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Abstract: We numerically investigate the nonlinear dynamic properties of an exclusive excited-state
(ES) emission quantum dot (QD) laser under optical injection. The results show that, under suitable
injection parameters, the ES-QD laser can exhibit rich nonlinear dynamical behaviors, such as injection
locking (IL), period one (P1), period two (P2), multi-period (MP), and chaotic pulsation (CP). Through
mapping these dynamic states in the parameter space of the frequency detuning and the injection
coefficient, it can be found that the IL occupies a wide region and the dynamic evolution routes
appear in multiple forms. Via permutation entropy (PE) calculation to quantify the complexity of
the CP state, the parameter range for acquiring the chaos with high complexity can be determined.
Moreover, the influence of the linewidth enhancement factor (LEF) on the dynamical state of the
ES-QD laser is analyzed. With the increase of the LEF value, the chaotic area shrinks (expands) in
the negative (positive) frequency detuning region, and the IL region gradually shifts towards the
negative frequency detuning.

Keywords: quantum dot lasers; excited-state; nonlinear dynamics; optical injection

1. Introduction

Under external perturbations, semiconductor lasers (SLs) can exhibit various nonlinear dynamical
behaviors, such as the period one (P1), period two (P2), multi-period (MP), and chaos (CO) etc. [1–5],
which has attracted much attention due to their potential applications in photonic microwave
amplifiers [6], optical frequency converters [7], wireless optical fiber communication [8], all-optical
logic gates [9], laser Doppler velocimeters [10], secure optical communication, and random bit
generation [11–13].

Among different types of SLs, a self-organized SL with quantum dot (QD) structure has turned
out to be very promising [14–17] due to such unique properties as low relative intensity noise [18],
a small linewidth enhancement factor (LEF) [19,20], and high temperature stability [21]. For the QD
lasers, three-dimensional quantum confinement gives rise to discrete energy levels for electrons and
holes. Under a relatively low bias current, the recombination of electrons and holes in the ground-state
(GS) results in sole GS emission. As the bias current is increased, the population of the excited-state
(ES) increases. When the current exceeds the secondary threshold, the QD lasers simultaneously emit
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in both the GS and the ES. Moreover, when the bias current is high enough, the QD lasers may emit
solely in the ES [22]. In recent years, the nonlinear dynamics of the QD lasers subject to external
perturbations have received considerable attention [23–29]. For a QD laser emitting solely in the GS,
Erneux et al. have theoretically and experimentally investigated its dynamic response under optical
injection, and the results show that the laser has similar dynamic features to the Class A laser [23].
Goulding et al. have reported the excitability after introducing optical injection, and the excitable
pulses and the random conversion between the stable and unstable states were observed [24]. Carroll
et al. have experimentally studied the instabilities resulted by optical feedback and the irregular power
drop-outs and the periodic pulsations are presented [25]. For the case of a QD laser simultaneously
emitting in the GS and the ES, Viktorov et al. have reported the low-frequency inverse phase fluctuation
phenomenon of the ES and GS lasing intensities caused by optical feedback [26]. Olejniczak et al. have
theoretically demonstrated that the ES lasing intensity shows regular picosecond pulses and pulse
packages when the wavelength of injection light is close to the lasing wavelength of the GS mode [27].
For a QD laser emitting solely in the ES under high bias currents, a tunable all-optical gating has been
implemented after introducing optical injection [28], and the hysteresis phenomenon has also been
observed by scanning the injection power along different variation routes [29].

Recently, relevant investigations demonstrated that, through adopting some special techniques
during the manufacture, QD lasers can emit exclusively in the ES [30–32], named as ES-QD lasers in
this work. Different from ordinary QD lasers, such ES-QD lasers always emit in the ES while the GS is
suppressed totally [30]. Compared with ordinary QD lasers, ES-QD lasers possess higher differential
gain, a smaller relaxation oscillation (RO) damping rate, a and smaller K-factor [30,31], which are
helpful for enhancing the modulation response and the nonlinear dynamical properties [30–35].
The modulation speeds of ES-QD lasers can reach 25 Gbps (on-off keying (OOK)) and 35 Gbps
(pulse-amplitude modulation (PAM)) [30,32]. Meanwhile, ES-QD lasers possess broad modulation
bandwidths and low chirp-to-power ratios [33]. In addition, through introducing optical feedback,
diverse nonlinear dynamic states, such as the periodic and chaotic states, have been observed in
the ES-QD lasers [34,35]. Besides the modulation and optical feedback, optical injection is another
frequently used external perturbation technique. We have noted that related research on the nonlinear
dynamics of ES-QD lasers under optical injection is rarely reported. In this work, based on a theoretical
model of ES-QD lasers [33,36–38], after taking into account optical injection, the nonlinear dynamics
of ES-QD lasers under optical injection are investigated. The mapping of the dynamical states in the
parameter space of frequency detuning and the injection coefficient is presented, and the effect of the
linewidth enhancement factor (LEF) on the nonlinear dynamics of ES-QD lasers is also discussed.

2. Theoretical Model

A schematic diagram of the carrier dynamics for ES-QD lasers is shown in Figure 1. Here, charged
electrons and holes are regarded as the neutral excitons (electron-hole pairs), and the differences among
QDs are neglected, i.e., there is only one QD ensemble in the active region [38]. By electric pumping,
the carriers are directly pumped into the reservoir (RS) plane. Through Auger processes, some carriers
are captured from RS to ES during the time of τRS

ES , and then some carriers relax from ES to GS during
the time of τES

GS [37]. Additionally, due to the thermal excitations, some carriers in GS (ES) escape to
ES (RS) during the time of τGS

ES (τES
RS) [37]. It is assumed that the system is in quasi-equilibrium and

the carrier number in each energy level satisfies the Fermi–Dirac distribution. It is worth noting that
this model ignores the direct carrier capture path from RS to GS. The stimulated radiation can occur
in ES or GS for ordinary QD lasers, but only the ES lases in the ES-QD lasers [33]. After referring to
References [33,36–38] and taking optical injection into account, the rate equations for optical injection
ES-QD lasers can be described by the following:
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=
ηI
e
+
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where abbreviations RS, ES, and GS stand for the reservoir, the excited-state, and the ground-state,
respectively, and superscript spon represents the spontaneous emission. The value N denotes the
carrier number, S is the photon number, and φ is the electric field phase. The value I denotes the
bias current, η represents the current pumping efficiency, and e represents the elementary charge of
an electron. The value Γp denotes the optical confinement factor. The values τp and τspon represent the
photon lifetime and the spontaneous decay time, respectively. The value vg is the group velocity of
light, and τin is the round-trip time of light in a cavity of length L. The terms ρGS (=NGS/2NB) and ρES
(=NES/4NB) represent the occupancy probabilities of carriers in GS and ES, where NB denotes the total
QD number. The terms 1 − ρGS and 1 − ρES are the Pauli-blocking factors [38,39], which correspond to
the probabilities of empty QD state in GS and ES. The value S0 is the photon number of the free-running
ES-QD laser. The value K is the injection coefficient and ∆ν represents the frequency detuning between
the injection light and the free-running ES-QD laser. The gain coefficient, gES, of ES is expressed
as follows:

gES =
aES

1 + ξ S
VS

NB

VB
(2ρES − 1), (6)

where aES denotes the differential gain of ES, ξ represents the gain limiting factor, VB is the total volume
of QDs, and VS denotes the intra-cavity laser field volume.
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Figure 1. Schematic diagram of the carrier dynamics for the ES-QD lasers. GS: ground-state; ES: 
excited-state; RS: reservoir. 

Figure 1. Schematic diagram of the carrier dynamics for the ES-QD lasers. GS: ground-state; ES:
excited-state; RS: reservoir.

Numerical methods for the solution of ordinary differential equations are the main tools to
investigate the nonlinear dynamical systems [40,41]. In this work, a desktop PC with a six-core
processor (AMD Ryzen 5 1600X, Advanced Micro Devices Inc., Santa Clara, CA, USA) and 16GB
installed memory is used to perform the simulation, and we adopt the ode45 solver (Fourth-Fifth order
Runge–Kutta algorithm, where the fourth-order provides the candidate solutions and the fifth-order
controls the errors) in MATLAB software to solve the above differential equations, after taking into
account the accuracy and speed of the calculations. Since the step size will affect the simulation
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results [40], we use the adaptive step size in numerical simulations. The used parameters for the
ES-QD laser during the simulations are given in Table 1 [33,38].

Table 1. Simulation parameters of the QD laser.

Symbol Parameter Value

ERS RS recombination energy 0.97 eV
EES ES recombination energy 0.87 eV
EGS GS recombination energy 0.82 eV
τRS

ES Capture time from RS to ES 12.6 ps
τES

GS Relaxation time from ES to GS 5.8 ps
τES

RS Escape time from ES to RS 5.4 ns
τGS

ES Escape time from GS to ES 20.8 ps
τ

spon
RS RS spontaneous decay time 0.5 ns
τ

spon
ES ES spontaneous decay time 0.5 ns
τ

spon
GS GS spontaneous decay time 1.2 ns
τp The lifetime of photon 4.1 ps
L Cavity length 5 × 10−2 cm

aES Differential gain of ES 10 × 10−15 cm2

ξ Gain limiting factor 2 × 10−16 cm2

Γp Optical confinement factor 0.06
NB Total QD number 1 × 107

α Linewidth enhancement factor 1.3
vg Group velocity of light 8.57 × 107 m/s
VB Total volume of QDs 5 × 10−11 cm3

η Current pumping efficiency 0.15

3. Results and Discussion

Figure 2a shows the power-current (P-I) curve of the free-running ES-QD laser. Obviously,
the threshold current (Ith) of the laser is about 92.0 mA. As the current increased from 92.0 mA to
250.0 mA, the output power increased linearly. Figure 2b displays the variations of the carrier number
in ES and GS with the current. From this diagram, it can be seen that the carrier numbers in ES and
GS are almost constant for the laser biased above the threshold, and the former is larger since the
degeneracy of ES is twice that of GS [33]. Furthermore, by using small signal analysis, the relaxation
oscillation (RO) frequencies of the ES-QD laser at different bias currents can be obtained, as shown in
Figure 2c. With the increase of the current, the RO frequency increases nonlinearly. In the following
discussion, the current of the laser is fixed at I = 184.0 mA (= 2Ith) and the corresponding RO frequency
is about 7.60 GHz.
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Figure 2. Output power (a), carrier number (b), and relaxation oscillation (RO) frequency (c) of the
ES-QD laser as a function of the bias current.

Our simulations demonstrate that after introducing an optical injection, the ES-QD laser can exhibit
different dynamical states. Figure 3 shows the time series, power spectra, and phase portraits of the
ES-QD laser, under optical injection with frequency detuning ∆ν = −14.00 GHz and different injection
coefficient K. For K = 0.30 (Figure 3a1–a3), the time series behaves as a periodic oscillation whose
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fundamental frequency is about 14.26 GHz, which can be captured from the power spectrum, and the
trajectories of phase portrait show a clear limit cycle feature. As a result, it can be determined that
the ES-QD laser operates at the period one (P1) oscillation. For K = 0.33 (Figure 3b1–b3), the periodic
waveform with two peak intensities can be clearly observed in the time series, the sub-harmonic
frequency (about 7.13 GHz) appears in the power spectrum, and the corresponding phase portrait
possesses two loops that are intertwined together. Under this case, the ES-QD laser exhibits the period
two (P2) oscillation. For K = 0.49 (Figure 3c1–c3), multiple peaks with different intensities emerge in
the time series, multiple new frequency components appear upon the power spectrum, and the phase
portrait shows the overlap alternation of multiple loops. Therefore, the dynamics of the ES-QD laser
can be judged as the multi-period (MP) state. For K = 0.64 (Figure 3d1–d3), the peak intensity of the
time series behaves as an irregular fluctuation, the associated power spectrum broadens, and the phase
portrait exhibits a strange attractor. Based on these features, the dynamic state of the ES-QD laser
can be determined to be the chaotic pulsation (CP) state. When K is increased to 0.90 (Figure 3e1–e3),
the time series shows a stable output, no obvious peak can be observed in the power spectrum, and the
corresponding phase portrait shows a stable point. Further calculation shows that, under this condition,
the lasing frequency of the ES-QD laser is just the frequency of the injection light. As a result, it can be
judged that the ES-QD laser operates at the injection locking (IL) state.
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Figure 3. Time series (first column), power spectra (second column), and phase portraits (third column)
of the ES-QD laser for ∆ν = −14.00 GHz and different K, where K = 0.30 (a1–a3), K = 0.33 (b1–b3),
K = 0.49 (c1–c3), K = 0.64 (d1–d3), and K = 0.90 (e1–e3).

Figure 4 shows a bifurcation diagram for observing the dynamical evolution of the ES-QD laser
with the injection coefficient K at ∆ν = −14.00 GHz. As shown in this diagram, when the injection
coefficient K increases from 0 to 0.32, the output waveform has two extreme values and the ES-QD laser
can be judged to operate at the period one (P1) oscillation. When the injection coefficient K increases
from 0.32 to 0.47, the output waveform has four extreme values and the laser can be determined to be
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the period two (P2) oscillation. Further increasing the injection coefficient K from 0.47 to 1, the ES-QD
laser presents the multi-period (MP), the chaotic pulsation (CP), and the injection locking (IL).
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The above results are obtained under different K for a fixed ∆ν = −14.00 GHz. Next, in order to
understand the nonlinear dynamical evolution of the ES-QD laser more comprehensively, a mapping
of the dynamic states in the parameter space of K and ∆ν is presented in Figure 5a, where different
colors represent different dynamical states. As shown in this diagram, some dynamic states including
injection locking (IL), period one (P1), period two (P2), multi-period (MP), and chaotic pulsation (CP)
can be observed for the ES-QD laser, under different injection parameters. It is worth noting that
a large area of IL appears in the map due to optical injection. In the positive frequency detuning
region, around ∆ν = 4.00 GHz, the P1-P2-MP-IL dynamic evolution is exhibited with the increase of the
injection coefficient, but the CP does not emerge. In the negative detuning region, around ∆ν = −4.00
GHz and ∆ν = −14.00 GHz, the typical dynamic evolutions of P1-P2-IL and P1-P2-MP-CP-MP-IL are
presented with the increase of the injection coefficient, respectively. It can be seen that the ES-QD laser,
under optical injection, can output abundantly dynamical states and exhibit multiple forms of dynamic
evolution routes. In addition, we have noticed that the CP state mainly exists in the regions of 0.48 < K
< 0.68 and −15.00 GHz < ∆ν < −13.00 GHz. In order to further explore the characteristics of the CP
state, we have calculated the normalized permutation entropy (PE), hs, to quantify the complexity of
the CP signal, and the PE is defined as follows [42,43]. The time series {S(m), m = 1, 2, . . . , N} are firstly
reconstructed into a set of D-dimensional vectors after choosing an appropriate embedding dimension
D, and then we study all D! permutation π of order D. For each π, the relative frequency (# means
number) is determined as follows:

p(π) =
#
{
m|m ≤ N −D, (Sm+1, . . . , Sm+D) has type π

}
N −D + 1

. (7)

The PE is given by
h[p] = −

∑
p(π) log(p(π)). (8)

Then, the normalized PE is further defined as follows:

hs =
h[p]
hmax

=
−
∑

p(π) log(p(π))
log(D!)

, (9)

where hs = 0 and hs = 1 represent a completely predictable process and a completely stochastic process
with uniform probability distribution, respectively. We use a 670 ns length of the time series and the
embedding dimension D = 6 to calculate the PE. Figure 5b displays the complexity of the CP in the
parameter space of K and ∆ν, where different colors represent different complexity values. From this
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diagram, it can be observed that the CP state with a high complexity of 0.95 < hs < 0.98 is mainly
located at the regions of 0.55< K < 0.67 and −14.50 GHz < ∆ν < −13.30 GHz.
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Figure 5. (a) Nonlinear dynamics distribution and (b) corresponding chaotic region complexity
distribution of the ES-QD laser in the parameter space of injection coefficient and frequency detuning.
IL: injection locking, P1: period one, P2: period two, MP: multi-period, CP: chaotic pulsation.

It is well known that the linewidth enhancement factor (LEF) is one of key parameters that affects
the spectral linewidth, the mode stability, as well as the nonlinear dynamics of SLs under external
perturbations [44–46]. The above results were obtained under a fixed LEF value of 1.3. In Reference [33],
it is pointed out that the differential gain of each energy level and the energy separation between
resonant and non-resonant states will have a profound impact on the LEF value. As a result, it is
necessary to investigate the effect of the LEF on the nonlinear dynamics of ES-QD lasers. Figure 6
shows the mappings of the nonlinear dynamic behaviors in the parameter space of ∆ν and K under
different α. For α = 0.5 (Figure 6a), in the region of ∆ν > 0, the injection locking (IL), period one (P1),
period two (P2), and multi-period (MP) can be observed, while in the region of ∆ν < 0, besides IL, P1,
P2, and MP, a chaotic pulsation (CP) region (brown) can be found nearby (∆ν = −10.00 GHz, K = 0.45),
and is surrounded by the MP state. Additionally, as shown in this diagram, the stable IL region (dark
blue) almost symmetrically distributes in both sides of ∆ν = 0. For α = 1.0, 1.5 (Figure 6b,c), with the
increase of the LEF value, the area of the P2 region (light green) increases significantly, the IL region
slowly moves towards the range of ∆ν < 0, and the CP region shifts to nearby (∆ν = −15.00 GHz,
K = 0.6). For α = 2.0, 2.5, and 3.0 (Figure 6d–f), as the LEF value increases, the IL region gradually
shifts to the negative detuning side and asymmetrically distributes in both sides of ∆ν = 0, but its area
is approximately unchanged. In addition, the area of the CP region gradually expands (shrinks) in
the range of ∆ν > 0 (∆ν < 0), and finally predominantly distributes nearby (∆ν = 6.00 GHz, K = 0.25).
Moreover, the area of the P2 region is approximately unchanged and the area of the MP region
(orange) gradually shrinks. It can be seen that the change of LEF value profoundly affects the dynamic
distribution of the ES-QD laser under optical injection.

In addition, it should be pointed out that the classical Fourth-Fifth order Runge–Kutta method
is used for numerical simulation in this work. Relevant research shows that different numerical
simulation methods will affect the discrete behavior of nonlinear systems and may obtain different
results [41]. As a result, we will concern and verify the validity of different numerical simulation
methods by combining experimental observations in our next research.
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Figure 6. Mappings of the nonlinear dynamics distribution of the ES-QD Laser in the parameter space
of injection strength and frequency detuning for different LEF, where (a) α = 0.5, (b) α = 1.0, (c) α = 1.5,
(d) α = 2.0, (e) α = 2.5, and (f) α = 3.0. IL: injection locking, P1: period one, P2: period two, MP:
multi-period, CP: chaotic pulsation.

4. Conclusions

In summary, the nonlinear dynamics of an exclusive ES emission QD laser under optical injection
have been investigated numerically. The results show that, under suitable optical injection parameters,
the ES-QD laser can exhibit a series of nonlinear dynamical behaviors such as injection locking (IL),
period one (P1), period two (P2), multi-period (MP) and chaotic pulsation (CP). Through mapping
these dynamic states in the parameter space of ∆ν and K, the typical dynamic evolution routes of
P1-P2-IL, P1-P2-MP-IL, and P1-P2-MP-CP-MP-IL are observed. The IL region has a large area and
the CP is mainly distributed in the regions of 0.48 < K < 0.68 and −15.00 GHz < ∆ν < −13.00 GHz.
Through the PE calculation to quantify the complexity of CP state, the CP with a high complexity 0.95
< hs < 0.98 is located at the regions of 0.55 < K < 0.67 and −14.50 GHz < ∆ν < −13.30 GHz. In addition,
the influence of the linewidth enhancement factor (LEF) on the dynamic behavior distributions of
the ES-QD laser is also discussed. With the increase of the LEF value, the CP region moves to the
positive frequency detuning range and distributes nearby (∆ν = 6.00 GHz, K = 0.25), the area of the
MP gradually shrinks, and the IL region gradually shifts to the negative frequency detuning range
and its area is approximately unchanged. Compared with the dynamical characteristics of distributed
feedback (DFB) lasers under optical injection, the dynamical evolutionary trends are similar, but the
chaotic region of DFB lasers is larger and the IL region for DFB lasers will gradually disappear with
the increase of LEF [45]. These differences may be due to the three-dimensional restriction of carriers
in QD lasers. We believe that this work would be helpful for understanding the nonlinear dynamics of
ES-QD lasers under optical injection and then exploiting related applications.
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