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Abstract: We discuss a simple first-principles homogenization theory for describing, in
the long-wavelength limit, the effective bianisotropic response of a periodic metamaterial
composite without intrinsic chiral and magnetic inclusions. In the case where the dielectric
contrast is low, we obtain a full analytical description which can be considered the
extension of Landau-Lifshitz-Looyenga effective-medium formulation in the context of
periodic metamaterials.
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1. Introduction

Tailoring the desired electromagnetic response of a composite structure is one of the main
challenges of modern photonics and metamaterial science is the natural platform to achieve this goal.
Metamaterials are composite materials artificially manufactured by repeating individual subwavelength
elements (known as meta-atoms and meta-molecules) designed to mimic, at a mesoscopic scale, the
electromagnetic response of atoms and molecules. Bearing in mind that the recent technology gives
us the possibilities of achieving and combining subwavelength inclusions with various shapes, one
can achieve an effective electromagnetic response at will. Exploiting the fact that a metamaterial is
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characterized by a subwavelength inhomogeneity scale, one generally assumes that its electromagnetic
response coincides with that of a homogeneous medium and suitable phenomenological material
parameters (such as effective permittivity and/or permeability) can be introduced for describing
the effective medium response. The aim of a homogenization theory is to predict such effective
electromagnetic parameters from the knowledge of the underlying composite structure. Using different
approximation schemes, several researchers have developed suitable effective medium approach [1–10].
On the other hand, even if the inhomogeneity scale is much smaller than radiation wavelength, the
description of the electromagnetic propagation in a metamaterial generally can not neglect spatial
dispersion, which is a physical effect stemming from matter electromagnetic non-local response, and
more phenomenological parameters are correspondingly in order. It is worth noting that the designing
of spatial dispersion is a fundamental ingredient in numerous photonics devices. First-order spatial
dispersion (described by terms proportional to first-order spatial derivatives of electric field in the
constitutive relations) is equivalent to an artificial chiral response or, in other words, a reciprocal
bianisotropic one [11]. Second-order spatial dispersion contributions (described by terms proportional to
second-order spatial derivatives of electric field in the constitutive relations) can be partially interpreted
as corrections to magnetic permeability so that spatial dispersion can, in this case, support a phenomenon
known as optical or artificial magnetism [3].

In this paper, we present a simple first-principles homogenization theory for periodic metamaterials.
Following the theory developed in Reference [12], we discuss a multiscale approach describing the
electromagnetic (chiral) bianisotropic response, in the long wavelength regime, of a dielectric periodic
medium whose underlying constituents are achiral and non-magnetic. Based on Fourier formalism, we
suggest a numerical scheme for evaluating the effective dielectric and chiral tensors. In the case where
the dielectric contrast is low, we develop a simple full analytical theory which can be considered the
extension of Landau-Lifshitz-Looyenga (LLL) effective-medium approach in the context of periodic
metamaterials. The LLL approach was independently developed both by Landau-Lifshitz [13] and by
Looyenga [14] for evaluating the electrostatic effective dielectric permittivity of an isotropic mixture.
In addition, in a specific example, by using the extended LLL approach, we deduce the analytical
expressions of the dielectric and chiral tensor components.

The paper is organized as follows. In Section 2, we discuss the non-local effective medium theory
of Ciattoni et al. [12]. In Section 3, by considering the low contrast approximation, we develop the
extended version of LLL approach for periodic metamaterial. In Section 4, we draw our conclusions.

2. Effective Medium Theory

Let us consider propagation of a monochromatic electromagnetic field through an unbounded
metal-dielectric composite whose underlying non-magnetic and achiral inclusions are patterned on a
lattice. The electric E and magnetic H field amplitudes satisfy Maxwell’s equations

∇× E = iωµ0H

∇×H = −iωε0εrE (1)

where time dependence e−iωt has been assumed (ε0, µ0 are the vacuum permittivity and permeability
constants, respectively). The present paper deals with photonic crystals in the homogenized regime
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(periodic metamaterials). Indeed, we regard the dielectric permittivity as a periodic complex function,
namely

εr(r) = εr (r + Λ) (2)

where Λ is any arbitrary lattice vector. Here, the main assumption is that dielectric permittivity is
characterized by a spatial subwavelength modulation and hence it is natural to introduce the parameter
η = d/λ where d is the largest of the lattice basis vector lengths. Exploiting the condition η � 1, we
can develop an asymptotic analysis of electromagnetic propagation. Since electromagnetic propagation
is characterized by two very different scales, any field A (A = E,H) separately depends on the slow
and fast coordinates (r, R = r/η, respectively) and A(r,R) can be decomposed as A(r,R) = A(r) +

Ã(r,R) where the overline denotes the spatial average over the metamaterial unit cell, namely

A(r) =
1

V

∫
C

d3RA(r,R) (3)

(C is the unit cell and V is its volume scaled by η3), and the tilde denotes the rapidly varying zero mean
residual, i.e., Ã = A −A. In our approach, the relative dielectric permittivity only depends on the fast
coordinates (ε(R) = εr(ηR)) and it can be decomposed as ε(R) = ε + ε̃(R). Representing each field
A = A + Ã as a Taylor expansion up to the first order in η, we get

A = A0(r) + A1(r)η, Ã = Ã0(r,R) + Ã1(r,R)η (4)

After substituting Equation (4) into Equation (1) and noting that ∇ → ∇ + 1
η
∇R it is possible, in

each equation, to separately balance the averaged contributions and zero mean residuals. As a result, for
the averaged equations (after multiplying for ηn and summing over n = 0, 1), we obtain

∇× E = iωµ0H

∇×H = −iωD (5)

where
D = ε0

[
εE + ε(Ẽ0 + Ẽ1η)

]
(6)

On the other hand, for the zero mean residual equations, we have

∇R × Ẽ0 = 0

∇R × H̃0 = 0

∇R × Ẽn+1 = −∇× Ẽn + iωµ0H̃n

∇R × H̃n+1 = −∇× H̃n − iωε0
[
ε̃En + εẼn − εẼn

]
(7)

where n = 0, 1. Therefore the slowly varying electric and magnetic field amplitudes satisfy the
macroscopic Maxwell Equations (5) with the slowly varying displacement vector D of Equation (6)
which has two contributions, the former due to the spatial average of the dielectric profile and latter due
to the dielectric modulation. The latter contribution is obtained by summing the spatial average of the
rapidly varying fields Ẽ0, Ẽ1 multiplied by the dielectric permittivity. In order to obtain an effective
medium description of the metamaterial composite, the rapidly varying fields Ẽ0, Ẽ1 have to be related



Photonics 2015, 2 368

to the slowly varying ones. After applying the operator ∇R· to both the third and fourth of Equation (7)
we obtain

∇ ·
(
∇R × Ẽn

)
= −iωµ0∇R · H̃n

∇ ·
(
∇R × H̃n

)
= iωε0∇R ·

[
(ε− ε)En + εẼn

]
(8)

where we have used the identity∇R · (∇× A) = −∇ · (∇R × A). Setting n = 0 and using the first and
the second of Equation (7), Equation (8) become

∇R · H̃0 = 0

∇R ·
(
εẼ0

)
= − (∇Rε) · E0 (9)

Relabelling n→ n+1 in Equation (8) and substituting the expressions for∇R×Ẽn+1 and∇R×H̃n+1

from the third and fourth of Equation (7) we obtain

∇R · H̃n+1 = −∇R · H̃n

∇R ·
(
εẼn+1

)
= −∇ ·

[
(ε− ε)En + εẼn − εẼn

]
− (∇Rε) · En+1 (10)

for n = 0, 1. Equations (7) together with Equations (9) and (10) can be used to evaluate the rapidly
varying fields of order n+ 1 once those of order n are known and these fields are linearly dependent on
the slowly-varying fields. As a result, from Equations (7), (9) and (10), we obtain

Ẽ0 = êi (∂ifj)E0j

Ẽ1 = êi

[
(∂ifj)E1j +

(
δirf̃j + ∂iWrj

) ∂E0j

∂xr

]
(11)

where the sum is hereafter understood over repeated indices, êi is the unit vector along the i-th direction,
∂i is the partial derivative along Xi = êi ·R, E0j = êj · E0. In Equation (11), we have introduced the
potential vector f (fj = f · êj and f̃j is the zero mean residual of fj) and the functions Wrj satisfying the
equations

∇R · (ε∇Rfj) = −∂jε
∇R · (ε∇RWrj) = −∂r

(
εf̃j

)
−
(
Qrj −Qrj

)
(12)

respectively, where Qrj = ε(δrj + ∂rfj) (δrj is the Kronecker’s delta). Next, inserting Equation (11) into

Equation (6), using the identity ε∂iWrj = ε
(
∂rf̃i

)
f̃j −Qrj f̃i [12], adding suitable higher order term

for restoring the electric fields Ei, the effective constitutive relations can be written as

Di = ε0

(
ε
(eff)
ij Ej + α

(eff)
ijr

∂Ej

∂xr

)
Bi = µ0H i (13)

where

ε
(eff)
ij =

1

2
(Qij +Qji)

α
(eff)
ijr = η

(
Qrif̃j −Qrj f̃i

)
(14)
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Note that Equation (13) describe media showing weakly spatial nonlocal dielectric response which
stems from spatial dispersion as reported by Landau and Lifshitz [13]. On the other hand, the constitutive
relations can be transformed to a symmetric form [12], i.e.,

D′ = ε0ε
′(eff)E′ − i

c
κTH′

B′ =
i

c
κE′ + µ0H′ (15)

where

ε
′(eff)
ij = ε

(eff)
ij + κ

(eff)
ir κ

(eff)
rj

κ
(eff)
ij = ηk0

[
εimjεfm +

(
εimnδjq +

1

2
εmqnδij

)
εfm∂qfn

]
(16)

κ
(eff)
ij is the effective chiral medium tensor and it is provided by the first order spatial dispersion. We

stress that Equation (16), to the best of our knowledge, are the simplest effective dielectric and chiral
tensor expressions obtained by means of a first-principles homogenization approach. In fact the two
tensors appearing in Equation (16) turn out to only depend on the functions fi which can be obtained by
solving the first of Equation (12) displaying a simple magnetostatic-like structure.

Next, we discuss a semi-analytical method for evaluating the effective electromagnetic parameters.
Since the considered composite medium is periodic, we can expand the dielectric permittivity and the
potential vector f in a Fourier series

ε =
∑
G

εGe
iG·R

f =
∑
G

fGe
iG·R (17)

where G = ηg and g runs over all the reciprocal lattice vectors. Inserting the Fourier series of Equation
(17) into the first of Equation (12), we obtain∑

G,G′

εG′(G′ + G) ·G(fG · êj)ei(G
′+G)·R = i

∑
G

εG(G · êj)eiG·R (18)

By introducing the vector G′′ = G′ + G, Equation (18) can be written as∑
G′′

[∑
G

εG′′−GG′′ ·G(fG · êj)− iεG′′(G′′ · êj)
]
eiG

′′·R = 0 (19)

This equation is satisfied when all the Fourier coefficients of eiG′′·R vanish. As a consequence,∑
G

εG′′−GG′′ ·G(fG · êj) = iεG′′(G′′ · êj) (20)

for all G′′. Equation (20) is an infinite set of linear algebraic equations for the unknown coefficients
fG · êj and it can be solved in principle. On the other hand, by truncating the Fourier series at a suitable
order term, one can get numerically a fairly good solution.
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3. Extended Landau-Lifshitz-Looyenga Effective-Medium Approach

In this section, as a case admitting full analytical description, we consider the situation where the
dielectric contrast is low. More precisely, we show that the first of Equation (12) admits an analytical
solution if the zero mean residual of underlying dielectric permittivity is much smaller than its mean
value, i.e., if

ε = ε+ τ∆ε (21)

where τ � 1 and ε̃ = τ∆ε. In this approximation, we expand the potential field f in a perturbation
series in the small parameter τ up to the second order, namely

f = f (0) + τ f (1) + τ 2f (2) (22)

Substituting Equations (21,22) into the first of Equation (12) and extracting equations for each order
in τ , we get

∇2
Rf

(0)
j = 0

ε∇2
Rf

(1)
j = −∂jδε−∇R · (∆ε∇Rf

(0)
j )

ε∇2
Rf

(2)
j = −∇R · (∆ε∇Rf

(1)
j ) (23)

In order to solve such differential equations, we consider the Fourier series for ∆ε and for the fields
f
(m)
j (m = 0, 1, 2) which are given by, respectively,

∆ε =
∑
G6=0

∆εGe
iG·R

f (m) =
∑
G

f
(m)
G eiG·R (24)

Using the Fourier series of Equation (24), we obtain an explicit solution of the set of Equation (23)
which reads

fj = iτ
∑
G 6=0

(
∆εG
ε

Gj

|G|2
− τ

∑
G′ 6=0

∆εG′∆εG−G′

ε2
(G ·G′)G′j
|G|2|G′|2

)
eiG·R (25)

Substituting Equation (25) into Equation (16), the analytical expression for the electromagnetic
dielectric and chiral tensors are given by, respectively,

ε
′

ij = εδij −
τ 2

ε

∑
G 6=0

∆ε−GGi

|G|2

[
∆εGGj − τ

∑
G′ 6=0

∆εK∆εG−G′

ε

(G ·G′)G′j
|G′|2

]

κij = iηk0
τ 3

ε2

∑
G6=0,G′ 6=0

∆ε−G−G′∆εG∆εG′

|G|2|G′|2
×[

(G ·G′)εimjG′m +

(
1 + 2

G ·G′

|G|2

)(
εimnδjq +

1

2
εmqnδij

)
GqGmG

′
n

]
(26)

where we have neglected the fourth and higher order terms in τ . In the zero order approximation (τ = 0),
the effective permittivity tensor is the average of the “microscopic” one (ε′ij ' εδij), whereas the chiral
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tensor vanishes. It is interesting to evaluate the dielectric permittivity for an isotropic medium. In
this case, the dielectric permittitity is diagonal with identical elements and one can easily prove the
relations

∑
G6=0(G2

x/|G|2)δε−GδεG =
∑

G 6=0(G2
y/|G|2)δε−GδεG =

∑
G 6=0(G2

z/|G|2)δε−GδεG. Using
these relations and the identities

∑
G 6=0(G2

x + G2
y + G2

z)/|G|2)δε−GδεG =
∑

G 6=0 δε−GδεG = (δε2),
after neglecting the third order contribution in τ in the first of Equation (26), the effective dielectric
tensor becomes

ε
′

ij = δij

[
ε− (ε̃2)

3ε

]
(27)

on account of the isotropy of the electromagnetic response. As stated above, Equation (27) is accurate
up to the second order in τ , so that one can write

ε
′

ij = δijε
1
3 (28)

The expression of effective permittivity of the Equation (28) coincides with the
Landau-Lifshitz-Looyenga (LLL) formula [13,14]. The LLL effective medium approach generally
describes the dielectric response of an isotropic and homogeneous finely dispersed mixture, whereas,
in this paper, we consider the homogenization of a photonic crystal (or a periodic metamaterial) with
underlying low contrast dielectric modulation. As a consequence, the analytical expression of the
dielectric and chiral tensors of Equation (26) can be considered the extended version of the LLL
formula of the Equation (28) in the situation where the medium is periodic and its effective macroscopic
electromagnetic response is bi-anisotropic.

In order to check the predictions of the extend version of LLL approach, we consider a
one-dimensional sub-wavelength grating whose effective dielectric and chiral parameters can be
evaluated without resorting the low contrast approximation. Specifically, as a theoretical benchmark,
we assume the slab grating to be described by the underlying permittivity

εr = ε+ 2τ [cos (g0x1) + sin (2g0x1)] (29)

where x1 = ê1 · r, g0 = 2π/d and d is the grating period. In Reference [12], Ciattoni et al. have
shown that, for a one-dimensional periodic medium (for which εr(x1) = εr(x1 + d)), the first of
Equation (12) can be solved analytically without additional assumptions. According to this approach
the effective dielectric and chiral tensors resulting from a general periodic dielectric profile are given by

ε
(eff)
ij = εδij +

[(
ε−1
)−1
− ε
]
δi1δj1

κ
(eff)
ij = ηκ0εij1 (30)

where

κ0 =
[
ε−1
]−1 2π

λ2

∫ λ

0

dZ1

∫ λ

0

dZ2
ε(Z1)

ε(Z2)

[(
Z1 − Z2

λ

)
− 1

2
sign

(
Z1 − Z2

λ

)]
(31)

Note that the effective dielectric tensor in the first of Equation (30) coincides with the well-known
result of the standard effective medium theory (EMT) of layered media [15]. In addition, it is
worth noting that the expression of κ0 in Equation (31) can be manipulated and recast in a different
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form (see [12]) which coincides with the expression reported in the Reference [16] where the
one-dimensional homogenization theory up to the first order is considered and numerically checked
through full-wave simulations.

Considering the specific dielectric profile of Equation (29) and by using Equation (30) and Equation
(31), we obtain the effective permittivity tensor components and the chiral parameter κ0 predicted by the
nonlocal effective medium theory (NEMT). Furthermore, by using Equation (26) for the profile of the
dielectric constant of Equation (29), we evaluate the dielectric and chiral tensor in the LLL approach,
which are, respectively,

ε
(eff)
ij = εδij − 4

τ 2

ε
δi1δj1

κ
(eff)
ij = ηκ0εij1 (32)

where

κ0 = 3
τ 3

ε2
(33)
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Figure 1. Comparison between effective parameters evaluated from the
Landau-Lifshitz-Looyenga (LLL) approach (blue solid line) and from the non-local
effective medium theory (NEMT). We have set ε = 12, η = 0.1. (a) Effective dielectric
tensor components. (b) Chiral parameter.

In Figure 1a, we plot the effective dielectric tensor component ε(eff)11 predicted by LLL approach
(blue solid line) and by the non-local effective medium theory (NEMT) described in Reference [12]
(dark dashed line). Note that the dielctric tensor components ε(eff)22 , ε(eff)33 coincide with the average
ε in both approaches (black solid line in Figure 1a). In Figure 1b, we compare the chiral parameter
κ0 evaluated from the LLL approach (blue solid line) and the NEMT. As expected, the LLL approach
is in good agreement with the NEMT in the region where the grating depth is shallow (in this case
τ < 2); whereas, for higher values of τ , the LLL approach is not adequate to describe the effective
electromagnetic response.
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4. Conclusions

In conclusion, we have considered a simple first-principles homogenization theory for describing the
effective electromagnetic response of a periodic metamaterial and we have performed the analysis up
to the first order of the small ratio between material period and field wavelength. As a consequence,
in addition to the effective permittivity tensor, our approach provides a simple way for evaluating
the medium chirality tensor. In particular, in the specific situation where the dielectric spatial
modulation is shallow, we have deduced an analytical expression for both tensors thus generalizing the
Landau-Lifshitz-Looyenga effective-medium formulation to the context of anisotropic metamaterials. It
is worth stressing that our approach can easily be generalized to encompass magnetic inclusions as well
as non-reciprocal or nonlinear ones.
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