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Abstract: The analytical solution for the propagation of the laser beam with optical vortex through
the system of lenses is presented. The optical vortex is introduced into the laser beam (described as
Gaussian beam) by spiral phase plate. The solution is general as it holds for the optical vortex of
any integer topological charge, the off-axis position of the spiral phase plate and any number of
lenses. Some intriguing conclusions are discussed. The higher order vortices are unstable and split
under small phase or amplitude disturbance. Nevertheless, we have shown that off-axis higher
order vortices are stable during the propagation through the set of lenses described in paraxial
approximation, which is untypical behavior. The vortex trajectory registered at image plane due to
spiral phase plate shift behaves like a rigid body. We have introduced a new factor which in our
beam plays the same role as Gouy phase in pure Gaussian beam.

Keywords: optical vortex; angular momentum; optical microscopy; singular optics; hypergeometric
function; Kummer function

1. Introduction

The question of generation and propagation of light fields containing optical vortices [1–3] is
getting attention in many fields of modern optical science nowadays. The fundamental case of such
a field is vortex beam-the well-defined, single beam (as, for example, LG beam [4,5]), carrying the
optical vortex of any order. Many different problems concerning the generation and propagation of
the vortex beam have been considered in the literature so far. Some of them consider optical fields
containing the lattice of vortices generated, for example, by three or more plane or spherical waves
interference [6–9]; or so called composed vortices, i.e., vortices which are generated by two or more
overlapping beams [10–16].

The study on single vortex beam propagation has started with the most basic problem, that is
propagation of the fundamental vortex beam in a free space [17–19]. Next, the problem of vortex beam
generation by the simple optical element revealing circular symmetry was reported [20,21]. Here,
the most important part for our study are papers devoted to Gaussian beam propagation through the
spiral phase plate (SPP) [22–28]. SPP is now one of the most common ways of introducing optical
vortex into the laser beam. In more advanced approaches the propagation of vortex beam with
broken symmetry or through the system with broken symmetry (like, for example, diffraction by
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half-plane [29,30] or a phase step [31,32]) was studied. Most of these asymmetrical cases were studied
combining numerical and/or strongly approximated analytical method, especially in case of higher
order vortices [33–41]. Another highly asymmetrical problem is a vortex beam propagation through
the turbid media (e.g., atmosphere) [42–44] or vortex generation with polarization optics such as
q-plates [45].

In the paper [34] the analysis of the Gaussian beam propagation through the off-axis SPP in
Fraunhofer approximation is studied. Authors have focused their attention on the vortex point
displacement measured by inspecting the asymmetry in intensity distribution at the far field. In the
present paper we analyze asymmetrical optical system with Fresnel diffraction theory, which is
more general than Fraunhofer one. The analysis of the off-axis high-order vortices is a difficult task.
The integrals become highly complicated and some typical tricks often used in the calculations cannot
be applied. The good example is stationary phase method [46], which cannot be used since the
phase changes very fast in the vicinity of the vortex point. That is the reason why there are only few
publications regarding the exact solutions of asymmetric higher order vortex propagation. In paper [47]
the elliptic vortex beam propagation is studied. The paper [48] describes the generation of the higher
order vortex beam by discretizing spiral phase plate. In paper [49] the generation of vortex beam
through fractional spiral phase plate is studied. In papers [50,51] the propagation through off-axis
hologram generating the optical vortices is analyzed, also including the effects of misalignment.

In papers [52,53] we have provided a solution for asymmetrical vortex propagation in optical
vortex scanning microscope (OVSM) presented schematically in Figure 1. In this paper we propose
more general solution in terms of Kummer confluent hypergeometric function which can be used
for a system of arbitrary number of lenses. This function has been already used for defining the new
beam family produced by the four-component system (of circular symmetry)–logarithmic axicon,
SPP, amplitude power function and Gaussian function [54]. Furthermore, the asymmetrical Gaussian
vortex beam generated by the off-axis SPP or fork-like hologram has been studied in paper [55] but
in a different way–no propagation through the classical optical system was included. The context
of photon entanglement via angular momentum [56,57] mentioned in the paper [55] shows that the
analysis of the off-axis Gaussian vortices is important to this very hot topics in modern physics.

Figure 1. The scheme of optical vortex scanning microscope (OVSM). In the inset the registered
three vortex trajectories are shown. The vortex trajectories are subsequent positions of vortex
point (vortex point is a point where the phase is singular) at sample plane while moving the SPP
perpendicularly to the optical beam. The three trajectories were measured at three slightly different
positions of focusing objective. This objective was moved toward the sample.
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In this paper the optical system shown schematically in Figure 2 is studied. The system represents
the object arm of the OVSM shown in Figure 1 (in experiment, the reference arm is necessary for
reconstructing both amplitude and phase of the object beam. Obviously, in analytical and numerical
calculations we do not need it). The system is divided into blocks. Each block consists of one or
more elements and is represented by its transmittance function (in case of single element) or the
product of the transmittance functions (when there are two or more elements in the given block).
In our first approach [52] the OVSM was reduced to a single block consisting of three elements,
i.e., incident Gaussian beam, SPP and focusing lens considered as a single thin element. The image
was calculated at the sample plane (noted as sample in Figure 1). It should be noticed that the SPP
can be moved perpendicularly to the optical axis, which breaks the system symmetry. As a result,
the vortex point moves inside the focused beam, but the range of this movement is highly reduced
due to focusing lens. The inset in Figure 1 shows the exemplary vortex trajectories as registered in our
experimental system. In this way the sample can be scanned with the vortex point (i.e., point where
the phase is singular). This technique is named the Internal Scanning Method (ISM) [37,39,52,53,58,59].
In the paper [53] the system built of three blocks was analyzed. The first block consisted of incident
Gaussian beam, SPP and focusing lens, the second was just the sample plane, and the third contained
a single imaging lens. Here, we extend the analysis to the fully expanded system shown in Figure 2b.

Figure 2. Two versions of the OVSM scheme; (a) the SPP is separated from the focusing lens; (b) the
SPP and focusing objective work together as a single thin element. In both cases the imaging objective
and the ocular form the image of the sample plane on CCD camera. Units: [mm].

Our analysis was performed within the frame of scalar diffraction theory in Fresnel
approximation [60]. The Fresnel diffraction integral for the first block shown in Figure 2b has a form

u(x1, y1) =
−i
λz1

∫∫
R2

Tν(x, y) uG(x− xc, y) Tf (x− xc, y)

× e
ik

2z1
(x2

1+y2
1) e

ik
2z1

[(x−xc)2+y2] e−
ik
z1
[(x−xc)x1+yy1]dxdy

(1)
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where k is a wave number, λ is a wavelength, Tv is a transmittance function of the SPP, uG is an incident
Gaussian beam, Tf is a transmittance function of the focusing lens.

Tν = eimφ (2a)

uG = e
−
(

1
w2(z)+

ik
2R(z)

)
[(x−xc)2+y2]

(2b)

Tf = e−
ik

2 f1
[(x−xc)2+y2]

(2c)

w2(z) = w2
0

1 +

(
λz

πw2
0

)2
 (2d)

R(z) = z

1 +

(
πw2

0
λz

)2
 (2e)

m is a topological charge of the optical vortex; it is an integer–positive or negative, w0 is a beam waist
(of the Gaussian beam), f1 is a focal length of the focusing lens.

Instead of moving the SPP off the optical axis by the distance xc we moved the rest of the system
(including the screen) by the same xc, which simplified further calculations. As was shown in [52] the
integral Equation (1) had a solution

u1(x1, y1) = Ξ1K(A(1), B(1)
x , B(1)

y , C(1)) (3)

where

Ξ1 =
eikz1

iλz1
eiknd1U0

w0

w(z)
ei[arctan( z

zR
)−kz+ωt] (4a)

A(1) = α + iβ (4b)

B(1)
x = −2xc(α + iβ)− ikx1

z1
(4c)

B(1)
y = − iky1

z1
(4d)

C(1) = x2
c (α + iβ) +

ik
2z1

(x2
1 + y2

1) +
ikxcx1

z1
(4e)

The parameters α and β are

α = − 1
w2(z)

(4f)

β = − k
2

(
1

R(z)
+

1
f1
− 1

z1

)
(4g)

The main part of this solution is function Kappa K.

K(A, Bx, By, C) = −
√

π · eC

2A

×


√

π ∑∞
n=0

1
n!(2
√
−A)2n+1 ∑2n+1

j=0 (2n+1
j )Bj

xB2n+1−j
y ∑m

l=0 (
m
l )i

l Jm+j−l,2n+1−j+l ; for m odd

∑∞
n=0

2n+1

(2n+1)!!(2
√
−A)2n+2 ∑2n+2

j=0 (2n+2
j )Bj

xB2n+2−j
y ∑m

l=0 (
m
l )i

l Jm+j−l,2n+2−j+l ; for m even

(5a)

where

Jδ,η =
∫ 2π

0
(cos ϕ)δ(sin ϕ)ηdϕ (5b)
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We have obtained an interesting result showing that a system having more blocks (with lenses
or just planes) can still be described by Kappa function, but with different coefficients Ξq, A(q), B(q)

x ,

B(q)
y , C(q). The number of blocks in the system is indicated by superscript (q) as it has been already

done in Equations (3) and (4). In paper [53] we calculated explicitly the coefficients Ξq, A(q), B(q)
x , B(q)

y ,
C(q) up to q = 3, and postulated that it can be done for any (q). In this paper we derived a recurrence
formula for the coefficient for any number of blocks (any (q)), which is actually a formal proof of our
previous claim.

The function Kappa was denoted previously as G [52,53]. Since that time we have improved and
generalized our solution. Now the function G is rewritten in more useful form. In order not to confuse
both versions, we denote the present version by capital Kappa K.

As it was shown in papers [52,53], close to the vortex axis the n = 0 term is sufficient to evaluate
the vortex beam. Figure 3 illustrates this fact, but now it is plotted for the four-block system shown in
Figure 2b. This is a useful result for us, as we analyze the OVSM images at the central part of the beam,
where the n = 0 approximation well represents phase and amplitude distribution of our beam.

Figure 3. The amplitude distribution of the off-axis vortex beam (m = 1, xc = 0.02 mm) for the system
shown in Figure 2b in case of n = 0, n = 6 and n = 20.

Our goal was to represent the entire object arm of the OVSM as presented in Figure 2a. Now
the SPP can be separated from the focusing lens which means that focal length for the first block
(i.e., SPP block) is f1 = ∞. Next there is a focusing lens with focal length f2 = 15 mm followed by the
sample plane for which the focal length is also infinite f3 = ∞. The third block is the imaging lens with
focal length f4 = 9 mm and the last one is the ocular lens with focal length f5 = 31 mm, after which we
have observation plane (screen). Unfortunately, for the reasons given later in the manuscript the full
system could not be analyzed with Kappa function. The SPP cannot be separated from the focusing
lens. Therefore, we have to switch to the system shown in Figure 2b. In this paper we will analyze
this system showing the efficiency of our formulas. As can be noticed from Figure 2b, in our model
a sample plane is treated as a separate block. In this way we are able to enhance our calculations in
order to analyze the influence of a simple phase object on the vortex beam. Thus, the system shown in
Figure 2b prepares us for this next step.

Certainly, all the blocks may have different focal lengths and positions than the ones shown
in Figure 2 and the Kappa function will still work. However, the important thing is that the first
element must be the block containing the SPP, focusing lens and Gaussian beam. Thus, we can
model a wide range of classical optical systems with the incident vortex beam generated by the SPP.
The analytical modelling means that the analyzed optical system is highly simplified, but on the other
hand supports a general insight which is still valuable in solving practical problems. Our work can
be also considered as solving the diffraction problem in the paraxial approximation for the specific
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optical system. However, the expression “analytical modelling” is more preferable since it emphasizes
our focus on practical aspects, i.e., development of the OVSM system for which our former results
have been already used [58,59].

We realize that after this long introduction the Reader may be lost concerning the question of
what is new in the presented paper. To avoid confusion the new aspects of this paper are summarized
in brief. At first, we extend our previous formulas from three to any number of elements in the optical
system. Then, the formulas are written in closed form using the special functions. This step speeds
up all calculations and allows proving the hypothesis that the higher order vortices propagate in a
stable way in our system, which is a surprising result. We also study in detail the role of coefficient A
which plays a role similar to the Gouy phase in case of Gaussian beam. Finally, we show that vortex
trajectory behaves like a rigid body while being rotated due to observation plane shift.

The present paper is organized as follows. In Section 2 the extension of our formulas as well
as their closed form for the system consisting of any number of lenses is discussed. In Section 3 we
discussed the role of coefficient A. In Section 4 we show the efficiency of our formulas by discussing
the effect of vortex trajectory rotation. Section 5 and Section 6 discuss and conclude the paper.

2. Analytical Part

In this part our previous results will be extended. In order to build more relevant model of the
OVSM we have derived the explicit formula for coefficients Ξq, A(q), B(q)

x , B(q)
y , C(q) up to q = 4, just to

analyze the OVSM system shown in Figure 2b.

Ξ4 =
eik(z1+z2+z3+z4)

λ4z1z2z3z4
eikn(d1+d2+d3+d4)U0

w0

w(z)
ei[arctan( z

zR
)−kz+ωt] (6a)

A(4) = α + iβ− ik
2z2

1γ2
− ik

2z2
1z2

2γ2
2γ3
− ik

2z2
1z2

2z2
3γ2

2γ2
3γ4

(6b)

B(4)
x = −2xc(α + iβ) +

ikxc

z2
1γ2

+
ikxc

z2
1z2

2γ2
2γ3
− ik

z1z2z3γ2γ3γ4

(
x4

z4
− xc

z1z2z3γ2γ3

)
(6c)

B(4)
y = − iky4

z1z2z3z4γ2γ3γ4
(6d)

C(4) = x2
c (α + iβ) +

ik
2z4

(x2
4 + y2

4)−
ikx2

c

2z2
1γ2
− ikx2

c

2z2
1z2

2γ2
2γ3

− ik
2γ4

[(
x4

z4
− xc

z1z2z3γ2γ3

)2
+

(
y4

z4

)2
] (6e)

γ4 =
1
z3

+
1
z4
− 1

f4
− 1

z2
3γ3

(6f)

γ3 =
1
z2

+
1
z3
− 1

f3
− 1

z2
2γ2

(6g)

γ2 =
1
z1

+
1
z2
− 1

f2
(6h)

where the meaning of z4 and f4 can be read from Figure 2), d1,. . . , d4 are lens thicknesses. In case of a
simple plane we put d = 0.
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Following this path a general iterative formulas for coefficient of any (q) index can be derived.
The formulas have a form

uj(xj, yj) = ξ j

∫∫
R2

uj−1(xj−1, yj−1) e
ik

2zj
(x2

j +y2
j ) e

ik
2zj

(x2
j−1+y2

j−1) e
− ik

2 f j
(x2

j−1+y2
j−1)

× e
− ik

zj
(xj−1xj+yj−1yj)dxj−1dyj−1

(7a)

uj(xj, yj) = Ξj

(
2iπ

k

)j−1 j

∏
s=1

1
γs
· K(A(j), B(j)

x , B(j)
y , C(j)) (7b)

A(j) = α + iβ− ik
2

j−1

∑
p=1

p

∏
s=1

1
z2

s γ2
s γj

(8a)

B(j)
x = −2xc(α + iβ) + ikxc

j−1

∑
p=1

p

∏
s=1

1
z2

s γ2
s γj
−

ikxj

∏
j
s=1 zsγs

(8b)

B(j)
y = −

ikyj

∏
j
s=1 zsγs

(8c)

C(j) = x2
c (α + iβ) +

ik
2zj

(x2
j + y2

j )−
ikx2

c
2

j−1

∑
p=1

p

∏
s=1

1
z2

s γ2
s γj

+
ikxcxj

2 ∏
j
s=1 zsγs

− ik
2z2

j γj
(x2

j + y2
j ) (8d)

γj =
1

zj−1
+

1
zj
− 1

f j
− 1

z2
j−1γj−1

(8e)

Ξj =
eik ∑

j
s=1 zs

ijλj ∏
j
s=1 zs

eikn ∑
j
s=1 ds U0

w0

w(z)
ei[arctan( z

zR
)−kz+ωt] (8f)

γ0 = γ1 = 1, j ∈ N+ (8g)

The derivation of the above is presented in Appendix A.
The sums in Kappa function are convergent provided that a series of conditions are hold

1
zj

>
1
f j
+

1
γj−1

− 1
zj−1

; j ≤ q (9)

Very similar formulas can be derived for negative vortex charge. In that case we can use the same
Kappa function but with some multiplying expression and By coefficient multiplied by −1.

uj−(xj, yj) = −e−i2πm Ξj K(A(j), B(j)
x ,−B(j)

y , C(j)) (10)

The derivation of this formula is presented in Appendix B.
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We have also derived a closed formula, but with a special function, which is given below.
The derivation is discussed in the Appendix C.

uq(xq, yq) = −Ξq
π
√

πeC(q)

2m
√
−A(q)

1(
m−1

2

)
!

 B(q)
x

2
√
−A(q)

+ i
B(q)

y

2
√
−A(q)

m

×1 F1

1 +
m
2

, 1 + m,

(
B(q)

x

2
√
−A(q)

)2

+

 B(q)
y

2
√
−A(q)

2
 ; for m odd

(11a)

uq(xq, yq) = Ξq
πeC(q)

2
m
2
√
−A(q)

1
(m− 1)!!

 B(q)
x

2
√
−A(q)

+ i
B(q)

y

2
√
−A(q)

m

×1 F1

1 +
m
2

, 1 + m,

(
B(q)

x

2
√
−A(q)

)2

+

 B(q)
y

2
√
−A(q)

2
 ; for m even

(11b)

where 1F1 is the Kummer confluent hypergeometric function [61]. The calculations using closed
formula are much faster, but as we will show both formulas Equations (3) and (11) are helpful in
understanding the vortex beam propagation through our system.

The sum of two B coefficients in Equation (8b,c) is a complex expression which can be easily
decomposed into real and imaginary part. From Equations (8b,c) we got, for the real part,

− 2xcα +
kyq

ξ
(q)
a

⇒ yq = 2xc
α

k
ξ
(q)
a (12)

For the, imaginary part, we got

xc (−2β + kξ
(q)
b ) + kξ

(q)
c xq ⇒ xq = −xc

(−2β + kξ
(q)
b )

kξ
(q)
c

(13)

The form of coefficients ξ
(q)
a , ξ

(q)
b , ξ

(q)
c depends on the value of q.

ξ
(q)
a = z1z2z3 . . . zqγ2 . . . γq (14a)

ξ
(1)
b = 0, otherwise ξ

(q)
b =

1
z2

1γ2
+

1
z2

1z2
2γ2

2γ3
+ · · ·+ 1

z2
1 . . . z2

q−1γ2
2 . . . γ2

q−1γq
(14b)

ξ
(q)
c =

1
z1 . . . zqγ2 . . . γq

(14c)

For example for q = 4 we get

ξ
(4)
a = z1z2z3z4γ2γ3γ4 (15a)

ξ
(4)
b =

1
z2

1γ2
+

1
z2

1z2
2γ2

2γ3
+

1
z2

1z2
2z2

3γ2
2γ2

3γ4
(15b)

ξ
(4)
c =

1
z1z2z3z4γ2γ3γ4

(15c)

Formulas in Equations (12) and (13) show that y-coordinate is a member of imaginary part and
x-coordinate is a member of real part of the Bx + iBy expression. This leads us to simple formulas for
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vortex point trajectory. The vortex point (zero amplitude point) is at the place where both imaginary
and real part are equal to zero [1–3].

− 2xcα +
kyq

ξ
(q)
a

= 0⇒ yq = 2xc
α

k
ξ
(q)
a (16a)

xc (−2β + kξ
(q)
b ) + kξ

(q)
c xq = 0⇒ xq = −xc

(−2β + kξ
(q)
b )

kξ
(q)
c

(16b)

From the above formula we may conclude that the vortex trajectory as a function of xc, for the
given z is a straight line. We may also find a plane where the vortex trajectory is perpendicular to the
SPP shift. Using Equation (16b) the condition is

xq = 0⇒ −2β + kξ
(q)
b = 0 (17)

In the paper [52] we have formulated the hypothesis that the higher order vortices (m > 1) do
not split even when xc 6= 0. The higher order vortices are classified as structurally unstable [62],
i.e., they are supposed to split into single order vortices even under small phase or amplitude
perturbation [63–65]. Nevertheless, the formulas in Equation (11) proof the stability hypothesis
in an explicit form. The factors in front of the Kummer confluent hypergeometric function are just a
vortex term.  B(q)

x

2
√
−A(q)

+ i
B(q)

y

2
√
−A(q)

m

(18)

The place where the real and imaginary part of B(q)
x + iB(q)

y is zero indicates the position of the
vortex point of the m-th order. Since the whole term is at power m, the m-order vortex does not split
for any xc. The result is very interesting, which is illustrated in Figure 4.

Figure 4. (a) The phase distribution of the optical vortex beam (m = 5) for xc = 0 as seen just behind
the SPP. Part (d) shows the sum of phasors calculated at point P (at image plane) on the optical axis,
while going along the colored circle. Due to symmetry and 2π phase change along the green part of
the circle the phasors (from the green part) form a full circle at sum up to zero. Going along the parts
marked with different colors will produce five such circles of phasors, at the same place, which again
sum to zero; (b) when xc 6= 0, the symmetry breaks. In a typical case each part of the circle noted
by different color will form zero at different point at the image plane, splitting the m-th order vortex
into a set of single vortices. However, our case is untypical and the higher order vortex does not
split; (c) when performing more complex operation as described below, we will produce even less
symmetrical phase distribution, but the higher order vortex is still stable.
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The situation would not be strange if the higher order optical vortex were stable for a given
non-zero value xc. However, changing the xc continuously breaks the circular symmetry of the phase
distribution at the SPP plane with no harm for the higher order OV stability. We could also start our
analysis at the sample plane, where both phase and amplitude distribution symmetry are broken
(Figure 5). Nevertheless, the propagation of this input beam through any number of lenses will
not split the higher order vortices. In paper [55] similar results were obtained for a simpler system,
i.e., Gaussian beam illuminating the off-axis SPP.

Figure 5. The vortex beam of m = 3 focused by the lens f1 = 15 mm (according to Figure 2a);
(a) phase and (b) amplitude distribution, calculated at z = 14.88 mm. Both distributions are evidently
asymmetrical (xc = 0.15 mm). Nevertheless, they do not split while propagating through the rest of
the OVSM system.

We can go even further. Adding the term inside the bracket in Equation (18) and multiplying Bx

or By coefficients by any number, but in such a way that the coefficients by x(q) remain real (or become
imaginary) and coefficient by y(q) remains imaginary (or becomes real) may change the position of the
vortex point and its phase distribution (Figure 5c) but still the higher order vortices will be stable while
propagating through our system. However, changing other parameters, like, for example, binomial
factor by coefficients B in Equation (5) splits the higher order vortices immediately (Figure 6).

Figure 6. The phase image of focused vortex beam (parameters as in Figure 2b), m = 3; (a) calculated
from Kappa function with n = 21. The higher order vortex is still there; (b) calculated from Kappa
function with n = 21, but the number 0.05 was added to binomial factor in the second sum for n = 1.
The vortex was split into three single vortices.

To summarize this part: We have shown that the higher order vortices when propagating through
the set of classical lenses described in paraxial approximation will not split regardless of asymmetry
introduced by the off axis position of the SPP. Moreover, we may perform some more symmetry
breaking operation (as shown in Figure 4c) in Equation (8c,d), provided that the coefficients by x
remain real (or imaginary) and by y imaginary (or real). So, the conclusion is that the very basic optical
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system does not split the higher order vortices even if the input phase and amplitude distribution is
highly non-symmetrical. In many cases, such an unusual stability results from deeper physical rules.
There is a question if this is also a case here. So far we have no answer to this question. What we can
learn now is that classical optical system is somewhat special, at least when being described in paraxial
approximation and illuminated by Gaussian beam with the vortex beam introduced by SPP. In the
next section the special role of the coefficient A will be studied.

3. Coefficient A

In our further discussion we will refer to two specific examples of the OVSM models. One with
the separated SPP plate and focusing lens (Figure 2a) and the second one with SPP plate and focusing
lens working as single thin element (Figure 2b).

The coefficient A(q) has relatively simple form. It depends neither on the x and y coordinates
nor on SPP shift xc. However, it plays a crucial role in vortex beam phase evolution. Unfortunately it
cannot be totally taken outside the first sum in Kappa function. On the contrary, in Equation (4) it can
be entirely assimilated inside the first sum, but in the present form some mathematical aspects can be
noticed in a more clear way.

The first important point is that the coefficient A is responsible for breaking the Kappa
function convergence. In the OVSM this happens when the SPP is separated from the focusing
lens, and coefficient A has a singular point (Figure 7a,b). At first we will analyze the system with two
blocks, the SPP and the focusing lens (sample plane is an observation plane in this case), so we need
the second order coefficient A(2). The coefficient A(q) contributes to the Kappa function as 1/A(q),
so the term in front of the first sum takes form (for q = 2).

1
A(2)

=

(
α + iβ− ik

2z2
1γ2

)−1

(19)

There exists a range of such positive z2 for which the conditions in Equation (9) fail. In particular
there is a z2 value that the γ2 equals zero and the whole term in Equation (19) becomes zero. Thus,
the whole Kappa function is equal to zero, which shows that it does not reflect the true behavior of the
focused vortex beam. Moreover, the Kappa function encounters a π-jump in this point. This z2 value
can be computed from the formula

z2 =
z1 f2

f2 − z1
(20)

Figure 7a,b illustrates the problem. As we can see for the z2 = 15.58 mm (calculated from
Equation (20)) the 1/A(2) term equals zero.

When the SPP and focusing lens are joined, we only need a coefficient A(1) which has a simple
form, free of our problem (at least for the OVSM optical system). This is illustrated in Figure 7c,d.
The higher order terms A(q) (q > 2) behave in a similar way. When the SPP and focusing lens work
as a single element, they meet the conditions in Equation (9), for a reasonable OVSM configuration.
When q > 2 the set of conditions in Equation (9) is more complicated. The detailed study of this
problem would explode the volume of this paper, so we will not follow this path. Importantly, when
the SPP and focusing lens work separately, the condition in Equation (9) fails for any q > 1 in case of
reasonable OVSM configurations. From a practical point of view, it is enough to check if the A(q) factor
behaves like in Figure 7c,d, which is the case in the system shown in Figure 2b. It is worth noticing
here that when using the ISM, all z(q) parameters are fixed, so the test for conditions in Equation (9)
is not difficult. When we move any element of our system along the optical axis the conditions in
Equation (9) have to be checked for the whole range of z(q) coordinates.

For the reason explained above we cannot use our formulas to the system shown in Figure 2a.
Instead, we have to limit our study to the system shown in Figure 2b, when both SPP and focusing
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lens work together. Certainly for the forbidden area the numerical modeling of our optical system is
still possible and effective.

We can also find A(q) coefficient inside the first sum in Kappa function. Now, we multiply this
term by 1/A, located in front of the first sum, so we have

Figure 7. The phase (a) and amplitude (b) distribution of the 1/A(2) in case of system with the
separated SPP and focusing lens as a function of focusing lens position in respect to the sample plane.
In (c,d) the phase and amplitude distribution of the 1/A(1) term is shown in case of SPP and focusing
lens working as a single element (with no separation).

1((
−A(q)

) 3
2

)2n+1 ; for q odd (21a)

1((
−A(q)

) 3
2

)2n+2 ; for q even (21b)

The first term (for n = 0) has the largest influence on the phase and amplitude of the Kappa
function The next terms rapidly drop in their values. The plot in Figure 8 is done for q = 4, but it
represents the typical curve for expressions in Equation (21a,b) for any q, provided that we avoid
the forbidden area defined by conditions (9). As we can see the part for n = 0 strongly dominates
over the part for n = 1. The next terms (for n = 2, 3, ...) are invisible in the figure scale. This
domination is particularly strong at the beam center, when x(q) and y(q) coordinates are small (Figure 3).
When the x(q) and y(q) become larger, the coefficient grows rapidly with increasing n and things become
more complicated.

Figure 7c suggests that the A(q) coefficient may play a primary role in phase evolution after
the SPP, i.e., when changing the position of any element behind the SPP or SPP and focusing lens
themselves. This is illustrated in Figure 9a. If A(1) = 1 and xc = 0, there is no phase rotation when
changing the position of the focusing lens along the z-axis. We can conclude that in the OVSM system
the coefficient A(q) plays, in some respect, the similar role as the Gouy phase in the Gaussian beam.
When the xc 6= 0 things become more complicated. The off-axis position of the SPP plate introduces a
phase value dependence on xc being inside the coefficient Bx (Figure 9b).
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Figure 8. The absolute value of the Equation (21b) containing A(4) coefficient for two values of n = 0
and n = 1, in case of even topological charge. For growing n the absolute value drops rapidly. So for
n = 1 the maximum value is 1.2× 10−4 and the plot is hardly visible in this figure. As a result, the
n = 0 coefficient play a major role in the Kappa function. For n = 2 the maximum value is 1.3× 10−6.
For any next n the maximum value decreases by two orders.

Figure 9. (a) The phase rotation in case of A(1) in full form and when A(1) = 1, but for xc = 0;
(b) The same, but xc 6= 0.

The other coefficients (but Bx, By) play minor role. The coefficient Bx and By are responsible for
the vortex trajectory evolution as a function of SPP shift xc. This dependence is linear, but as has been
already shown, the direction of vortex trajectory becomes perpendicular to SPP trajectory when the
condition in Equation (17) holds. In the previous papers [52,53] this fact was proved for the small xc.
Having the formulas in Equation (11) we can conclude that they hold for any xc. In paper [59] precise
experiments were reported which confirm the theoretical results.

The coefficient Ξq collects all constant factors. It must be observed when we analyze the rotation
of the beam phase while moving the first block in the optical system along the z-axis. When the first
element moves away or toward the laser source, the phase of the incident Gaussian beam changes.
This incident phase is a part of coefficient Ξq.

The coefficient C(q) multiplies the first sum in function Kappa. Due to the (x2
q + y2

q) factor,
the C coefficient is responsible for the equiphase lines curvature (Figure 10). When C(q) = 1 the
equiphase lines are straight (for xc = 0). Since the C(q) coefficient contributes to the Kappa function as
exp(x2

c α + IΛ), where Λ is an imaginary part of the C coefficient, and typically α� Λ its contribution
to the amplitude is small, especially for small xc.
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Figure 10. The exemplary phase distribution of the vortex beam in case of (a) C(q) = 1 and (b) full
C(q) coefficient.

4. The Ice-Skater Effect

To see the effectiveness of our formulas we study the correlation between the focused beam
radius and vortex trajectory rotation (see the inset in Figure 1). The hypothesis was that the vortex
trajectory behaves like a rigid body. Consequently we assumed that in the closed system of a focused
vortex beam the angular momentum L is conserved, thus L = Iω = const. Regardless of the assumed
model (point mass, flat disk, cylinder, etc.), the moment of inertia I is always proportional to the
squared distance r from the rotation axis, i.e., I ≈ r2. Therefore, the rotational speed ω of the vortex
trajectory shall satisfy ω ≈ 1/r2. In our case, ω is the first derivative of the trajectory inclination
angle with respect to z (ω = dθ/dz) and r is the radius of the vortex bright ring, i.e., the distance
between points of zero and maximal intensity (e.g., r = 2.1 mm for the vortex analyzed in Figure 3).
Both the radius of the converging vortex beam and the rotational speed of the trajectory depend on the
axial distance z. Obviously, as z approaches the focal point, the vortex radius decreases whereas the
rotations speed up. As the beam focusses, the radius reaches its minimum and the speed is maximal.
This is a direct analogy to the ice skater pulling their arms in for a faster spin. Such a rigid body
mechanics approach to the vortex beam has been already studied by Bekshaev et al. [11], for free
propagating Gaussian beam with optical vortex. The authors concluded that it is related to the Gouy
phase dynamics. We have stated that the coefficient A plays the role of the Gouy phase in our case.
Indeed, from Equations (12) and (13) we may calculate the angle of the trajectory inclination as

tan
(

φ(q)

)
=

y(q)
x(q)

= −2
α

(−2β + kξ
(q)
b )

(22)

For q = 1 we get

tan
(

φ(q)

)
=

α

β
(23)

Calculating the angle of the equiphase line for the A coefficient we get exactly the same formula.
Here we present the results calculated at the exit of the setup (camera plane) shown in Figure 2b.

The default z-position is where the the focal point of the beam lies very close to the critical plane
(plane where the trajectory is perpendicular to the SPP shift xc). Defocusing is performed by moving
the focusing objective along the optical axis without changing the position of other elements. Thus,
the plane at which the vortex beam is imaged is at different distances from the focus resulting in
different vortex radii, as shown in Figure 11a. These calculations require running the Kappa function
once for each point on the graph. On the other hand, computing the vortex trajectory rotation speed ω

is much easier. In paper [39] the formula for ω was given as:

ω =
2kw2(z)

4z2
0 + k2w4(z)

(
1− z0

(
1

R(z) +
1
f

))2 (24)
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In fact the formula in Equation (24) was derived for the vortex trajectory rotation at the sample
plane for the approximated linear case (n = 0). However, the new formulas in Equation (11) allow
to extent their applicability for general case. The classical imaging preserves the vortex trajectory
orientation as was shown experimentally in [53,58]. So we expect that the angle rotation at the image
plane is the same as in the sample plane.

The obtained relation between the rotational speed and the defocusing is presented in Figure 11b,
red. Applying the above rigid-body reasoning, ω was compared with the inverse square of the
vortex radius (Figure 11b, black). There is a clear agreement between the two curves supporting the
hypothesis of rigid-like behavior of vortex trajectory.

Figure 11. (a) The radius R of the focused optical vortex (m = 1) calculated using Kappa function for
the setup in Figure 2b. The radius is minimal at the focal point (z = 14.86 mm); (b) The rotational
speed of the vortex trajectory (red) calculated using Equation (24) compared with the inverse square
of R (black). The height of the curves was normalized to 1. Parameters used in both calculations:
w0 = 0.4 mm, zG = 600 mm, λ = 630 nm.

5. Discussion

There is a growing interest in the exact theory describing the propagation of the optical
vortex beams in the optical system, in particular in a system with broken symmetry. The reasons
are both understanding the physics of electromagnetic waves (also in quantum picture) and
practical applications. Some examples concerning both science or applications can be found
in [11,14,24,33,34,55,57,59,63,65–67], but the list of papers is much longer. In this paper we have
enhanced the results presented in our former works [52,53]. The Kappa function describing our system
can be applied for any numbers of lenses. We have derived the coefficient for Kappa function for any
numbers of elements. We have also enhanced the formulas for the vortex trajectory. Moreover, we have
found a closed form of our solution in Equation (11) using the special function. This new form proved
that in classical optical system the higher order vortices do not split even if the circular symmetry is
broken. This is true under the conditions of paraxial approximation. This result is surprising and it is
hard to check it experimentally. We cannot use an optical system in paraxial approximation. Moreover,
any real system introduces errors which break the beam symmetry in a way different than allowed by
our theory. This immediately splits the higher order vortices forming a constellation of the first order
ones. Nevertheless, the experiment reported in [52] suggested the mass center of such a constellation
moves as ideal higher order vortex. There is also an open question: what is the reason for such a
special behavior?

The study on A(q) coefficient have shown that it is responsible for breaking the conditions in
Equation (9). As a result, we cannot analyze the OVSM system with separated SPP plate and focusing
lens. The A(q) coefficient has an important role in the rotation of vortex beam phase, which is similar
to the role of the Gouy phase in Gaussian beam. The second important factor is the SPP shift xc.
When we are close to vortex core we can limit the sum range (in Kappa function) to n = 0, which is
also the result of the A(q) coefficient specific behavior (Figure 8).
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We have shown that the vortex trajectory behaves like a rigid body. The range of the trajectory
shrinks when the beam converge, so its rotation speed increases according to the rules describing
the rigid body behavior. The vortex trajectory rotation is strictly related to the phase rotation of the
A(q) coefficient. In [11] the same relation was shown for free propagation of axial Gaussian vortex
beam and the Gouy phase. It is worth noticing here that our theoretical results concerning the vortex
trajectory dynamics as well as the shape of the beam at the observation plane were in agreement with
numerical simulations performed with the software dedicated for solving diffraction problems.

The question is if we can enhance our results for more general optical systems like, for example, the
system generating Laguerre–Gaussian beam with the SPP of the special profile [28]. There are various
types of vortex beams which are studied for their practical potential in optical metrology, manipulation
and telecommunication. Unfortunately, we have not found any general way for transforming our
results to a wider class of possible vortex beams. So far any system variation generates difficult
diffraction problems which must be solved separately.

6. Conclusions

In this work the problem of the optical vortex beam propagation through the system of lenses
was solved analytically and core derivations were presented. The solution can be expressed either
as a series or in a closed form using Kummer confluent hypergeometric function. The formulas are
applicable to any integer vortex charge and any number of lenses in the optical setup. Here, the setup
of interest was the optical vortex scanning microscope. Moreover, the expressions hold for the off-axis
spiral phase plate (used for vortex generation) which results in broken circular symmetry of the
intensity and phase distribution. Analytical results supported by numerical calculations led to three
key findings. First, in paraxial approximation in both symmetric and asymmetric case the higher order
vortices do not split as they immediately do in real (non-ideal) systems. Second, one of the four main
coefficients in the derived solution determines the phase rotations of the vortex beam and thus acts
analogously to the Gouy phase in the standard Gaussian beam. Lastly, the rotational speed of vortex
trajectory is inversely proportional to the vortex radius and was thus proved to behave like a rigid
body. The bottom line is that the obtained analytical formulas are a ready-made tool for extensive
research in vortex beam propagation dynamics.

Appendix A

In this section we will prove a recursive formulas in Equation (8) by mathematical induction.
The first step is verification for q = 2, which has been already done in the previous paper [58].

u2(x2, y2) = Ξ2
2iπ
kγ2

K(A(2), B(2)
x , B(2)

y , C(2)) (A1)

Next we assume that the formula is correct

uj(xj, yj) = Ξj

(
2iπ

k

)j−1 j

∏
s=1

1
γs

K(A(j), B(j)
x , B(j)

y , C(j)) (A2)

Finally, we have to prove the implication

uj(xj, yj)⇒ uj+1(xj+1, yj+1) (A3)

We can write a right side of the implication as

uj+1(xj+1, yj+1) = ξ j+1

∫∫
R2

uj(xj, yj) e
ik

2zj+1
(x2

j+1+y2
j+1) e

ik
2zj+1

(x2
j +y2

j ) e
− ik

2 f j+1
(x2

j +y2
j )

× e
− ik

zj+1
(xj+1xj+yj+1yj)dxjdyj

(A4)
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After plugging the definition of uj into the integral to obtain

uj+1(xj+1, yj+1) = ξ j+1

∫∫
R2

Ξj

(
2iπ

k

)j+1 j

∏
s=1

1
γs

[ ∫∫
R2

eimArg(x0+iy0)

×e
−
(

1
w2(z)

+ ik
2R(z)

)
[(x0−xc)2+y2

0] e−
ik

2 f1
[(x0−xc)2+y2

0] e
ik

2z1
[(x0−xc)2+y2

0]

×e
− ik

2γ2

[(
x0−xc

z1

)2
+
(

y0
z1

)2
]

e
− ik

2γ3

[(
x0−xc
z1z2γ2

)2
+
(

y0
z1z2γ2

)2
]

e
− ik

2γ4

[(
x0−xc

z1z2z3γ2γ3
+

x4
z4

)2
+
(

y0
z1z2z3γ2γ3

+
y4
z4

)2
]

× . . . e
− ik

2γj−1

( x0−xc

∏
j−2
s=1 zsγs

)2

+

(
y0

∏
j−2
s=1 zsγs

)2


e
− ik

2γj

( x0−xc

∏
j−1
s=1 zsγs

+
xj
zj

)2

+

(
y0

∏
j−1
s=1 zsγs

+
yj
zj

)2


dx0dy0

]

×e
ik

2zj+1
(x2

j+1+y2
j+1) e

ik
2zj+1

(x2
j +y2

j ) e
− ik

2 f j+1
(x2

j +y2
j ) e
− ik

zj+1
(xj+1xj+yj+1yj)dxjdyj

(A5)

By interchanging the order of integration we can write

uj+1(xj+1, yj+1) = Ξj+1

(
2iπ

k

)j+1 j

∏
s=1

1
γs

∫∫
R2

eimArg(x0+iy0)

×e
−
(

1
w2(z)

+ ik
2R(z)

)
·[(x0−xc)2+y2

0] e−
ik

2 f1
[(x0−xc)2+y2

0] e
ik

2z1
[(x0−xc)2+y2

0] e
ik

2zj+1
(x2

j+1+y2
j+1)

×e
− ik

2γ2

[(
x0−xc

z1

)2
+
(

y0
z1

)2
]

e
− ik

2γ3

[(
x0−xc
z1z2γ2

)2
+
(

y0
z1z2γ2

)2
]

e
− ik

2γ4

[(
x0−xc

z1z2z3γ2γ3

)2
+
(

y0
z1z2z3γ2γ3

)2
]

× . . . e
− ik

2γj−1

( x0−xc

∏
j−2
s=1 zsγs

)2

+

(
y0

∏
j−2
s=1 zsγs

)2


e
− ik

2γj

( x0−xc

∏
j−1
s=1 zsγs

)2

+

(
y0

∏
j−1
s=1 zsγs

)2


×
[ ∫∫

R2

e
− ik

2γjzj

(
2(x0−xc)xj

∏
j−1
s=1 zsγs

+
2y0yj

∏
j−1
s=1 zsγs

)
e
− ik

2z2
j γj

(x2
j +y2

j )

×e
ik

2zj+1
(x2

j +y2
j ) e
− ik

2 f j+1
(x2

j +y2
j ) e
− ik

zj+1
(xj+1xj+yj+1yj)dxjdyj

]
dx0dy0

(A6)

The integral in the parentheses is Gaussian and thus can be computed explicitly using the formula

∫ ∞

−∞
eiσx2−iµxdx =

√
π

−iσ
e−

iµ2
4σ (A7)

Eventually, we can write

uj+1(xj+1, yj+1) = Ξj+1

(
2iπ

k

)j j+1

∏
s=1

1
γs

K(A(j+1), B(j+1)
x , B(j+1)

y , C(j+1)) (A8)

Appendix B

In this section we will prove the formula in Equation (10).
In the first step the formula for positive vortex charge can be written as

uj+(xj, yj) = ΞjK(A(j), B(j)
x , B(j)

y , C(j)) (A9)

Similarly, the formula for negative vortex charge is
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uj−(xj, yj) = Ξj

∫∫
R2

eimφ eA(j)ρ2+B(j)
x ρ cos φ+B(j)

y ρ sin φ+C(j)
ρdρdφ (A10)

Then, we substitute θ = 2π − φ for integration over θ, we have

Ξj eim2π
∫∫
R2

e−imθ eA(j)ρ2+B(j)
x ρ cos θ−B(j)

y ρ sin θ+C(j)
ρdρdθ (A11)

Finally, we can write

uj−(xj, yj) = −e−im2π Ξj K(A(j), B(j)
x ,−B(j)

y , C(j)) (A12)

Appendix C

In this section we will prove the formula in Equation (11).
Using polar coordinates in formula Equation (1) we have

u(x1, y1) =
∫ 2π

0
eimφdφ

∫ ∞

0
eAρ2+Bxρ cos φ+Byρ sin φ+C ρdρ (A13)

Integrating over the radius we have

∫ ∞

0
e−γ·ρ2−σρ ρdρ =

1
2γ

[
1−
√

π
σ

2
√

γ
e

σ2
4γ

(
1− erf

(
σ

2
√

γ

))]
(A14)

After integration we get

u(x1, y1) = −
eC

2A

∫ 2π

0

[
1−
√

π
−(Bx cos φ + By sin φ)

2
√
−A

e−
(Bx cos φ+By sin φ)2

4A

×
(

1− erf
(−(Bx cos φ + By sin φ)

2
√
−A

)) ]
eimφ dφ

(A15)

After calculating the sum we have

u(x1, y1) = −
√

πeC

2
√
−A

∞

∑
n= m−1

2

1
n!

π

22n

(
2n + 1

n + m+1
2

)

×
(

Bx

2
√
−A

+ i
By

2
√
−A

)n+ m+1
2
(

Bx

2
√
−A
− i

By

2
√
−A

)n−m−1
2

; for m odd

(A16)

u(x1, y1) =
eC

2
√
−A

∞

∑
n= m

2 −1

2n+1

(2n + 1)!!

(
2n + 2

n + 1 + m
2

)

×
(

Bx

2
√
−A

+ i
By

2
√
−A

)n+1+ m
2
(

Bx

2
√
−A
− i

By

2
√
−A

)n+1−m
2

; for m even

(A17)

Finally, we can write

u(x1, y1) = −
π
√

πeC

2m
√
−A

1(
m−1

2

)
!

(
Bx

2
√
−A

+ i
By

2
√
−A

)m

×1 F1

(
1 +

m
2

, 1 + m,
(

Bx

2
√
−A

)2
+

(
By

2
√
−A

)2
)

; for m odd

(A18)
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u(x1, y1) =
πeC

2
m
2
√
−A

1
(m− 1)!!

(
Bx

2
√
−A

+ i
By

2
√
−A

)m

×1 F1

(
1 +

m
2

, 1 + m,
(

Bx

2
√
−A

)2
+

(
By

2
√
−A

)2
)

; for m even
(A19)
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