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Abstract: Recent developments in photonics-based microwave image-reject mixers (IRMs) are reviewed
with an emphasis on the pre-filtering method, which applies an optical or electrical filter to remove the
undesired image, and the phase cancellation method, which is realized by introducing an additional
phase to the converted image and cancelling it through coherent combination without phase shift.
Applications of photonics-based microwave IRM in electronic warfare, radar systems and satellite
payloads are described. The inherent challenges of implementing photonics-based microwave IRM to
meet specific requirements of the radio frequency (RF) system are discussed. Developmental trends of
the photonics-based microwave IRM are also discussed.
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1. Introduction

A frequency mixer is an essential module in modern microwave systems, such as radar, electronic
warfare, wireless communication devices and satellite payloads [1–4]. Frequency mixers facilitate
frequency upconversion to generate a radio frequency (RF) signal at f RF = |f IF + f LO|, where f IF

and f LO are the frequencies of the intermediate frequency (IF) signal and local oscillator (LO) signal,
respectively. Frequency mixers also facilitate frequency downconversion to generate an IF signal,
described as f IF = |f RF − f LO|. In recent years, the frequency mixers implemented, based on
microwave photonic technologies, have attracted great interest due to advantages such as their
large bandwidth, light weight, high isolation and electromagnetic interference immunity (EMI) [5–7].
In addition, the photonics-based microwave frequency mixer can be combined with radio over fiber
(RoF) technology to realize remote fiber-optic antennas, avoiding any additional electrical-to-optical or
optical-to-electrical conversion [8,9]. However, the photonic microwave mixer is usually implemented
through a heterodyne structure to obtain a nonzero IF signal, which can be easily interfered with by
image signals. As shown in Figure 1, the image signal at f IM, with a frequency above or below the LO
frequency by an amount equal to IF, will be converted to the same IF band, together with the desired
IF signal downconverted from the radio frequency (RF) signal at f RF. Thus the downconverted image
cannot be removed by filtering due to spectrum aliasing. Image-reject mixer (IRM) is a downconverter
with a large suppression of downconverted products (f IMC = |f IM − f LO|) resulting in undesired image
signal f IM while maintaining or enhancing the desired component. Typical electrical IRM structure is
shown and analyzed in [10]. Due to electronic bottleneck, the working frequency and bandwidth are
limited for electrical IRMs (i.e., IF bandwidth limited to no more than 160 MHz, and LO frequency
limited to no higher than 14.0–18.0 GHz) [11]. For future RF systems, RF signals with large bandwidth
will be used and systems will be operated in a complicated electromagnetic environment. Thus, image
distortions will be serious, which creates an urgent demand for high performance photonics-based
microwave IRM.

In this paper, we review recent developments in photonics-based microwave IRM with an
emphasis on the pre-filtering method [12–17] and the phase cancellation method [18–30]. Applications
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of photonics-based microwave IRMs in electronic warfare, radars, satellite communications, and so on,
are described [31–43], with challenges in implementing photonics-based microwave IRMs to meet
the requirements of RF systems. Finally, development trends of the photonics-based microwave IRM
are discussed.

Figure 1. Schematic diagram illustrating image interference.

2. Photonic IRMs Based on Pre-Filtering

A typical way to achieve image rejection is to directly remove the image from the input RF signal
by a filter, either in the electrical [12] or optical domain [13], as shown in Figure 2. As can be seen from
Figure 2c, the performance of the image rejection depends on the response of the filter. For a scenario
using an electrical bandpass filter (EBPF), to select the required RF signal, as shown in Figure 2a, electrical
filters with high center frequency will be required to realize high frequency operation capabilities of IRMs.
In addition, the slope of the filter must be sharp enough to suppress the image without affecting the desired
signal, especially when the IF frequency is very low (i.e., the frequency difference between f RF and f IM

is small). For example, the EBPF used in [12] has a passband of 8–9 GHz, thus, instantaneous working
bandwidth is limited to 1 GHz. For a required IF working frequency (10 GHz [12]), the RF/LO working
frequency will also be limited by the EBPF (20 GHz in [12]). When using an optical bandpass filter (OBPF)
to select the required modulated RF signal in the optical domain, as shown in Figure 2b, optical filters
with narrow bandwidth and sharp edge roll-offs are desirable. However, both the electrical filters with
high center frequency, and optical filters with narrow bandwidth and sharp edge roll-offs, are difficult to
realize, limiting working bandwidth and system performance. For example, the optical filter described by
Strutz and Williams, [13] is a Fabry-Perot filter with a 3-dB bandwidth of 0.6 GHz, which is too wide for
many applications. In addition, the filter bandwidths and center frequencies are usually fixed and wide
tunability is hard to realize, limiting the flexibility of the system.

Figure 2. Schematic diagram of photonic image-reject mixers (IRMs) based on direct pre-filtering in an
(a) electrical and (b) optical domain; (c) pre-filtering principle of IRMs. EBPF: electrical bandpass filter;
OBPF: optical bandpass filter; EO: electrical to optical conversion; OE: optical to electrical conversion.
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To solve these problems, another method using pre-filtering was realized, based on multiple-stage
frequency conversion [14–17]. Figure 3 shows a schematic diagram of typical IRMs based on multiple-stage
frequency conversion, and Figure 4 illustrates its principle. The original RF signal f Received (containing
the image f IM) shown in Figure 4a is first downconverted using LO1 at a photonics-based microwave
mixer. The converted result is shown in Figure 4b. Then a bandpass filter is used to select the desired
RF signal and to remove the undesired image, as shown in Figure 4b. The selected RF signal enters
the second photonics-based microwave mixer and is downconverted using LO2 to the desired IF band.
The final downconverted result is shown in Figure 4c. As compared with the IRM based on direct
pre-filtering, shown in Figure 2c, frequency requirement of the EBPF is lowered by increasing the
number of frequency-conversion stages. Thus, when filtering is performed in the electrical domain
after optical-to-electrical conversion, a good image rejection can be realized. It should be noted that
in the first frequency-conversion step, one can carefully select LO1 frequency to downconvert received
RF signal into a proper band, where EBPF with narrow bandwidth and sharp edge roll-offs is easy to
achieve [14,15]. For example, an image-rejection ratio of larger than 150 dB has been achieved by Strutz
and Williams [14] using two cascaded EBPFs with large out-of-band suppression, and in another paper [15]
the image-rejection ratio reached 60 dB when the EBPF out-of-band suppression was 60 dB. Filtering
after the first-stage frequency conversion can also be realized in the optical domain [16,17]. When using
optical filters, achieving adequate edge sharpness and frequency-/bandwidth-tuning is still challenging.
In addition, because the multiple-stage frequency conversion needs multiple LO sources, the system always
has a complex structure with large volume and high cost.

Figure 3. Schematic diagram of photonic an IRM based on multiple-stage frequency conversion.

Figure 4. Principle of a photonic IRM based on multiple-stage frequency conversion: (a) the received
RF signal and the location of LO1; (b) the downconverted signal using LO1 and the image to be rejected
by the bandpass filter (BPF); (c) the signal downconverted to the desired output intermediate frequency
(IF) band using LO2.
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For photonic IRMs based on pre-filtering, one trend has been to involve microwave photonic
filters [44,45], which are designed to undertake equivalent tasks to those of microwave filters. However,
it is hoped that these IRMs will introduce advantages brought by photonics, such as low loss, high
bandwidth, EMI, tunability, and reconfigurability.

3. Photonic IRM Based on Phase-Cancellation Techniques

Phase-cancellation technique is another way to realize photonics-based microwave IRMs [18–30],
also known as Hartley architecture. Figure 5 shows the principle method. A pair of quadrature LO
(or RF) signals are introduced to generate two quadrature IF outputs, which are then combined
by a low-frequency 90-degree hybrid, introducing an additional 90◦ phase difference, to make the
downconverted image out of phase, and those downconverted from the wanted RF signals in phase.
In this way, the wanted IF signals are enhanced, while the downconverted image at the same band
is cancelled. Since this kind of photonics-based microwave IRM uses the phase differences of the
signals to realize the image rejection, any requirement of filtering or multi-stage frequency conversion
is avoided. In addition, when the RF signal frequency changes, the IRM based on phase cancellation
can still suppress the corresponding image, which enables broadband applications. Three typical IRM
schemes based on phase cancellation were proposed, using 90◦ electrical hybrid, microwave photonic
phase shifters, and optical 90◦ hybrid.

Figure 5. Schematic diagram of a photonic IRM, based on phase cancellation. IF: intermediate frequency.

3.1. Photonic IRMs Based on 90◦ Electrical Hybrid

Methods in the first category apply an electrical 90◦ hybrid to generate a pair of quadrature LOs [18]
or a pair of quadrature RF signals (containing the images) [19,20]. Then, RF and LO signals are mixed in
the optical domain. A pair of quadrature IF outputs will be generated, which are combined by another
electrical 90◦ hybrid, to produce a downconverted IF signal, with the downconverted image being rejected.
In Lu et al.’s paper [18], the in-phase RF signals were modulated on two lasers by direct modulation,
and then injected into two separate electro-optic modulators driven by the pair of quadrature LOs from
an electrical 90◦ hybrid. A separate study [19] describes two quadrature RF signals being generated by
an electrical 90◦ hybrid, and two out-of-phase LOs being produced by an out-of-phase divider, that formed
two RF and LO pairs, which were mixed at two directly modulated lasers. Optical signals output from
the two lasers were detected by two photodetectors (PDs), generating a pair of quadrature IFs. The two
IFs are then combined by another electrical quadrature hybrid to achieve image-reject downconversion.
For both approaches, two mixed RF and LO pairs were separated, and the difference between two
separated branches affected the system performance and stability. By using integrated modulators to
perform modulation by the LO and RF signals simultaneously, this problem can be avoided. For example,
a single integrated dual-parallel Mach-Zehnder modulator (DPMZM) has been previously used [20],
which greatly improved the stability of the system. The key problem associated with approaches in this
category [18–20] is that they rely on an electrical 90◦ hybrid to generate quadrature RF signals or LOs.
Since electrical 90◦ hybrids cannot maintain a precise 90◦ phase difference across a wide frequency range
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at high frequencies, the bandwidth of IRMs is usually very limited, or, the image suppression ratio is small
(Figure 6).

Figure 6. A photonic IRM using an electrical 90◦ hybrid to generate quadrature RFs. LD: laser diode;
PD: photodetector [19].

3.2. IRMs Based on Microwave Photonic Phase Shifters

To avoid using the high-frequency electrical 90◦ hybrid, photonic IRMs based on microwave
photonic phase shifters were proposed [21–24], since the microwave photonic phase shifters can realize
a 90-degree phase difference across a wide frequency range at high frequencies. The key component is
an advanced modulator with two sub-modulators, which can be implemented by a dual-polarization
dual-drive Mach-Zehnder modulator (DPol-MZM) [21], a DPMZM [22,23], or a polarization-division
multiplexing Mach-Zehnder modulator [24]. Each sub-modulator (i.e., a sub-dual-drive Mach-Zehnder
modulator (sub-DMZM) [21], and a sub-Mach-Zehnder modulator (sub-MZM) [22–24]) performs
single-ended mixing. Meanwhile, together with optical filters, photonic microwave phase shift
was achieved with a phase shift controlled by either bias voltages of the sub-modulators [21–23],
or the polarization state at the output of the modulator [24]. Thus, a precise 90-degree phase shift
over a wide frequency range can be introduced between two parallel single-ended mixers (i.e.,
two sub-modulators). After photodetection, quadrature IFs are combined by low-frequency electrical
quadrature hybrid to realize image rejection. An image-rejection ratio as high as 60 dB is realized when
RF/LO frequency is tuned from 10 to 40 GHz [21]. However, system stability is affected by bias drift or
polarization fluctuation, because phase shift is controlled by the bias voltages [21–23] or polarization
state [24]. Additionally, although optical filters can remove most undesirable sidebands, leading to
large suppression of the mixing spurs [21], their limited edge roll-offs could restrict IRM performance
at a low frequency regime.

3.3. Photonic IRM Based on 90◦ Optical Hybrid

The third class of photonic IRMs based on phase cancellation applies a 90◦ optical hybrid to
introduce a quadrature phase [25–29]. Benefiting from a simple structure and the small phase imbalance
of the commercially available optical hybrid over a wide frequency range, a high image rejection ratio
can be achieved in a large bandwidth. Figure 7 shows a schematic diagram of a typical IRM based on
a 90◦ optical hybrid [25]. The optical carrier is split into two branches. One branch is modulated by
an RF signal and the other is modulated by an LO signal, both with carrier-suppressed single-sideband
(CS-SSB) modulation. The CS-SSB modulation can be realized by using either optical filters placed
in each branch [25–27], or I/Q modulators operated at CS-SSB mode [28,29]. Signals from the two
branches are sent to the signal port and the LO port of the 90◦ optical hybrid, which typically has two
in-phase output and two quadrature output ports. When one of the in-phase outputs and one of the
quadrature outputs are sent to two PDs, an I/Q frequency mixer is obtained. By using a low-frequency
electrical quadrature hybrid to combine the two electrical outputs of the I/Q mixer, a photonic IRM
is achieved. It should be noted that if other outputs of the 90◦ optical hybrid are directed to PDs,
single-ended and balanced mixers can also be realized.
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Figure 7. Schematic diagram of a typical photonic IRM using a 90◦ optical hybrid [25].

Since parallel modulations, and/or parallel filterings, and parallel amplifications are required to
obtain the independent RF and LO sidebands, the system performance will therefore be vulnerable
to any path length difference between the two branches [26–29]. Therefore, environmental vibration,
which cause path length variations, would be a challenge for practical application of such IRMs.
To overcome this problem, in [26] a reconfigurable microwave photonic mixer which can perform such
functions, including the IRM, is achieved by using a DPol-MZM and an optical 90◦ hybrid. Parallel
signal modulations are implemented in an integrated modulator and act as polarization multiplexors
at the output. Thus, RF and LO sidebands can both be filtered and amplified by the same devices,
guaranteeing links consistency for both signals. Separation lengths are minimized, which can be easily
packaged to avoid environmental vibration.

With the three aforementioned kinds of photonic IRMs, based on phase-cancellation techniques,
images can be rejected over a wide frequency range. On the other hand, mixing spurs are generated by the
nonlinearity of the mixer at frequencies of |kf RF + lf LO|, where k and l are integers. Since the mixing spurs
might be in the same band of the wanted signal, especially in a wideband operation scenario, they should
be suppressed together with the image. To realize mixing-spur suppression, we can rely on advanced
modulation formats. For example, the suppression of LO/RF leakages can be realized by introducing
a carrier suppressed double sideband (CS-DSB) modulation format for both RF and LO signals [20].
In addition, a CS-SSB modulation format can be applied to eliminate more high-frequency spurs [21–29].
However, the implementation of advanced modulation formats always requires complex configuration,
and typically needs optical filters or high-frequency electrical hybrids, which can limit working frequency
range. In addition, the previously reported photonics-based microwave IRMs are tested and analyzed
by respectively injecting an RF signal and image. In practical applications, RF signals and images are
received simultaneously and will generate other unwanted mixing spurs. For example, beating between
RF and image signals will generate mixing spurs of the 2nd-order harmonic downconverted IF signal at
2f IF, which is very close to the optimum IF signal at f IF. Thus, this beating is difficult to remove through
filtering. For wideband applications, mixing spurs at 2f IF can overlap with the desired IF signal at f IF.

To deal with this problem, in one of our recent works, a photonic IRM based on a 90◦ optical hybrid
and two balanced photodetectors (BPDs) was proposed and demonstrated [30], which could suppress
mixing spurs of RF and image signals. The RF signal (containing the image) and electrical LO signal are
both converted into the optical domain and then injected into the signal and LO ports of a 90◦ optical hybrid,
respectively. The 90◦ optical hybrid introduces a 180◦ phase difference into the optical LO for two in-phase
and the quadrature optical outputs. Through optical to electrical conversion, the IF electrical outputs for
two in-phase optical outputs (or two quadrature optical outputs) at f IF are out of phase, while the other
mixing spurs are in-phase. Thus, by injecting two in-phase and two quadrature optical outputs into two
BPDs, respectively, at the output of each BPD the mixing spurs will be suppressed. In addition, the two IF
outputs, from the two BPDs, are quadrature because the 90◦ optical hybrid also introduces a quadrature
phase of for the optical LO for the in-phase and the quadrature optical outputs. The two IF outputs
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are then combined by a low-frequency electrical hybrid to introduce an additional 90◦ phase difference,
through which the unwanted signals in the I and Q paths, downconverted from the image, are out of phase,
and those downconverted from the wanted RF signals are in phase. In this way, the wanted IF signals will
be enhanced, while the downconverted image is eliminated. Thus, a photonics-based microwave IRM with
mixing spurs largely suppressed can be achieved. A good image rejection can also be achieved. Multi-octave
frequency downconversion can also be achieved, since the mixing spurs included those at 2f IF, and are
almost fully suppressed. For RF signals that have an instantaneous wide bandwidth (i.e., 2 GHz [30]),
the proposed photonic-based microwave IRM can realize a clean downconverted IF signal with all mixing
spurs suppressed, as shown in Figure 8a. As a comparison, the corresponding mixing results using a
different scheme are shown in Figure 8b [25]. In addition, an alternative photonics-based microwave IRM
system [30] showed superior performance as compared with the scheme represented in Figure 8b [25].

Figure 8. (a1,b1) Electrical spectra and (a2,b2) time-frequency diagrams of the downconverted results
for schemes in (a1,a2) [30] and (a1,b1) [25] when an RF signal with 2-GHz bandwidth and corresponding
image are received simultaneously.

4. Photonics-Based Microwave IRM Applications

The photonics-based microwave IRM can find potential applications in photonics-based RF
channelizers, electronic warfare scanning receivers, and multi-band integrated RF front-ends for satellite
and radar systems. RF channelization is a technique that can split a broadband signal into several
frequency channels that have a bandwidth that can be processed by state-of-the-art electronics. The RF
channelizer is usually applied in broadband RF receivers working in a high frequency regime. This high-
frequency regime is required for modern RF systems, such as high-resolution radar, electronic warfare and
multiband satellites [31]. By using the photonics-based microwave IRMs, it is possible to downconvert
RF components at multiple frequencies over a wide bandwidth to the same IF band simultaneously,
with great suppression of the in-channel interference. Previously, a typical coherent RF channelizer with
large instantaneous bandwidth was proposed and demonstrated based on = photonics-based microwave
IRMs [31,32]. A pair of optical frequency combs (OFCs) provide multiple LOs to downconvert different
parts of the RF signal to the same IF band, and the photonics-based microwave IRMs are employed to
achieve large in-band interference suppression in each channel. In a proof-of- concept experiment [31],
a Ku-band RF signal with a bandwidth of 5 GHz (13–18 GHz) is channelized into five channels with 1-GHz
bandwidth simultaneously. The measured in-band interference suppression ratio was greater than 25 dB
within the 1-GHz instantaneous processing bandwidth.
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The photonics-based microwave IRM can also play an important role in electronic surveillance,
since the electronic warfare receiver needs to receive signals over a large instantaneous frequency range.
Previously, a photonics-assisted electronic warfare scanning receiver was reported to incorporate the
photonics-based microwave IRM [33,34]. Figure 9 shows a schematic diagram. A tunable laser provides
a master tone, which is then amplified and split into two arms. On the upper arm, the tunable laser acts
as the optical carrier and is modulated by the RF input signal with CS-DSB modulation. On the lower
arm, a coherent OFC is generated and serves as an LOs. By directing the OFC into a distributed-feedback
slave laser, the laser will be injection locked, this leads to selection and amplification of the comb line
at the required LO frequency. Then, down-conversion and precise anti-alias filtering are carried out
through a photonics-based microwave mixer, incorporating a 90◦ optical hybrid. Scanning is realized by
wavelength tuning of the master laser via its driving current.

Figure 9. Scheme of a photonics-assisted electronic warfare scanning receiver using a photonics-based
microwave mixer incorporating a 90◦ optical hybrid [34].

In addition, broadband flexible reconfigurable RF front-ends can be built based on photonics-based
microwave IRMs [35]. This is of great importance for future RF systems, such as multi-functional
radars, broadband electronic warfare and intelligent satellites, to achieve multi-band RF signals for
receiving and emitting [36–38]. Previously, we have proposed and demonstrated a photonics-based RF
front-end using photonics-based microwave IRMs [35], which can realize photonic multi-frequency
LO generation, RF channelization, and multi-band up-conversion. Figure 10 shows a schematic
diagram of a microwave photonic RF front-end. Dual OFCs with different free spectral ranges
(FSRs) are generated and serve as photonic multi-frequency LOs. For signal receiving, the signal
OFC is used as an optical carrier, which is modulated by the received RF signals with a CS-OSSB
modulation format. The modulated OFC signal and the LO OFC are directed to a signal port and
an LO port of a 90◦ optical hybrid, respectively. With a programmable multi-channel filter to select
the desired signal, and with splitting of LO pairs into multiple channels, simultaneous image-reject
down-conversion and channelization are implemented with the help of PDs and low-frequency
electrical 90◦ hybrids. For signal transmitting, a signal OFC is injected into a Mach-Zehnder modulator
(MZM) to modulate electrical baseband signals. Then, the modulated signal is combined with LO OFC
and injected into a programmable multi-channel filter where desired optical components are selected.
With a PD to perform optical heterodyne, frequency up-conversion to the required RF band is realized.
A conceptual microwave photonic RF front-end covering S, X, K, Ku and Ka bands is successfully
implemented. Simultaneous channelization, with downconversion for signal receiving, and frequency
up-conversion for signal emitting, is demonstrated. Furthermore, based on this scheme, demonstration
of a multi-channel microwave photonic satellite repeater has been established.
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Figure 10. Schematic diagram of the RF front-end based on microwave photonics. OFC: optical frequency
comb; MZM: Mach-Zehnder modulator; LPF: low pass filter; ADC: analog to digital conversion [35].

Another application of photonics-based microwave IRM is a wideband or multi-band radar
system [39]. Generally, the key challenge associated with realization of multi-band radar systems is
bandwidth limitation of the electronic components. Microwave photonics provide a promising solution
due to the advantages brought by photonics, including higher carrier frequency and large bandwidth
spectrum and so on [40–42]. Previously, a dual-band linear frequency-modulated continuous wave
(LFMCW) radar receiver was built based on a photonic IRM [28]. Integrated up- and down-chirp linear
frequency-modulated (LFM) waveforms located in two different bands were used as transmitted signals.
Without photonics-based microwave IRM, the image component of beat frequency from the up- and
down-chirp bands would overlap with each other, resulting in false targets. A photonic IRM scheme
offers the possibility of independent target detection, and allows the sharing of hardware resources
and joint dechirp processing of dual bands. The image components can be further suppressed using
subsequent digital I/Q imbalance compensation. In addition to the above microwave applications,
an all-fiber continuous-wave coherent Doppler LiDAR was reported, based on photonic IRMs [43].

5. Discussions and Conclusions

In conclusion, we reviewed recent advances in photonics-based microwave IRMs. Two typical
methods to realize the photonic IRM, i.e., pre-filtering method and phase cancellation method,
were introduced. Application of the photonics-based microwave IRM in electronic warfare, radar and
satellite systems, was also described.

Currently, photonics-based microwave IRMs are mainly realized using discrete components, so their
performance will be affected by environmental vibration, leading to serious problems for practical
applications [46]. For example, the lengths of the two paths constructed by discrete components are difficult
to keep stable, introducing amplitude and/or phase variation of the signals transmitted through them.
To realize compact photonics-based microwave IRMs with high stability, integrated microwave photonic
technology can be applied [47–60]. Integrated components including modulators, 90◦ optical hybrids,
PDs [47–49], optical oscillators and circulators [50], integrated sub-systems (such as lasers) [51], microwave
photonic spectrum shapers [52], phase shifters [53], delay lines [54], filters [55] and processors [56–59] have
been widely investigated, and great progress has been made. In addition, incorporation of new materials,
such as graphene [60], to the field of integrated microwave photonics, brings new advantages, such as
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fast tuning speed, high nonlinearity and so on. Therefore, integrating photonics-based microwave IRM in
a chip is possible, which is expected to achieve better performance for practical applications.
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