The changes in G06F3, G06F17, H04W4, H04L12 patents over the years were analyzed to
understand the development trajectory of machine learning in optical communications (Figure 4).
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The results indicated that the application and development of G06F3 technologies—optical signals
or data input and output devices—have gradually received more attention in recent years (Figure 2).

5. Conclusions

5.1. Results Discussion

In this study, network analysis was performed to explore key machine learning technologies
in optical communications. The findings revealed that among data input and output devices,
data-processing methods, wireless communication networks, and digital information transmission
were key technologies that were not clustered in specific fields. The findings also indicated that
machine-learning technologies in optical communications were applied to measurement for diagnostic
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purposes. Therefore, medical diagnostic applications is a direction that merits future study. In addition,
comparing the differences between the network analysis and the most frequent Top 10 IPCs to the
fourth digit revealed that wireless communication networks (H04W4) were among the top five in
the network analysis; however, in the frequency analysis, their frequency of occurrence was not in
the top 10. This indicated that although few patents for machine-learning technologies in optical
communications were directly related to wireless communication networks, the connected technology
fields were quite diverse. This highlights the importance of wireless communication networks and the
advent of the era of wireless optical communications.

Furthermore, analysis of major patentees revealed that major developers are leaders in ICT and
intelligent software and services—Apple Inc., SAS Institute Inc., Intel Corporation, and International
Business Machines Corporation. Apple Inc. focuses on AI applications in communications, whereas
SAS Institute Inc. conducts data exploration to advance algorithmic applications to deploy AI to more
industries. Intel Corporation and International Business Machines Corporation are major vendors in
chips and information. Although most of the top 10 patentees are leading ICT developers and the
number of academic patents is lower than that of patents under general enterprises [37], academic
and scientific research has a substantial influence on technology patents. The methods and specific
techniques proposed in academic and scientific studies affect industrial development. For example,
in the sample analyzed in this study, Carnegie Mellon University’s patent (US10436615B2), authorized
in 2019, uses machine learning. The computer system then trains a classifier to serve as a virtual
sensor for an event that is correlated to the data from one or more sensor streams within the featured
sensor data. The technology is related to the recording of measured values and can be applied in
many industrial fields. Another example is a University of Central Oklahoma patent authorized in
2018 (US9922291B2) that proposes a method and apparatus for providing personalized configuration
of physical supports for the human body, comprising accepting input including an individual’s
demographic information. The patents provide new methods and modes of thinking for computer
systems based on specific computational models.

Factions analysis was adopted to determine the technical identification of inventions in prominent
countries and to provide references for governments with regard to patent deployment. The results
of the factions analysis revealed competition between countries in inventions, as well as the focal
fields of each country. China and Germany belong to the same technical cluster, whereas the United
States and Japan are in different clusters from those of the United Kingdom and Israel. Moreover,
the proximity of technical fields can be observed through the results. For example, methods and
devices for recognizing patterns (G06K9) and transmission systems employing electromagnetic waves
other than radio-waves (H04B10) belong to the same faction; the co-occurrence of these technological
fields in the same patent is highly likely. In technical applications of machine learning in optical
communications, high co-occurrence and closeness are present.

The development trend of key machine-learning technologies in optical communications was
concentrated in G06F3 or data input and output devices. Recent studies have argued that using
machine learning and neural networks can precisely reconstruct digital images, convert blurry and
unrecognizable speckle patterns into recognizable digital images, and process distortions caused by
environmental disturbances to optic fibers [38]. This technological development is anticipated to
advance endoscopic imaging and medical diagnoses [38,39]. In addition, in terms of causality of
technology time series, patents for machine-learning technologies in optical communications were
mainly focused on the technology field of data processing methods (G06F17), which emphasizes
complex mathematical computation. Recently, optical signals as well as data input and output devices
(G06F3) began to increase substantially. This indicates that with the development of communication
technology and big data, in addition to the improvement of early mathematical computation through
the development and application of technology, input devices that transform signals into digital data
formats that can be processed by computers have gradually attracted attention, leading to further
technological developments and relevant applications.
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5.2. Implications Discussion

For theoretical contributions, studies on machine learning in optical communications have mostly
explored algorithmic techniques [4,7] or researched specific applications [2,8]. However, these studies
have failed to identify focal technical fields, development trends, and network distribution channels
among technical fields from a macro perspective, particularly regarding indispensable technologies
for the future development of machine learning for optical communications. This observation of
technological distribution is particularly critical. This study filled this research gap and adopted a new
perspective that centers on technical fields.

In technology development, as was described earlier, the focus of key machine-learning
technologies in the optical communications field has been mainly on G06F3. In other words, machine
learning is applied to data input and output devices in optical communications. Whether optical
communications can achieve the prediction of transmission quality through machine learning is
crucial in the development of optical communications technology. Traditional optical communications
performance relies on the calculation of network layer parameters, which are based solely on the
available flow and flow load of the network. However, whether optical communications are blocked is
determined by not only the network layer but also the physical layer. The optical communications
network must effectively predict the quality of transmission before new channel deployment of optical
communications. The quality of transmission involves physical layer parameters such as signal-to-noise
ratio and symbol error rate. How machine learning can be used to effectively predict the quality of
transmission is the key to future technology development. The use of analysis models to estimate
the damage of physical layers for the provision of accurate results is a fundamental challenge in the
implementation of optical communications.

To assist in policy suggestions, this paper provides industries and governments with valuable
information in a technical map of machine learning in optical communications. The analysis and
understanding of technological development foci in technology networks inform industries on
allocating research and development resources and informs governments on promoting emerging
technologies. Given the development of IoT applications for driving the transmission volume of digital
data, the optical communication field will require the integration of machine learning to construct
adaptive smart optical communication system networks. This study found that major key technologies
were concentrated in electric digital data processing, wireless communication networks, and the
transmission of digital information. Therefore, governments should implement long-term financial
support and training programs for talent in these technologies to increase the overall research and
development capacity of the optical communication industry.

5.3. Limitations and Future Research Directions

First, this study used the patent keywords classifications that were organized by Derwent as
the basis for patent screening. Although the Derwent database has several hundred experts who
examine publicly available patent information to manually sort technical keywords, the development of
machine-learning technologies in optical communications spans several fields and technical applications;
therefore, some patents may not have been included in this analysis despite falling within its scope.
Furthermore, this study analyzed large-scale holistic technology networks. Therefore, the empirical
basis was limited to the number of approved patents, and the study did not make value judgements
for individual patents. For example, this study lacked a discussion on whether the income of the
patentees was correlated to the patents they owned, as well as the cost structure that patents imposed
on the patentees. In the future, individual case studies into specific high-value patents can include
expert interviews or other research methods. Finally, due to personnel and financial reasons, this study
only used USPTO—the largest global commercial trading market—as its source of information on
patents. Although this database is widely used to measure global innovations [13,14], future researchers
with sufficient time and money should include other data sources on patents for observation and



Photonics 2020, 7, 131 12 of 15

verification, such as by including approved standard essential patents in communications or their
citation documents to expand their research breadth.
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Appendix A

Table A1. Definition of IPC categories.

IPC Categories Meaning

A61B5 Measuring for diagnostic purposes

G06F1 Details not covered by groups G06F 3/00-G06F 13/00 and G06F 21/00

G06F3
Input arrangements for transferring data to be processed into a form capable of being

handled by the computer; Output arrangements for transferring data from processing unit
to output unit, e.g., interface arrangements

G06F9 Arrangements for program control, e.g., control units

G06F15 Digital computers in general

G06F17 Digital computing or data processing equipment or methods, specially adapted for
specific functions

G06F19

(transferred to G16C 10/00-G16C 60/00, G16Z 99/00); G16C 10/00: Computational
theoretical chemistry, i.e., ICT specially adapted for theoretical aspects of quantum

chemistry, molecular mechanics, molecular dynamics or the like; G16C 60/00:
Computational materials science, i.e., ICT specially adapted for investigating the physical
or chemical properties of materials or phenomena associated with their design, synthesis,
processing, characterisation or utilization; G16Z 99/00: Subject matter not provided for in

other main groups of this subclass

G06K9 Methods or arrangements for reading or recognising printed or written characters or for
recognising patterns, e.g., fingerprints

G06N3 Computer systems based on biological models

G06N5 Computer systems using knowledge-based models

G06N99 Subject matter not provided for in other groups of this subclass

G06Q10 Administration; Management

G06Q50 Systems or methods specially adapted for specific business sectors, e.g., utilities or tourism

G06T7 Image analysis

G10L15 Speech recognition

H04B10
Transmission systems employing electromagnetic waves other than radio-waves,

e.g., infrared, visible or ultraviolet light, or employing corpuscular radiation,
e.g., quantum communication

H04L9 Arrangements for secret or secure communication

H04L12 Data switching networks

H04L29 Arrangements, apparatus, circuits or systems, not covered by a single one of groups

H04N5 Details of television systems

H04N7 Television systems

H04W4 Services specially adapted for wireless communication networks; Facilities thereof
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Appendix B

Table A2. Centrality indicators of the Top 10 IPC codes with the highest frequency.

IPC Degree Centrality Eigenvector Centrality Structural Hole

G06F17 102 0.151 0.085
G06F3 126 0.206 0.063
G06K9 109 0.139 0.090
H04L29 95 0.182 0.087
A61B5 91 0.112 0.076
G06F9 66 0.159 0.101

H04L12 97 0.176 0.088
G10L15 33 0.062 0.228
H04B10 90 0.169 0.085
G06T7 78 0.107 0.140
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