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Abstract: We reveal that asymmetric plasmonic nanostructures can exhibit significantly
different absorption and scattering properties for light that propagates in opposite directions,
despite the conservation of total extinction. We analytically demonstrate that this is a
consequence of nonorthogonality of eigenmodes of the system. This results in the necessity
for modal interference with potential enhancement via Fano resonances. Based on our theory,
we propose a stacked nanocross design whose optical response exhibits an abrupt change
between absorption and scattering cross-sections for plane waves propagating in opposite
directions. This work thereby proposes the use of Fano resonances to employ nanostructures
for measuring and distinguishing optical signals coming from opposite directions.
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1. Introduction

Reciprocity is one of the key concepts in optics because it is related to the equal transmission of
oppositely-propagating plane waves through any structure or medium; a manifestation of the total optical
loss being conserved [1–4]. Indeed, to induce a difference in transmission from oppositely-propagating
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light requires optical elements that are driven by magnetic fields or materials to break the conditions of
reciprocity [5–8]. Such nonreciprocal optical behavior is widely utilized in optical communications
devices, and particularly optical isolators and circulators. There has subsequently been significant
interest in miniaturizing these devices for incorporation into nanophotonic chips and the broader
realization of integrated optics systems. However, there remain limitations on the minimum propagation
length or interaction time that is needed to produce sufficient reciprocity breaking. Promising avenues
exist to utilize gyromagnetic response [9] or engineered nonlinearity [10] to inherently break reciprocity,
but here we instead present a way to produce nonreciprocal optical behavior in a linear system without
breaking reciprocity. We begin by acknowledging that nanoantennas and metasurfaces, in general, have
two separate loss channels: the radiative loss (scattering cross-section) and the dissipative material loss
(absorption cross-section), both of which can be associated with distinct and measurable quantities.
In particular, we show that the reciprocity constraint is not directly applicable to these independent
loss channels. Indeed, this freedom has recently been demonstrated to allow circular dichroism in the
absorption of planar structures [11] (arXiv). Here, we extend this approach to investigate nonreciprocal
absorption and scattering cross-sections of three-dimensional nanostructures and stereometamaterials.
First, we show that existence of nonorthogonal eigenmodes, in general, results in resonant interference
phenomena associated with the Fano resonances. We then demonstrate that this nonorthogonality
permits the absorption and scattering cross-section of an optical device to distinguish between opposite
propagation directions, such as depicted in Figure 1.

Figure 1. A schematic representation of different optical loss channels: radiative (scattering)
and dissipative (absorption). A planewave propagating in one direction will be channeled
into far field scattering, while (simultaneously) an identical plane wave propagating in the
opposite direction will be channeled into material absorption.

It suggests that absorption and scattering provide us with the independent measurements on
oppositely-propagating signals in the vicinity of a Fano resonance. We further show that such a
nonreciprocal optical device can be designed in a way to have optical response being independent of
polarization. This behavior demonstrates that direction-isolating measurements are widely achievable
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in passive optical nanodevices. Indeed, this proposes a new approach for ultrathin optical isolation
of signal.

2. Eigenmodes, Interference, and Fano Resonances

It was recently demonstrated that Fano resonances can lead to circular dichroism in the absorption
cross-section of planar chiral nanostructures [11]. The existence of such circular dichroism means
that the absorption in the nanostructure was not constrained by reciprocity. In this article, we
investigate further Fano resonances and their role in producing nonreciprocal absorption and scattering
cross-sections of finite nanostructures. Below, we outline our approach and establish why Fano
resonances can be associated with nonorthogonal eigenmodes. The existence of such nonorthogonal
eigenmodes is then used to predict and demonstrate propagation-dependent absorption and scattering
cross-sections.

The fields inside nanostructures can be associated with the induced currents and polarizations, which
determine the complete near- and far-fields produced by the given configuration. In this approach
all eigenmodes are defined within finite volumes. However, importantly, there is also a one-to-one
correspondence between such eigenmodes and resonances [12], which provides an intuitive basis to
capture the optical features of resonant nanostructures. The relationship between induced current, J, and
an arbitrary applied field, E0, is expressible in terms of dyadic Green’s functions [13]:

−iω[ε− ε0]E0(x) =J(x)− k2[ε(x)− ε0]
∫
V

Ĝ0(x,x
′)J(x′) d3x′ (1)

where k is the wavenumber, ω is the angular frequency, V is the volume of the scatterer (assumed finite),
and Ĝ0 is the free space dyadic Green’s function:

Ĝ0(x,x
′) = P.V.

[
Ī +

1

k2
∇∇

]
eik|x−x

′|

4πε0 |x− x′|
− L̂

δ(x− x′)

k2ε0
(2)

where L̂ is the source dyadic [13] and P.V. implies a principal value exclusion of x′ = x when
performing the integration in Equation (1). We have also defined permittivity (ε) in terms of both the
conductivity (σ) and the electric susceptibility (χ) to define the current (J) as the sum of both polarization
and conduction current, which is related to the total electric field as:

ε ≡ (χ+ 1)ε0 −
σ

iω
⇒ J(x) = −iω [ε(x)− ε0]E(x) (3)

Equation (1) is therefore a general expression for modeling the complete optical response of an
arbitrary scattering geometry. An eigenmode, vi, of any given structure can then be defined such that it
will satisfy Equation (1) as:

−iω[ε− ε0]λivi(x) =J(x)− k2[ε− ε0]
∫
V

Ĝ0(x,x
′)vi(x

′) d3x′ (4)
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where λi is the eigenvalue of vi. Because the full set of these eigenmodes form a complete basis for
the optical response, they allow us to model the entire range of bright and dark resonances in any given
system. However, recently, it was demonstrated that such a basis of eigenmodes is not necessarily
orthogonal [14]. The origin of such nonorthogonal eigenmodes can be understood as a consequence of
the inherent radiation losses, where the Equation (1) corresponds to a non-Hermitian system. To consider
the effect of this nonorthogonality, and its relation to the Fano resonances, we can refer to the extinction
cross-section, which can be written in terms of the near-field overlap of induced current and incident
field [11,15].

σext =
1

|E0|2

√
µ0

ε0
Re
[ ∫

Vs

E∗0 · J dV
]

(5)

Additionally, an arbitrary applied field and the induced currents can be defined in terms of a linear
superposition of the eigenmodes:

E0 =
∑
i

aiλivi ⇒ J =
∑
i

aivi (6)

Using these expressions, we are able to rewrite the total extinction (Equation 5) in terms of
eigenmodes and eigenvalues:

σext =
1

|E0|2

√
µ0

ε0

∑
i

(
Re[λi]

( ∫
Vs

|ai|2|vi|2 dV
)

︸ ︷︷ ︸
direct terms

+
∑
j 6=i

Re
[
a∗i ajλ

∗
i

( ∫
Vs

v∗i · vj dV
)]

︸ ︷︷ ︸
interference terms

)
(7)

Notably, we have two sets of terms contributing to extinction: direct terms that provide contributions
to extinction from individual eigenmodes, and also interference terms coming from the overlap between
different eigenmodes. For orthogonal eigenmodes the interference term vanishes. Moreover, the
presence of nonorthogonal eigenmodes leads to existence of the Fano resonances in this model. To
demonstrate this, we first rule out any dependency of a given eigenmode’s excitation (i.e., the ai

coefficients of Equation (6)) on the excitations of other eigenmodes. This can be done very directly,
because the dyadic Greens function is complex symmetric

Ĝ0(x,x
′) = Ĝ0(x

′,x), Ĝ0 = Ĝ0
T

(8)

Due to this symmetry, it is possible to write the overall operator of the eigenvalue equation
(Equation (4)) as a complex symmetric matrix and in the normal form shown by Gantmacher [16].
Thus, such nondegenerate eigenmodes must be orthogonal under unconjugated projections [17].

∫
V

vα · vβ dV = 0 when λα 6= λβ (9)
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Subsequently, the excitation of any given eigenmode is defined entirely by the eigenmode itself and
the incident field:

λiai =

∫
V
vi · E0 dV∫

V
vi · vi dV

(10)

It shows that the excitation of any given eigenmode is independent from the excitations of any
other eigenmode. This means that the only way an interaction between two or more eigenmodes
affects the extinction is due to nonorthogonality of these eigenmodes resulting in the interference terms
seen Equation (5). This is indeed the conclusion of earlier work for the Fano resonances arising in
nanoparticle oligomers [14]. In particular, we have established that the excitation of eigenmodes is
determined entirely from the eigenmode itself and the excitation field. As such, the unambiguous
conclusion is that all optical Fano resonances can be considered as a consequence of interference between
so-called “bright" eigenmodes. This is in good accordance with the bright mode Fano resonances
that have been proposed and observed in recent years [14,18–20]. Furthermore, the existence of
nonorthogonal eigenmodes allows us to describe nonreciprocal absorption and scattering cross-sections
of lossy nanoscale structures.

3. Nonreciprocal Absorption and Scattering

We begin this section by considering three-dimensional geometries that have at least 3-fold discrete
rotational symmetry and are excited by plane waves at normal incidence in order to utilize derivations
provided in Ref. [11]. However, the use of such symmetry also prevents any circular cross polarization in
transmission [21], which is often observed as circular conversion dichroism [22–24], and not of interest
here. Using more formal notation, we focus on structures with Cn symmetry for n ≥ 3. Notably, unlike
the case of planar structures considered in Ref. [11], we do not have a plane of reflection symmetry
perpendicular to the propagation direction and we, therefore, cannot relate the excitations of plane waves
propagating in opposite directions. As such, we are automatically driven to account for the role of
propagation direction. So, we begin by defining the current distribution, J, induced by a plane wave
E0, and a current distribution, J′, induced by the reciprocal plane wave, E0

∗, where the * indicates a
complex conjugate. These are source and response distributions satisfying Equation (1).

However, we can now acknowledge that a normally-incident plane wave can only excite eigenmodes
that transform according to the two-dimensional, E irreducible representations of the rotational
symmetry point group (e.g., see Table 1). A result from Ref. [11] then follows directly: if we assume
the eigenmodes are orthogonal, then the total current intensity is conserved in the structure between
reciprocal plane waves.

∫
V

J∗ · J dV =

∫
V

J′
∗ · J′ dV (11)
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Table 1. Character table for the 4-fold rotational symmetry group (C4). Rows are
irreducible representations, columns are symmetry operations, and each element denotes the
trace of the associated symmetry operation’s matrix representation in the given irreducible
representation.

C4 E C4 C2 C 3
4

A 1 1 1 1

B 1 −1 1 −1

E
{

1

1

i

−i
−1
−1

−i
i

If we have a uniform material loss throughout our geometry, this result means that the absorption
cross-section is conserved for reciprocal planewaves. Thus, due to the fact that the extinction is already
conserved by reciprocity, the scattering cross-section must too be conserved, as it is simply the difference
between extinction and absorption. In other words, this result shows that nonorthogonal eigenmodes are
necessary to permit nonreciprocal behavior in the absorption and scattering cross-sections. In practical
terms, we need a structure that can exhibit a Fano resonance under plane wave excitation. Now, if we
are considering a single, isotropic and homogeneous material, the eigenmodes of the Green’s function
operator (depicted in Equation (1)) are the eigenmodes of the total system. The eigenmodes are therefore
independent of material properties, which instead affect only the eigenvalues. Notably, Ĝ0 is a complex
symmetric operator, which means that, when Ĝ0 is real, the whole operator is actually real symmetric
and therefore Hermitian; making all its eigenmodes orthogonal. As the source dyadic (L̂) is real, this
means that retardation of coupling within the structure has to be nontrivial (eik|x−x′| 6→ 1) in order to
have nonorthogonal eigenmodes. This retardation condition provides a design guideline for generation
of the Fano resonances. Nanoparticle oligomers were used as planar chiral geometries to satisfy this
retardation condition in Ref. [11], but for nonplanar geometries we can instead look to the work done
in the area of stereometamaterials [25]; three-dimensional structures commonly, albeit not always [26],
constructed from stacked elements [27–29]. Here, the distance between stacked elements is able to
guarantee nontrivial retardation in coupling.

To demonstrate that this indeed provides nonorthogonal eigenmodes, we consider a simple dimer
model of two electric dipoles, p1 and p2, with isotropic polarizabilities, α1 and α2, at locations, r1 and
r2, along a principal axis, separated by a distance, |r1 − r2| = d. For such a system, we can use the
relation between current and polarization in Equation (3), to simplify Equation (1) down to the known
dipole model.

α1ε0E0(r1) = p1 − α1k
2Ĝ0(r1, r2)p2 (12)

α2ε0E0(r2) = p2 − α2k
2Ĝ0(r2, r1)p1 (13)

Given the reflection symmetry of the structure about the principal axis, there will be one set of
eigenmodes with dipole moments polarized parallel to the principal axis and a separate (orthogonal) set
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of eigenmodes that have dipole moments polarized perpendicular to the principal axis. This orthogonal
separation is a result of the eigenmodes that are affected by such symmetric reflection operations being
orthogonal to those that are not affected. More formally, it is a consequence of the eigenmodes being
associated with different irreducible representations of the C∞v point group. In any case, we are able
to consider exclusively the dipole moments that are perpendicular to the principal axis, because they
correspond to those that can be excited by a plane wave propagating along the principal axis. Moreover,
the relationship between these dipole moments and the applied field can be written in a simplified form:

E0(r1) = (α1ε0)
−1p1 −Gdp2 (14)

E0(r2) = (α2ε0)
−1p2 −Gdp1 (15)

where Gd ≡
eikd

4πε0d

(
k2 +

ik

d
− 1

d2
)

From this, we can deduce analytical expressions for the two nondegenerate eigenmodes that are
excitable by a planewave in this system:

|v1,2 〉 ≡
[ p1

p2

]
=
[ α2 − α1 ± δ

2α1α2ε0Gd

]
(16)

where δ ≡
√
(α2 − α1)2 + (2α1α2ε0Gd)2

Importantly, these two eigenmodes are not necessarily orthogonal provided that α1 6= α2 and Gd 6= 0,

〈v1|v2 〉 =
∣∣2α1α2ε0Gd

∣∣2 + (α2 − α1 + δ)∗ · (α2 − α1 − δ) (17)

Therefore, these results demonstrate that nonorthogonal eigenmodes exist even in the dimer model,
but only if there is coupling between the dipoles and the dipole polarizabilities are different. In other
words, Equation (17) suggests that even an asymmetric dimer should be able to realize nonorthogonal
eigenmodes and, therefore, nonreciprocal absorption and scattering. To demonstrate this, we consider
an idealized dimer made from two nanoparticles of 200 nm diameter. We also assume that the material
properties of nanoparticles are described by Drude model with a plasma frequency of 2.07 PHz. The
particles are separated by a gap of 200 nm and excited with a plane wave along the dimer’s principal axis.
This structure is illustrated in Figure 2a. The nonreciprocal absorption can be obtained by making one
particle lossless and the other particle lossy with a damping factor of 600 THz (a very large damping).
Importantly, because we define one nanosphere to be lossless, the absorption cross-section will only
be related to the dipole moment intensity in the lossy particle, and not the integral over the complete
geometry that we originally considered for continuous systems made from a single material, such as in
Equation (11).
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Figure 2. (a) Schematic of the system under consideration: a dimer consisting of lossy and
lossless nanoparticles excited by plane waves propagating in opposite directions along the
dimer’s principal axis. The parameters are in the text. We plot (b) the absolute value of
the projection (Equation (17)) between the two normalized eigenmodes (Equation (16)) of
this geometry. The simulated extinction, absorption and scattering cross-sections show the
associated difference for oppositely-propagating plane waves.

In Figure 2b, we show that the dipole model eigenmodes of this dimer (Equation (16)) are
nonorthogonal across the majority of the visible frequency range. The extinction, absorption and
scattering cross-sections of this dimer are then shown in Figure 2c. It demonstrates the difference
in the scattering and absorption between oppositely-propagating planewaves at wavelengths where
two resonances appear to overlap. Thus, even such a simple dual-layer geometry is able to provide
strongly nonorthogonal eigenmodes and the nonreciprocal behavior. Notably, while we utilized different
materials to produce nonorthogonal eigenmodes for this dimer, the coupling between dipoles is still
a necessity for nonorthogonal eigenmodes (i.e., consider Gd → 0 in Equation (17)). However, to
consider a realistic dimer nanostructure, we have to acknowledge that material properties are largely
fixed by fabrication and that we must instead consider geometry. On the simplest level, different sizes
and shapes of nanoparticles will be associated with different dipole polarizabilities and thereby produce
the same effect as material change did in Figure 2. Ultimately, the dipole responses in a nanoparticle
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dimer do not provide sufficient freedom to induce significant modal interference with realistic material
parameters. We can optimize the response by considering pairs of stacked, symmetric nanocrosses as
seen in Figure 3 (similar in concept to the stereometamaterial in Ref. [27]). Arrays of such stacked
nanocross geometries have previously exhibited a difference in effective impedance and hence reflection
for opposite propagation directions [30]. For our analysis, a relative twist in the orientations of the
nanocrosses also provides chirality and allows us to consider the lowest symmetry conditions that our
earlier theoretical arguments applied to (i.e. the Cn point groups).
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-z
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30
 0o

o

30o 0o

,

,

Figure 3. Simulated nonreciprocal scattering and absorption cross-sections in stacked gold
nanocrosses from linearly-polarized plane waves propagating in opposite directions (±z)
along the rotational symmetry axis. Simulation results are shown to be the same for both
chiral (C4) and achiral (C4v) structures, and both are indepedent of polarization. The
calculation parameters are given in the text.

The dimensions of the stacked nanocrosses were chosen as to produce nonorthogonal eigenmodes
and a Fano resonance by pushing the independent resonances of each nanocross together. This is done
in Figure 3 using a pair of gold crosses separated by a 120 nm gap, and with dimensions: total length
equal to 150 nm, arm width equal to 40 nm and thickness equal to 30 nm. We then reduced the arm
width, w, of one cross to 25 nm in order to provide the necessary asymmetry. In Figure 3, we can
clearly see that the absorption and scattering cross-sections differ dramatically between reciprocal plane
waves, and independently of whether the structure is chiral or not. Interestingly, the lack of chirality
tells us that the difference in scattering and absorption cannot be attributed to bianisotropic coupling,
which was the mechanism for the impedance difference in Ref. [30]. In this regard, the symmetry of
the individual crosses ensures that, in isolation, their optical responses are isotropic, yet notably: the
optical response of the stacked crosses remains independent to the relative twist, which suggests that
there is isotropic coupling between the two crosses. Such isotropic coupling would exist if the dominant
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interaction between crosses was dipolar, as it would make the situation analogous to the coupled isotropic
dipoles considered for Figure 2. Dipolar coupling would be expected to dominate with increasing
separation between crosses, and, therefore, the twist-independent optical response we observe will be
a consequence of the larger distance between the two crosses. Additionally, as is also suggested by the
negligible effect of chirality, the choice of linear or circular polarization of the incident plane wave has
no effect on any of the cross-sections. Indeed, in the chiral geometry, there appears to be negligible
circular dichroism between oppositely-handed plane waves that propagate in the same direction for
any of the cross-sections, simply because the associated curves are separated by less than 0.001 µm2.
Similarly, in regard to linear polarizations, the angle of linear polarization is of no significance because
the discrete rotational symmetry is separately known to prevent any such angular dependence in all of
the cross-sections [31]. Figure 3 therefore demonstrates that Fano resonances and modal interference
in stacked nanocross geometries allow for significant variation in optical response depending on the
propagation direction and irrespective of any polarization. All simulations were performed using CST
Microwave Studio and gold data was taken from Johnson and Christy [32].

To finally provide an investigation into the role of the asymmetry about the z-axis for these stacked
nanocrosses, we can consider varying the arm width, w, of one nanocross while holding the other
constant. The absorption, scattering and extinction cross-sections of the stacked nanocrosses through this
parameter sweep are shown in Figure 4. Notably, when the two nanocrosses are identical (w = 40 nm),
the geometry hasD4 symmetry and is, thereby, invariant under a π-rotation perpendicular to the principal
rotation axis, which makes reciprocal planewaves equivalent under geometric symmetry operations.
In other words, we cannot have Dn symmetry if we want to produce nonreciprocal absorption and
scattering. However, we can see that this invariance is related to direction of scattering and absorption
splitting interchanging either side of Dn symmetry. Therefore, Figure 4 ultimately shows us that the
difference in scattering and absorption is widely achievable in systems such as stacked nanocrosses that
support closely overlapped and coupled resonances, and therefore modal interference. As such, this
demonstrates that significant nonreciprocal measurements can be performed with stereometamaterial
geometries.

4. Conclusions

We have shown that the distinct absorption and scattering cross-sections of nonplanar nanostructures
can distinguish between reciprocal planewaves, provided the system has nonorthogonal eigenmodes.
The relation of this effect to nonorthogonal eigenmodes was derived rigorously, and subsequently we
established that the nonreciprocal absorption and scattering could be realized and enhanced through
the Fano resonances. We have proposed that two stacked nanocrosses would provide the necessary
retarded coupling to produce nonorthogonal eigenmodes and, thus, Fano resonances, while also
providing sufficient design freedom for optimization. It was subsequently demonstrated that this
geometry produces substantial differences in absorption and scattering cross-sections for plane waves
that propagate in opposite directions. It was additionally shown that this difference would be independent
of the plane wave’s polarization. This work subsequently establishes that modal interference and
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Fano resonances enable a passive nanostructure to simultaneously measure and distinguish signal from
reciprocal plane waves.
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Figure 4. Simulation results for stacked gold nanocrosses, under excitation from circularly
polarized plane waves given by propagation in either the +z or −z direction. The variation
between right and left circular polarizations in the same propagation direction is negligible
(< 0.001µm2) and making the associated curves overlapped here. The arm width, w, of one
nanocross arm is varied from 20 to 60 nm, showing a significant difference in the absorption
and scattering cross-section of reciprocal planewaves, provided the system does not have D4

symmetry. The calculation parameters are given in text.
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