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Abstract: Higher-order orbital angular momentum (OAM) mode guiding in a waveguide which
is suitable for on-chip integration has been investigated. Based on the relation between the
Laguerre-Gaussian mode and the Hermite-Gaussian mode, it has been shown that two degenerate
guided modes of π/2l-rotation symmetry can support the l-th order OAM mode. In order to mimic
the rotational symmetry, we have proposed the waveguide structure of a cross-shaped core and
designed a waveguide that can support OAM modes of ±1 and ±2 topological charges simultaneously
at a wavelength of 1550 nm. Purity of the OAM modes guided in the designed waveguide has
been assessed by numerically calculating their topological charges from the field distribution, which
were close to the theoretical values. We also investigated the guiding of OAM modes of ±3 and
±4 topological charges in our proposed waveguide structure, which revealed the possibility of the
separate guiding of those OAM modes with relatively lower purity.

Keywords: orbital angular momentum; higher order orbital angular momentum modes; silicon
waveguide; on-chip orbital angular momentum mode

1. Introduction

Recently, light beams that carry orbital angular momentum (OAM) have attracted great interest in
many fields such as optical communication [1], quantum information [2,3], optical tweezers [4], and
material processing [5]. Especially in optical communication, an OAM beam, which has azimuthal
angular dependence of exp(−ilφ), is attractive for its potential to extend the capacity of optical fibers
by supporting myriad orthogonal modes distinguished by its topological charge number l [6–10].

In addition to optical communication, the infinitely expandable OAM mode number may also be
useful in quantum information since it can be used to implement a multi-dimensional qubit, which can
simplify quantum logic circuits [11]. In quantum information or quantum computing, scalability is
an important issue. Thus, for the quantum information processing based on photon, practical logic
circuits will be implemented eventually in a form of a photonic integrated circuit (PIC) [12,13]. In order
to handle the multi-dimensional optical OAM qubit in the PIC, the waveguide which can support
higher-order OAM modes will, inevitably, be required. However, to the best of our knowledge, guiding
of higher-order OAM mode in the integrated waveguide has not been investigated. There have been
several works in which only the waveguide structures for the l = ± 1 OAM mode were proposed as the
parts of the devices to generate OAM (l = ±1) in a form of PIC [13–17].

In this work, we have investigated the design of the integrated waveguide structures to
support higher-order OAM modes. From the relation between Laguerre-Gaussian (LG) mode and
Hermite-Gaussian (HG) mode, it has been shown that two degenerate guided modes of π/2l-rotation
symmetry can support the l-th order OAM mode in general. Based on this, we have designed a
waveguide structure that can guide l = ±1 and ±2 OAM modes simultaneously at a wavelength of
1550 nm. We have also designed the waveguides for l = ±3 and ±4 OAM modes separately. The purity
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of the OAM modes supported in the designed waveguide has been assessed by the direct numerical
calculation of OAM flux [18]. The on-chip higher-order OAM waveguide designed in this work will be
used as the building blocks for the integrated generation and routing of the higher-order OAM modes
and the realization of the multi-dimensional qubit based on an OAM carrying photon.

2. Decomposition of Higher-Order OAM Modes

It is well known that LG modes, which is the eigenmodes of Maxwell’s equation in free-space,
carry OAM [19] and have circular symmetries. Thus, it is natural to perceive that the waveguides of
circular cross sections like optical fibers can guide the OAM modes. By the way, it is also well known
that LG mode can be decomposed into a linear combination of HG modes which are other types of the
free-space eigenmodes having rectangular symmetries [20,21]. This implies the possibility of OAM
modes guiding in integrated dielectric waveguides of rectangular cross-sections. This conceptual
approach was already adopted in the design of the integrated waveguide for l = ±1 OAM mode [15].
However, as the modal order (or topological charge l) of the OAM mode increases, the number of
compositional HG modes increases as l + 1, resulting in increasing complexity of the higher-order
OAM waveguide design.

In this section, we show that LG mode can be decomposed into two groups of HG modes in general
and provide the conceptual background on that only two eigenmodes can support the OAM modes in
the dielectric waveguides of rectangular cross sections. This will greatly relieve the complexity of the
higher-order OAM waveguide design.

The electric field distribution of LG mode is given by [19]:
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where CLG
ρl is a normalization constant, Ll

ρ(r) is the Laguerre polynomial, and ψρl(z) is the Gouy phase
of LG mode expressed as:
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on the other hand, the electric field distribution of HG mode, which naturally fits to the transverse
geometry of rectangular symmetry, is given by [20]:
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where CHG
mn is a normalization constant, and Hm(x) is m-th order Hermite polynomial. Beam radius

w(z), Rayleigh range zR, radius of curvature R(z), and Gouy phase ψmn(z) are given by:
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where w0 is beam waist. From Equations (1) and (3), one can see that the feature of Gaussian beam is
common to LG and HG modes and only the difference is in the additional transverse shape functions
represented by Laguerre and Hermite polynomials. The diverging features of LG and HG modes,
which are coming from w(z), are valid only for propagation in free-space. The guided mode in the
waveguide should have a z-invariant transverse profile, so that we can focus on the behaviors of LG
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and HG modes near the beam waist (z ≈ 0) that are mainly represented by Laguerre and Hermite
polynomials. Those polynomials are related as [21]:

eilφrlLl
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Since OAM carried by LG mode has nothing to do with the mode order number in the radial
direction (ρ) [22,23], we can only consider only the mode of ρ = 0 case for the sake of simplicity. With
Equation (5), LG and HG modes can be related and some examples for l = 1, 2, 3, and 4 are given
as follows:

a1LG01 = HG10 + iHG01 f or l = 1, (6a)

a2LG02 = HG20 + 2iHG11 −HG02 f or l = 2, (6b)

a3LG03 = HG30 + 3iHG21 − 3HG12 − iHG03 f or l = 3, (6c)

a4LG04 = HG40 + 4iHG31 − 6HG22 − 4iHG13 + HG04 f or l = 4, (6d)

where al represents a coefficient for amplitude equalization. One can see that l + 1 HG modes are
required to represent l-th order LG mode. This implies that to support the OAM mode of topological
charge l in the dielectric waveguides, l + 1 degenerate modes, whose profiles are similar to the
corresponding HG modes, are required. This makes it difficult to guide higher-order OAM mode in
the dielectric waveguides. To resolve this problem, we can rearrange (5) by grouping the odd- and the
even-order terms separately [21]:
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this suggests that only two guided modes are needed to support the higher-order OAM mode
in the dielectric waveguide and all we need to do is to find the waveguide structure which can
support two degenerate modes whose profiles are similar to Equations (7a) and (7b), respectively.
Equations (6b)–(6d), (7) are rearranged as follows:

a2LG02 = (HG20 −HG02) + i(2HG11), (8a)

a3LG03 = (HG30 − 3HG12) + i(3HG21 −HG03), (8b)

a4LG04 = (HG40 − 6HG22 + HG04) + i(4HG31 − 4HG13) (8c)

In Equation (8), each parenthesized group of terms on the right side is to form a guided mode. The
first and the second groups are associated to cos(lφ) and sin(lφ), showing even and odd symmetries in
the azimuthal direction, which are dubbed LGe

0i and, LGo
0i respectively, in this work. Another important

insight we can get from this formulation is that the profiles of those two guided modes for l-th order
OAM mode should be identical with π/2l rotation. Figure 1a shows the graphical representation of
Equations (6b) and (8a) for l = 2. One can see that (HG20–HG02) is just a π/4 rotation of HG11. Thus,
to generate l = ±2 OAM mode, we need two degenerate mode rather than three, and the required
waveguide structure should have a π/4-rotation symmetry. The cases of l = 3 and 4 are represented
in Figure 1b,c, respectively. In order to guide the l-th order OAM mode, the waveguide structure of
π/2l-rotation symmetry should be designed so as to support two degenerate modes whose profiles
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are close to Equations (7a) and (7b). Therefore, the ideal two guided mode needed to support the l-th
order OAM mode can be described as:
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where no is the effective index of the guided mode and w0 can be understood as an effective beam width.
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Figure 1. Decomposition of LG modes into HG modes: (a) l = 2; (b) l = 3; and (c) l = 4. In each case,
HG modes of the same azimuthal symmetry are grouped and dubbed LGe

0i and LGo
0i according to

their symmetry.

3. Waveguide Design and Mode Analysis

3.1. Waveguide Structure Simultaneously Supporting the l = ±1 and ±2 OAM Modes

To guide both of l = ±1 and ±2 OAM modes, we need a waveguide structure to support four
HG-similar guided modes, that is, HG01, HG10, LGe

02, and LGo
02 (or HG11), and each pair of HG-similar

guided modes forming the individual OAM mode should be degenerate for a long distance propagation
with keeping its topological charge unchanged. As mentioned before, to support these conditions,
the waveguide structure of π/4-rotation symmetry is required in principle. However, fabrication
of such structures in an integrated waveguide form will not be so practical. Thus, to mimic the
π/4-rotation symmetry, we designed a waveguide structure of a cross-shaped silicon core surrounded
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by a rectangular SiO2 clad as depicted in Figure 2a. The refractive indices are, respectively, 3.4
and 1.45 for silicon and SiO2 at 1.55 µm wavelength. To fulfill the degeneracy of HG01–HG10 and
LGe

02-LGo
02 simultaneously, we optimized the structural parameters denoted as W1, L1, W2, and L2.

Mode calculation was conducted with a finite-difference method (FDM)-based commercial software
(Lumerical Mode Solutions, Lumerical Inc., Vancouver, BC, Canada). To facilitate the optimization,
first we investigated the effect of each parameters on the effective indices of the modes using the
linear regression, which is shown in Figure 2b. Based on this, we optimized the structure using the
particle swarm optimization (PSO) method [24], resulting in the effective index differences of 4.5 × 10−5

for HG01-HG10 and 7.1 × 10−5 for LGe
02-LGo

02 with W1 = 1.118 µm, L1 = 0.921 µm, W2 = 1.626 µm,
and L2 = 1.504 µm. Those four HG-similar guided modes in the designed waveguides are shown in
Figure 3. Although there is slight effective index difference between two component modes for each
OAM mode, it may not be a crucial problem in chip scale applications. In our designed waveguides,
HG01 and HG10 modes are quite close to TE polarized modes whereas LGe

02 and LGo
02 modes are hybrid

modes with TE polarization fractions for both modes close to 70%. Figure 4d, respectively, shows the
field and phase distributions of the l = 1 (l = 2) OAM mode when the guided-modes of Figure 3a–d are
simultaneously excited with a π/2 phase difference.
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indices (neff) of (a) HG01; (b) HG10; (c) LGo
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02 are 3.215525, 3.215482, 3.05968, and

3.059751, respectively.

To quantitatively verify these OAM modes, we employed two methods; one is a modal overlap
integral calculation with respect to LG mode of the corresponding l, which is widely used for mode
purity analysis [25], and the other is to directly calculate OAM flux and the topological charge number
from the field distribution. The overlap integral was calculated by:

OI =

∣∣∣ss E∗1(x, y)·E2(x, y)dxdy
∣∣∣2

s
s

∣∣∣E1(x, y)
∣∣∣2dxdy

s
s

∣∣∣E2(x, y)
∣∣∣2dxdy

(10)
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for the field profiles of the OAM modes in our designed waveguide, the modal overlap integral values
were maximized with varying the beam waists of LG mode of the corresponding topological change
numbers. For the l = ±1 and ±2 OAM modes, the maximum achievable overlap integral values were
97.6% and 92.5%, respectively, with beam waist sizes of 0.5 µm and 0.55 µm.Photonics 2019, 6, x FOR PEER REVIEW 6 of 10 
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For the topological charge number calculation, first the total angular momentum flux of
z-component of the mode propagating along the z-axis is calculated by integrating the angular
momentum flux density defined as the cross product of the radius vector from the rotation axis and
the Poynting vector [26]:

Mzz =
x

s

1
2

Re
[
y
(
ε0ExE∗z + µ−1

0 B∗xBz
)
− x

(
ε0EyE∗z + µ−1

0 B∗yBz
)]

dxdy (11)

from this calculation, the OAM flux is calculated by subtracting the spin angular momentum (SAM)
flux, which is calculated by:

Mspin
zz =

ε0c2

2ω
Re

−i
x

s

(
ExB∗x + EyB∗y

)
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 (12)

whereω is an angular frequency. Then, the OAM per photon is obtained by dividing the OAM flux by
the energy flux passing through the integration area (F):

F =
1

2µ0
Re

x
s

(
ExB∗y − EyB∗x

)
dxdy

 (13)

now the topological change number is obtained by:

l = ω·OAM = ω·
Mzz −Mspin

zz
F

(14)

The calculated topological charge numbers of the OAM modes in our designed waveguide are
±0.9624 and ±1.922 for l = ±1 and ±2 OAM modes respectively, which are very close to the theoretical
values. The slight discrepancy from the theoretical values comes from the fact that the component
guided modes are not the actual HG modes as well as the numerical calculation errors.
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The quality of l = ±2 OAM mode in our designed waveguide is slightly lower than that of the l =

±1 OAM mode in terms of both the overlap integral and the OAM values, which is surmised to be
because our proposed waveguide structure cannot mimic π/4-rotation symmetry completely.

3.2. Waveguide Supporting l = ±3 or ±4 OAM Modes

For the proposed waveguide structure of a cross-shaped silicon core surrounded by a rectangular
SiO2 clad, we also conducted structural optimization for the l = ±3 or ±4 OAM modes separately. For
the l = ±3 OAM mode, the corresponding component guided modes similar to LGe

03 and LGo
03 modes

were found close to degeneracy with an effective index difference of 8.5 × 10−5 for W1 =1.315 µm,
L1 =1.315 µm, W2 = 1.8 µm, and L2 = 1.8 µm. The resulting component mode profiles are shown
in Figure 5a,b. By combining those two component modes with π/2 phase difference, we obtained
the field and phase profiles of l = ±3 OAM mode from the FDTD calculation, which are shown in
Figure 5c,d, respectively. For this mode, an overlap-integral mode purity of 92.7% was achieved with
l = 3 LG mode of a 0.49 µm beam waist, and its numerically calculated topological change was 2.587.
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resulting OAM mode: (c) electric field and (d) phase distributions.

For the waveguide design for the l = ±4 OAM mode, the optimal structural parameters were
found to be W1 =1.85 µm, L1 = 1.55 µm, W2 = 2.326 µm, and L2 = 2.204 µm, resulting in an effective
index difference of 2.97 × 10−3 between the component modes (similar to LGe

04 and LGo
04 modes) whose

profiles are shown in Figure 6a,b. The field and phase profiles of the l = ±4 OAM mode numerically
realized from those two component modes with π/2 phase difference are shown in Figure 6c,d,
respectively. For this mode, an overlap-integral mode purity of 90.6% was achieved with the l = 4 LG
mode with a 0.57 µm beam waist, and its numerically calculated topological change was 3.596.
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Fort the l = ±3 and ±4 OAM modes, the calculated topological charges show larger discrepancies
from the theoretical values and our proposed waveguide structure appears to be less effective in
mimicking π/6 and π/8-rotation symmetries. Besides, the dimensions of the waveguide structures
optimized for the l = ±3 and ±4 OAM modes show rather larger difference and, thus, we have found
that it is very difficult to design the waveguide simultaneously supporting the l = ±3 and ±4 OAM
modes in the proposed waveguide structure. It seems that a more complicated waveguide structure is
needed for guiding the l = ±3 and ±4 OAM modes.
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3.3. Fabrication Process of the Proposed Waveguide

Figure 7 shows the fabrication process of the proposed waveguide. Although the fabrication
process is rather complicated compared to conventional waveguide structures, it is doable since
only the standard processes, such as deposition and dry etching, are needed. The Si core can be
deposited using the low-pressure chemical vapor deposition (LPCVD), which is followed by annealing
to form polycrystalline Si [27]. Kwong et al. reported a 0.56 dB/cm propagation loss of a 10 µm wide
polycrystalline Si-based waveguide, which is comparable to a 0.31 dB/cm propagation loss of their
conventional crystalline Si-based waveguide [27]. Therefore, we expect that the propagation loss
of our proposed waveguide may not be a serious issue. For uniformity SiO2 for the lower and the
upper clad layers can also be deposited using the LPCVD. In this fabrication process, there are three
patterning and etching processes. However, we may only need two photomasks by sharing the same
photomask for the first patterning of the lower SiO2 clad etching and the third patterning of the Si
upper corner etching if the photoresists (PR) for these photolithography processes are properly chosen:
the negative PR for the first process and the positive PR for the third process or vice versa. All the
etching processes will be conducted using the dry etching such as the reactive ion etching (RIE) or the
inductively coupled plasma (ICP)-RIE. It is desired to employ the same dry etching methods both for
the second and the third etching processes (Si etching) for the reproducible etch rate control.
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4. Conclusions

In this work, we have proposed a waveguide structure of a cross-shaped core to support
higher-order OAM modes and derived the general requirement for the l-th order OAM mode guiding
in an integrated waveguide from HG mode expansion of LG mode, which is the existence of two
degenerate guided modes of π/2l-rotation symmetry.

Based on this, we have designed a waveguide structure that can guide l = ±1 and ±2 OAM modes
simultaneously at 1550 nm wavelength. We have also designed the waveguides for l = ±3 and ±4
OAM modes separately. The purity of the OAM modes supported in the designed waveguide has been
assessed by the direct numerical calculation of topological charges from field distributions. For l = ±1
and ±2 OAM modes, topological charges close to the theoretical values have been achieved, which
are l = ±0.9624, and l = ±1.922 whereas, for l = ±3 and ±4 OAM modes, the numerically calculated
topological charges of l = ±2.587, and ±3.596 have been obtained, showing relatively lower purity.

We expect that the proposed higher-order OAM mode guiding waveguide structure will be useful
for various OAM-related PIC applications such as higher-order OAM generation and routing as well
as a multi-dimensional qubit realization and manipulation for quantum information.
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