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Abstract: An automated design approach using an evolutionary algorithm for the development
of quantum cascade lasers (QCLs) is presented. Our algorithmic approach merges computational
intelligence techniques with the physics of device structures, representing a design methodology
that reduces experimental effort and costs. The algorithm was developed to produce QCLs with
a three-well, diagonal-transition active region and a five-well injector region. Specifically, we
applied this technique to AlxGa1−xAs/InyGa1−yAs strained active region designs. The algorithmic
approach is a non-dominated sorting method using four aggregate objectives: target wavelength,
population inversion via longitudinal-optical (LO) phonon extraction, injector level coupling, and
an optical gain metric. Analysis indicates that the most plausible device candidates are a result of
the optical gain metric and a total aggregate of all objectives. However, design limitations exist in
many of the resulting candidates, indicating need for additional objective criteria and parameter
limits to improve the application of this and other evolutionary algorithm methods.

Keywords: quantum cascade lasers; computational intelligence; evolutionary algorithm; strain-enhanced;
simulation; design

1. Introduction

In the last two decades, quantum cascade lasers (QCLs) have become the standard for
high-efficiency emission sources in the mid-infrared (mid-IR) and THz spectrums [1,2]. QCL
radiative transitions occur between conduction-band subbands formed in quantum wells, making
QCLs unipolar devices—relying only on electrons as carriers. These devices offer reduction in
efficiency loss, for example by reducing Auger recombination, and have higher tunability than their
interband counterparts. However, traditional QCLs use material combinations in lattice matched or
strain-compensated regimes that limit their useful emission range to wavelengths greater than 3 µm.
Specifically, GaAs based devices are generally limited to emission greater than 5–7 µm because of the
low conduction band offset, ∆Ec, available when matched with AlGaAs.

Applications such as infrared counter measures, trace gas detection, and free-space
communication require high-efficiency and high-power emission and would benefit from operation
in the first atmospheric transparency window between 3–5 µm. However, few QCL devices emit in
this range. Strain-compensated InAlAs/InGaAs devices grown on InP substrates, traditionally used
for these applications, have limited tunability due to a fixed ∆Ec. One method we have proposed
is the use strained active region designs [3–5] with indium incorporation in the wells. While these
devices can be grown on the traditional (100) surface, indium incorporation is limited to only a
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few percent due to strain-induced three-dimensional growth modes [4]. However, pseudomorphic
growth of (Ga)InAs on GaAs (111)B is possible [4,5], opening up a new class of devices. These devices
benefit from strain-induced piezoelectric effect: reducing threshold voltage, extended wavelength
tunability, and enhanced non-linear susceptibility [3,5].

The large range of design possibilities using this new material system necessitates an approach
that ensures efficient, high-power capable devices. Our approach, as reported here, is the
development of a multi-objective evolutionary algorithm for optimized and intelligent search of
this design space. This algorithm uses a self-consistent Schrödinger–Poisson solver (nextnano3) for
simulation of the QCL device candidates [6]. In this work, nextnano3 was configured to compute
device structures using an effective-mass approximation of the envelope function with plots of the
relevant moduli squared of the wavefunctions and Dirichlet boundary. Also incorporated in this
simulation are calculations of direct and indirect energy gaps, their temperature dependencies, and
conduction and valence band deformation potentials accounting for strain effects in pseudomorphic
thin layers [7]. Figure 1 shows a general flow diagram of this algorithm. The nextnano3 simulation
tool provides electron energy levels, wavefunction probability (Ψ2), carrier lifetimes, dipole matrix
element data to the algorithm. This data is used to evaluate candidates and calculate fitness values
based on a multi-objective scheme rooted in the physics of QCL device operation.

Figure 1. General flow diagram of the evolutionary algorithm used in this study.

2. Background of Evolutionary Algorithms and QCLs

Evolutionary computation is a set of optimization algorithms that use the basic processes
of Darwinian nature: selection, breeding, mutation, inheritance, etc. to make decisions about a
population based on objectives. This process is iterative and the intended outcome is progress,
based on the objectives, in the population. In this work, the techniques of evolutionary
computation, specifically multi-objective evolutionary algorithms (MOEAs), are used to search the
massive design space of the diagonal transition QCL. Our current focus is on strain-enhanced
(AlxGa1−xAs/InyGa1−yAs) active region designs; however, this algorithmic design approach is
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much more broadly applicable. As described in greater detail in the following section, the gene
representation is real-valued, classifying our approach as an evolutionary algorithm rather than a
traditional genetic algorithm that uses binary gene representation. Otherwise, the techniques are
most similar to the second generation non-dominated sorting genetic algorithm (NSGA-II) [8].

Recently, some research groups have applied the techniques of global and direct optimization
to the design of QCLs [9–23]. These include use of iterative or direct optimization [9–11],
simulated annealing algorithms [12,13], single-objective genetic algorithms [14–21], particle swarm
optimization [22], and multi-objective genetic algorithms [23]. QCL structures are complex
multi-layer systems and optimization requires a scheme capable of handling a large number of
variables with complex interactions. Direct and iterative optimization methods lack the ability to
efficiently search the parameter space. Likewise, simulated annealing methods, while capable of
global search, are inefficient for a large number of variables and do not take advantage of parallel
computing. Evolutionary algorithms such as genetic algorithms and particle swarm optimization are
much more efficient methods for the large parameter space of a QCL design and are well suited for
parallel computation.

The key to a successful optimization algorithm is the choice of the objective or merit function(s):
the trait(s) being evaluated that classify the fitness of a design. Almost all of the current studies
used a form of gain [9–13,15], or a measure related to gain such as wall-plug efficiency [16],
population inversion [17,21,23], oscillator strength [17,21], and period length [17]. Some groups used
an objective function specific to the design, such as non-linear susceptibility (for second-harmonic
generation) [18,19] and third harmonic power [22]. Only one study is known to have used a
multi-objective, non-aggregated, approach [23]. However, this group’s apparent interests lie in the
comparison of evolutionary algorithm techniques rather than the resulting QCL. No evolutionary
programming based studies are known to date that incorporate the full extent of design principles
from a multi-objective approach.

Many of the groups limited their optimization algorithms to the active region of a QCL
design [9,11,12,15,17–19,21]. There is a delicate interplay between the injector and the active region
and these groups must either set strict limits on the position of the upper state energy level EU and
the lower state energy level EL to suit a given injector design or will need to perform additional
optimization to find a suitable injector. The coupling between the lower state and the injector is
especially critical in our chosen material system. It is possible that the lower energy state will lie
below the conduction band of the adjacent injector region well. This necessitates that the injector
region be a integral part of the design and optimization methodology.

Various methods for calculating the relevant physics have been used including rate equation
modeling [10,12,13,15,17–19], density matrix transport model [11,16], Monte Carlo methods based on
Boltzmann transport [21], Pauli master equation [22], and Schrödinger(–Poisson) solver [9,14]. Each
of these methods have merits for use when considering the delicate balance between accuracy when
compared to experiment and computational efficiency. The main objective of this study is to evaluate
the applicability and effectiveness of the various objective functions to produce feasible QCL designs.
This goal balances toward the use of a computationally efficient method; however, our target material
system, which is a strained system, was heavily considered.

The use of global search, especially evolutionary algorithms, is well suited for any choice or
even variation of the QCL material system. However, in our case, the use of a strained material
system necessitates the use of additional objective evaluation criteria, as is discussed in greater detail
in the following sections.



Photonics 2016, 3, 44 4 of 16

3. Algorithm Description and Design Approach

The flow sequence of the algorithm is shown in Figure 1. The general parameters of this
algorithm are shown in Table 1. The application specific parameters are shown in Table 2. The design
of interest is the traditional three-well, diagonal-transition active region. Five (5) injector well/barrier
pairs and three active region pairs makes for a total of 16 layers that may be varied in the device. The
other two variables are the alloy concentrations of each well and barrier. Only the active region may
contain indium. Injector or active region doping is not considered in this work.

The data consists of a set of runs with an initial (training) population and a randomly generated
initial population. This makes for a potential for 6400 individual candidates tested in each run.
However, this algorithm includes elitism via carryover (the copying of the most fit candidates
unchanged into the next generation); therefore, the number of unique candidates is lower.

Table 1. General simulation parameters for the multi-objective evolutionary algorithm (MOEA).

Parameter Value

Initial Population Size 8
Population 64
Generations 100

Variables 18
Objectives 4

Table 2. Application specific simulation parameters for the MOEA.

Parameter Value(s)/Range

Surface Indices (111)
Electric Field (kV/cm) 48

Well Widths (ML) 1–96
Barrier Widths (ML) 1–96

Well Alloy (%) 0–100
Barrier Alloy (%) 10–45

Active Region Wells 3
Active Region Barriers 3

Injector Well 5
Injector Barriers 5

3.1. Initial Population

An initial population of QCL candidates is generated from a set of eight parents selected from
known working QCLs produced by groups including Faist, Razeghi, Sirtori, etc. [24–30] or as a
randomly generated set of parents. The initial stage of the algorithm converts this initial population
into a gene sequence, illustrated in Figure 2. Each parent is crossbred, using a real-valued crossover
operation, generating a population of 64 candidates. These resulting candidates undergo random
mutation, at a rate of 2%. Figure 3 gives a flow sequence of the conversion of the initial population.

The initial population gene sequence is given as values of the alloy concentration percentage
and thickness of each well and barrier in nanometers. The gene sequence in this algorithm is a
real-valued sequence of integers. A conversion of the lengths takes into account the alloy percentages
of the well and barrier and converts this into a lattice constant a using Vegard’s Law, resulting in
monolayers (ML).
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Figure 2. Generic gene sequence with value ranges.

Figure 3. Schematic flow for the initial population.

3.2. Simulation and Data Collection

After generating the initial population, each candidate’s gene sequence is converted into a
nextnano3 input file. nextnano3 is a Schödinger–Poisson solver and, for our purposes, is configured to
solve the single-band approximation with effective mass. It does this self-consistently with Poisson’s
equation. The software generates the first 20 eigenvalue solutions to the wave equation. The software
allows specification for the data to be output in text files—used to collect data from the simulation.

The simulation output data collected includes wavefunction data, ψ2
i , energy levels, Ei, dipole

matrix elements, |zij|, position and subband dependent effective mass, m∗, and LO phonon energies,
ELO. Relevant energy levels, ones with the highest probability, are determined for each well. Once
the Einj, E3, E2, and E1 levels are found, relevant electron lifetimes, τ3, τ2 and τ32 are imported from
the simulation data. The dipole matrix elements are used to calculate the oscillator strength, fosc,ij of
each possible energy transition. The oscillator strength equation is given as

fosc,ij =
2m∗m0

h̄2 |zij|2Eij (1)

where m0 is the free-space electron mass and h̄ is the modified Planck constant.

3.3. Fitness Evaluation and Candidate Selection

The algorithm is designed to produce diagonal-transition three-well active region designs with a
five-well/barrier pair superlattice injector region. Current iterations of this algorithm rank candidates
based on the following objective criteria: 3–5 µm emission and E3 confinement, Equation (2); LO
phonon resonance between E2 and E1 and alignment of E1 and injector well, Equation (3); injector
energy levels alignment/coupling, Equation (4); oscillator strength of the E32 transition and a
population inversion/gain metric, Equation (5).

Eph = E3 − E2 & E3 < Ec,max (2)

E21 ∼ ELO & E1 > Ec,min (3)
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fosc,ij & E3 − Einj & ∆Einj (4)

∆N ∝ τ3

(
1− τ2

τ32

)
& fosc,32 (5)

where Eph is the expected photon energy, Ec,max and Ec,min are the maximum and minimum
conduction band energies in the active region, respectively, ∆Einj is the thickness in eV of the injector
miniband, and ∆N is the change in electrons—a measure of carrier gain.

Parents are selected via rank selection. Each candidate is ranked based on the fitness of each
objective. The top two of each are selected for carryover into the next generation. Additionally,
top candidates from the aggregate ranks (mean of two objective fitness values) are selected for
carry over. Finally, the top two from the complete aggregate fitness values are selected as the final
carryover population.

This is a very elitist approach, which has the potential to find solutions very quickly, but at the
risk of being stuck in a locally optimized regime. To mitigate this, random genes are inserted into
the population by mating (crossover) the top candidates. The rest of the population is generated by
breeding (crossover and mutation) the carryover population.

3.4. Fitness Objective Calculation

The desired traits of candidates are given in Equations (2)–(5). Normalized fitness evaluation is
performed as given in Equations (6)–(14). Equation (6) evaluates if transition energy, E32, is in the
desired range. However, the E3 energy level must be adequately contained in the first active region
well: evaluated by Equation (7). Equation (8) evaluates if the E21 transition is near the LO phonon
scattering energy. It is possible, due to the lowering of the well with indium incorporation, that the
E1 level will lie below the conduction band minimum of the adjacent injector well. This undesirable
condition is mitigated using Equation (9). In the injector region, electrons should transition from well
to well via energy relaxation. The algorithm quantifies this transition by evaluating the oscillator
strength of adjacent energy levels via Equation (10). Additionally, the last injector energy level should
align with the E3 level of the active region as evaluated by Equation (11). In this equation, evpdf
refers to the extreme value probability density function, also known as the Gumbel distribution.
Ideally the injector energy levels should form a mini-band with minimum energy difference; we
use Equation (12) for this. Finally, a measure of the potential gain characteristics of the candidate
device is evaluated by looking at carrier lifetimes, Equation (13), and the strength of the E32 transition,
Equation (14).

f1a(x[eV]) =


1 0.248 ≤ x ≤ 0.413
normdist(0.248, 0.03) x ≤ 0.248
normdist(0.413, 0.03) x > 0.413

(6)

f1b(E3) =
1

1 + e−10(E3−Ec,max)
(7)

f2a(x) = normdist(x, Elo, 0.03) (8)

f2b(E1) =
1

1 + e−10[E1−(Ec,min−0.25)]
(9)

f3a,ij( fosc,ij) =
1

1 + e−7[ fosc,ij−0.5]
(10)

f3b(∆E3,inj) = evpd f (∆E3,inj, 0.01, 0.03) (11)

f3c(∆Einj) =
1

1 + e−7[∆Einj−0.5]
(12)

f4a =
1

1 + e−10[∆N−0.25]
(13)
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f4b =
1

1 + e−10[ fosc,32−0.5]
(14)

Each of the fitness functions are combined into a set of four (4) aggregate fitness measures,
Equations (15)–(18). These fitness evaluations are used to rank (maximize fitness value) and select
the top candidates for carryover and breeding to generate the next generation:

f1 = f1a − f1b (15)

f2 = f2a − f2b (16)

f3 = mean( f3a,ij, f3b, f3c) (17)

f4 = mean( f4a, f4b) (18)

4. Results and Discussion

To evaluate the quality of the fitness functions, they were tested against a reference design [27]
from the training population, Figure 4. The resulting normalized fitness values are given in Table 3.
The lower score for the injector coupling objective is indicative of the algorithm not considering all
the possible transitions or tunneling, but rather just a high coupling factor to the highest probable
wavefunction in the adjacent well. Per the sum rule, the oscillator strength coupling to all energy
levels will be one. This particular result indicates that further study is needed on how to evaluate an
effective relaxation/injector region. Currently, injectors for long wavelength devices are designed as
a graded super lattice structure so as to produce a miniband. This approach produces many energy
levels to which the electron may scatter.

Figure 4. AlxGa1−xAs/InyGa1−yAs QC laser reference design, adopted from [27] with alloy
proportions changed to x = 0.25 and y = 0.1 and simulated on GaAs (111).

Table 3. Reference design fitness evaluation.

Objective Normalized Fitness Value

Target Wavelength 0.743
LO Phonon Resonance 0.779

Injector Coupling 0.564
Gain Metric 0.4194
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Since the gain metric is normalized using a Sigmoid function, Equations (13) and (14), the
resulting fitness will have a maximum value of 1. However, the range of possible values for the
∆N metric is unknown. Therefore, the Sigmoid function parameters were chosen based on the range
of values found in the reference designs. The goal of the algorithm is to maximize these values. Of
note in this design is the fitness values for the injector coupling metric. The injector in this design
does contain a miniband, but the energy levels are above the E1 level, which for the coupling factors
necessitates energy absorption—a factor this algorithm tries to reduce.

4.1. Average Fitness Values over Time

Figures 5 and 6 show the average fitness values for each objective over all generations, with an
initial training population and with randomly generated initial candidates, respectively. With the
initial population derived from a training set, it is clear that when compared to the random set, the
initial average fitness values are higher, as expected. For the randomly generated population, average
fitness values initially increase. However, the fitness values decrease then level after around 30–40
generations. With the insertion of random genes into the population, the lowering of fitness is not
unexpected, but the large amount of elitism present in this algorithm should prevent the search from
straying significantly.

Figure 5. Plots of normalized average fitness per generation for (a) wavelength, (b) LO phonon,
(c) injector coupling, and (d) gain objectives when initial population was generated from a training set.

The randomly generated initial population is an interesting case study to see if by optimizing
the objectives, the algorithm would produce recognizable or plausible devices. For the LO phonon
and injector coupling based objectives, the algorithm shows a slow average overall improvement for
around 70 generations, after which the improvement seems to level off. This is likely an indication of
the random nature of inserting new genes into the population.



Photonics 2016, 3, 44 9 of 16

Figure 6. Plots of normalized average fitness per generation for (a) wavelength, (b) LO phonon,
(c) injector coupling, and (d) gain objectives when initial population was generated randomly.

Given many more generations in both the initial and random populations, it would be interesting
to see if the algorithm would improve average fitness values. The jagged but relatively level average
values of fitness are indicative of both the random gene insertion and the elitism present in the
algorithm with no advanced methods of changing the selection mechanism over time. To improve,
the algorithm needs to adapt a dynamic method of parental selection more advanced than simple
rank selection. The multi-objective nature of QCL design would be a good candidate for divide and
conquer methods where individual objectives are optimized in a separate process and design traits
are shared between processes.

4.2. Bandstructure Diagrams of Top Candidates

QCL candidate band-structure graphs with corresponding wavefunctions are given for the
top candidates in each objective ranking, as well as aggregate rankings. These graphs serve as
representations of what is considered the ’top’ output of the algorithm; however, the practicality of
these candidates is discussed. Additionally, some commentary is given on the performance of a given
ranking scheme and how additional ranking metrics could improve the outcome of the algorithms.

4.2.1. Initial Training Population

Given an initial training population, the algorithm is expected to be able to produce plausible
optimized devices. Not all of the initial training population has optimized values for our target
wavelength. However, they contain elements from working designs. Figure 7 shows the candidate
with the highest combined fitness after 100 generations of a simulation run. Table 4 shows the
normalized fitness values of this design candidate.
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Figure 7. AlxGa1−xAs/InyGa1−yAs QC laser candidate simulated on GaAs (111) with top aggregate
fitness rank given a training initial population. In this design, x = 0.21 and y = 0.25 and the layer
sequence (in nm) starting with the first injector well is: 3.0, 2.5, 3.0, 1.8, 2.0, 6.6, 1.1, 0.8, 3.0, 6.4, 1.4,
1.1, 4.5, 2.3, 3.0, 2.8. Barriers are in bold and the active region is shown in italics.

Table 4. Initial population best candidate design fitness evaluation.

Objective Normalized Fitness Value

Target Wavelength 0.8611
LO Phonon Resonance 0.9732

Injector Coupling 0.6622
Gain Metric 0.8829

The design, especially the active region, has traditional elements with a nicely aligned injector
level and well confined E3 level. The E21 transition is on the order of an LO phonon and the target
wavelength is achieved. However, as indicated by the lower fitness value, the injector region is not
optimal. There is not a clear miniband being formed, and the third and fifth injector barriers are very
wide reducing tunneling probability (a factor not currently considered by the algorithm). As will
be shown shortly, modifications to the injector optimization algorithm are necessary to account for
barrier thickness—using the oscillator strength alone does not seem to be enough.

Figure 8 shows the candidate with the best fitness value for the wavelength objective (1) after 100
generations of a simulation. One of the reasons for looking at the strained AlxGa1−xAs/InyGa1−yAs
material system is the potential for increased conduction band offset with increasing indium
incorporation. This would have the benefit of giving a large E32 energy as well as good E3

confinement. The candidate has alloy values of x = 0.22 and y = 0.25. Here, the algorithm has
utilized the advantages of indium incorporation, but it is surprising that the aluminum percentage is
lower. Given the built-in field due to the Piezo-electric properties of the (111) orientation, it is likely
not necessary to have such a large percentage of aluminum. However, the algorithm does not take
into account any negative effects of the large strain, nor the difficulty of pseudomorphic growth of
highly strained layers.

Figure 9 shows the candidate with the best fitness value for the LO phonon objective (2). It is
expected that this portion of the algorithm would be affected by the second and third active region
well widths. The only challenge here is the accounting for the potential of the energy level to be
too low for effective extraction into the injector region, which is affected by the well alloy ratio. The
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algorithm does not account for coupling strength, via oscillator or other mechanism, between the
levels. This is likely why the algorithm produced a candidate with large barriers between the wells.
Improvements should include a method for accounting for the coupling of wells and energy levels
and/or tunneling probability to make for more realistic device design.

Figure 8. AlxGa1−xAs/InyGa1−yAs QC laser candidate simulated on GaAs (111) with top objective (1)
fitness rank given a training initial population. Relevant wave functions, E3 and E2 are in bold
and colored.

Figure 9. AlxGa1−xAs/InyGa1−yAs QC laser candidate simulated on GaAs (111) with top objective (2)
fitness rank given a training initial population. Relevant wave functions, E2 and E1 are in bold
and colored.

One of the more difficult implementations in this algorithm was the optimization of the injector
region. Figure 10 shows the candidate with the best fitness value for the injector region objective (3).
The design shows a tight miniband of energy levels. However, as previously noticed in the overall
best design, the injector region contains a large barrier. Again, this should be accounted for to improve
the design.
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Figure 10. AlxGa1−xAs/InyGa1−yAs QC laser candidate simulated on GaAs (111) with top
objective (3) fitness rank given a training initial population. Relevant wave functions, Einj,ij are in
bold and colored.

Optimization of the gain function alone tends to produce devices with many of the characteristics
expected of a working QCL. Figure 11 shows the candidate with the best fitness value for the gain
objective (4). The gain metric accounts for the positioning of the three active region levels; therefore,
it is not surprising to see such good results from only this objective. However, this metric alone does
not account for wavelength of the device. The candidate shown below has an expected wavelength of
9.66 µm. Therefore, this metric cannot be used alone. In addition, there is no direct optimization of the
injector; however, the oscillator strength of the transition between E3 and E2 is being considered. It is
interesting to see that the gain metric does not seem to be affected by lack of a minigap in this design.

Figure 11. AlxGa1−xAs/InyGa1−yAs QC laser candidate simulated on GaAs (111) with top
objective (4) fitness rank given a training initial population.
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4.2.2. Random Initial Population

To further test the ability of the algorithm design plausible QCL structures, we removed the
training population by producing a randomly generated initial population. If the objectives and
fitness measures are sufficient, given enough time, the algorithm should produce workable devices.
Figure 12 shows two candidates with high aggregate fitness values.

(a) (b)

Figure 12. AlxGa1−xAs/InyGa1−yAs QC laser candidates simulated on GaAs (111). (a) candidate
with top aggregate fitness rank and (b) candidate showing diversity of designs.

While these candidates show some elements of known working QCLs, they have other features
that are not traditionally characteristic of a working device. The candidate shown on the left has very
large barriers in the active region, effectively uncoupling the wells and has large wells in the injector
region. The candidate on the right shows a more traditional coupled well active region, but the
target wavelength is missed. Additionally, the injector region contains both large barriers and wells.
Improvement of the algorithm is necessary both in the parental selection and the fitness metrics being
used. However, it is remarkable that after just 100 generations given no training set, the results do
show some promising signs. Figure 13 shows top candidates for each of the four objectives after 100
generations of a simulation run with only a random initial population.

These candidates, like the ones produced with a training population, show similar elements, but
also similar weaknesses. Objectives (1) and (2) produce candidates with large barriers to decouple
the wells, objective (3) produces large barriers, and objective 4 alone produces traditionally looking
active regions but does not account for the desired wavelength.

Adding objectives/fitness metrics to the scope of the algorithm may produce better results
(working devices) but necessitates more sophisticated algorithms to assure speedy convergence on
optimal solutions. Our results here show how the different objectives led to specific results and when
combined can produce plausible devices. There is, however, room for improvement.
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(a) (b)

(c) (d)

Figure 13. AlxGa1−xAs/InyGa1−yAs QC laser candidates simulated on GaAs (111) with top fitness
rank for (a) wavelength, (b) LO phonon, (c) injector coupling, and (d) gain objectives given a random
initial population.

5. Conclusions

Our past work explored the possibility of quantum cascade laser designs based on the
non-traditional GaAs(111) surface. We found that growing pseudomorphic InAs on GaAs(111)B is
possible [4], which opens up a new material system on which to develop devices. Ternary InxGa1−xAs
at reasonable alloy content percentages benefit from lower threshold voltages and higher efficiency
while extending the operating range [3].

To explore this concept, a multi-objective evolutionary algorithm was developed and used to
search the design space made possible by the promise of this new material system. The algorithm was
successful in searching the design space, but was ultimately limited in many of its conclusions. The
algorithm found designs, which it ranked high in all or most of the objective categories, but would
be unlikely to work in real life. Further enhancement of the algorithm is possible by adding more
objectives that will regulate the fitness of the candidate solutions more effectively. Future work should
at least incorporate objectives for mini-band and mini-gap formation. Additionally, the interplay
between objectives in this multi-objective approach should be considered carefully to improve the
resultant designs. Ultimately, there is hope that, with further refinement, the algorithm would be
successful in finding working devices more effectively than traditional design approaches, such as
the design toolbox method of [1].
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This algorithm uses rank selection for its parental selection and mutation operations for
enhancement of multimodal search range. Future algorithm development should expand the use
of more advanced parental selection methods to provide quicker and more effective search. More
advanced evolutionary algorithm techniques may be in order to help narrow the variable range.
This could be accomplished using a sequential objective evaluation approach, where one objective is
optimized and used to narrow the variable parameter range, then another objective, and so on. There
are many potential approaches, but, overall, the results of this work show promising possibilities for
the viability of an intelligent search approach for solving the problem of designing device structures.
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