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Abstract: A hybrid free-space optical (FSO) and radio frequency (RF) communication system has
been considered an effective way to obtain a good trade-off between spectrum utilization efficiency
and high-rate transmission. Utilizing artificial intelligence (AI) to deal with the switching and
rate adaption problems between FSO/RF links, this paper investigated their modulation adapting
mechanism based on a machine learning (ML) algorithm. Hybrid link budgets were estimated for
different modulation types in various environments, particularly severe weather conditions. For
the adaptive modulation (AM) scheme with different order PPM/PSK/QAM, a rate-compatible
soft-switching model for hybrid FSO/RF links was established with a random forest algorithm based
on ML. With a given target bit error rate, the model categorized a link budget threshold of the hybrid
FSO/RF system over a training data set from local weather records. The switching and modulation
adaption accuracy were tested over the testing weather data set especially focusing on rain and fog.
Simulation results show that the proposed adaptive modulation scheme based on the random forest
algorithm can have a good performance for soft-switching hybrid FSO/RF communication links.

Keywords: adaptive modulation; hybrid FSO/RF link; link budget; machine learning

1. Introduction

Free-space optical (FSO) communication, known as optical wireless communication
(OWC), has the advantages of a license-free spectrum, large bandwidth, flexible network
and high data rate. However, FSO links are inevitably affected by atmospheric turbulence
and adverse meteorological situations, including snow, fog, dust, etc. Radio frequency (RF)
communication can provide a reliable link but is sensitive to rainy circumstances, especially
for microwave and millimeter wave systems. To address these vulnerabilities, the past
decade has witnessed growing interest in the integration of FSO link and RF link, forming
hybrid FSO/RF heterogeneous networks. Such amalgamated systems aim to capitalize on
the complementary strengths of both communication technologies, thereby enabling more
efficient and reliable data transmission [1–4].

There are two modes for using FSO/RF links: hard-switching and soft-switching.
In soft switching mode, both links are active simultaneously [5,6]. Only one link is ac-
tive in hard switching mode [7]. For mixed channels, a new throughput maximization
algorithm was proposed in [5] to optimize the bit rate, and the system performance of
LDPC codes with regular or irregular structures was analyzed. In [6], data were simul-
taneously transmitted over two links at the same rate, and space diversity technology
was adopted to maximize spectrum utilization and reduce the influence of the turbulence
channel. Through the analysis of outage probability, ref. [7] studied the performance of a
hybrid FSO/intelligent reflecting surface (IRS)-aided RF communication system based on
hard switching. Experimental results showed that the outage probability increases with
the increase in the switching threshold, and the increase in the signal-to-noise power ratio
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(SNR) suppressed outage performance. Additionally, deploying more elements in the IRS
could result in SNR gain. When hard switching worked, ref. [8] used a machine learning
(ML) algorithm to predict the indicator of received signal strength (RSSI), which proved
the reliability of hard switching. RSSI considered the values of the current state and the
previous state, and the proper selection of threshold limits for the RSSI parameter was
crucial: when the RSSI exceeded the threshold, the FSO link was chosen, whereas when it
fell below the threshold, the RF link was selected.

Several researchers have explored channel prediction based on ML algorithms, in-
cluding hybrid links, especially those combined with adaptive modulation (AM). In [9], a
proposal was made for a method of estimating SNR using artificial neural networks in AM
and coding schemes. Power spectral density was used to classify SNR and played a role in
adaptive coding and modulation. Once trained, it could determine the optimal adaptive
coding and scheme at lower complexity, demonstrating its effectiveness in throughput
performance. The possibility of using AM to select and switch modulation modes in hybrid
link systems was proposed and verified by using intelligent power control and link switch-
ing in [10]. It demonstrated that not only could the variation trend in RSSI be predicted, but
also that power control could effectively reduce switching frequency, thereby enhancing
the transmission quality of FSO link. In [11], the ML algorithm was used to predict channel
state information, in which the SNR of the next transmission channel was taken as the
prediction target, and the past SNR with other relevant information was treated as the
prediction basis. In [12], the ML model was used to train the amplitude-frequency vector
of data symbols with the goal of matching the SNR and achieving SNR estimation. The
experiment showed that even with very low SNR, ML could estimate the SNR with very
high accuracy, even reducing the mean square error to less than 0.01. Ref. [13] proposed a
hybrid FSO/RF system that manipulates adaptive switching techniques to form IM/DD
and coherent heterodyne detection; finally, the expression of outage probability under
various atmospheric conditions was obtained and was used as a criterion to compare single
FSO systems with hybrid systems. Ref. [14] proposed a link-switching mechanism based
on ML in a hybrid FSO/RF system, the system utilized ML to predict the link margin
and achieve link prediction based on weather conditions. As far as we know, the issue of
ML-based modulation switching and link threshold for hybrid links considering weather
data has not been addressed. This work is based on link thresholds and uses ML to select
modulation for communication links based on current atmospheric conditions.

The rest of this paper is organized as follows: Section 2 examines the proposed
a hybrid FSO/RF model of an ML-based switching system and discusses the different
atmospheric effects. Section 3 discusses the ML model in determining link availability,
deriving expressions for its spectral efficiency, link budget (LB), and bit error rate (BER).
Section 4 describes the simulation results, and useful concluding remarks are drawn
in Section 5.

2. Hybrid FSO/RF Link System

Firstly, we present a ML-based soft-switching model for hybrid FSO/RF links, as
shown in Figure 1. The model comprises transceivers for FSO/RF links that are connected
to the switching system. FSO and RF channels are established simultaneously. The ML
algorithm is used to calculate the LB, which defines the range of switching thresholds
between the FSO and RF links under diverse modulation schemes. In this switching
mechanism, the FSO link is designated as the primary communication channel, with the
RF link assuming an auxiliary role.
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Figure 1. ML-based soft-switching model for Hybrid FSO/RF links.

2.1. Free Space Optical Channel

The received signal r with the optical wireless system can be modeled as [15]

r = g1PηhFSOx + n1, (1)

where P, x, and η represent the average transmitted optical power, the transmitted sig-
nal, and the receiver’s optical-to-electrical conversion efficiency, respectively. hFSO is the
instantaneous optical channel intensity gain, n1 is the additive white Gaussian noise, g1
represents the specific attenuation resulting from the weather attenuation coefficient (α1),
and their relationship is expressed as g1 = exp(−α1L), and L is the link distance. Assuming
that hFSO obeys the gamma-gamma distribution, the instantaneous SNR is expressed as:

γFSO = γFSOh2
FSO, (2)

where γFSO denotes the average SNR. The probability density function (PDF) of the FSO
link due to the Gamma-Gamma fading model is [3]

fγFSO(γFSO) =
(αβ)

α+β
2

Γ(α)Γ(β)γ
α+β

4
FSO

γ
α+β

4 −1
FSO Kα−β

(
2

√
αβ

√
γFSO
γFSO

)
, (3)

where Kα−β(.) represents the modified Bessel function of the second kind of order α − β
and Γ(.) denotes the Gamma function. β and α given by [6] indicate the effective number
of large-scale and small-scale eddies of the scattering process, respectively.

2.2. Radio Frequency Channel

The input signal x2 undergoes upconversion to transform it into an RF signal prior
to transmission. At the receiver’s end, the signal undergoes demodulation, which can be
described as

r2 =
√

P2hRFx2 + n2, (4)

where n2 is the additive white Gaussian noise, P2 and hRF indicate the average transmitted
power and the channel fading coefficient of the RF link. Meanwhile, the RF link is modeled
by the Rician distribution with the Rice parameter K, where K represents the relative
strength of the direct LOS path. The PDF of the RF fading is provided in [15]

fγRF (γRF) =
K + 1
γRF

exp
(
−(K + 1)

γRF
γRF

− K
)

I0

(
2
√

K(K + 1)
γRF
γRF

)
, (5)

where I0(·) is a zero-order modified Bessel function of the first kind, and γRF represents
the instantaneous SNR, which relates to hRF and average SNR γRF as γRF = γRFh2

RF.
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2.3. Atmospheric Attenuation for Hybrid Links

Atmospheric attenuation signifies the reduction in signal power through the atmo-
sphere, rendering it a crucial factor for consideration. Suppose the attenuation coefficient
for the FSO link in foggy weather is α1, f og, which can be derived from Kim’s model as [14]

α1, f og =
3.91

V(km)

(
λ(m)

550 × 10−9

)−q
(dB/km), (6)

where V is the visibility, λ is the wavelength, and the parameter q varies with visibility as

q =



1.6, V > 50 km,
1.3, 6 km < V < 50 km,
0.16 × V + 0.34, 1 km < V < 6 km,
V − 0.5, 0.5 km < V < 1 km,
0, V < 0.5 km.

(7)

If the attenuation coefficient during rainfall is α1,rain, which is related to rain intensity R,
the expression can be described as

α1,rain = 1.076R0.67(dB/km). (8)

When the frequency of the RF link is below 10 GHz, the rain attenuation is calculated as
follows [16]:

α2,rain = kRα(dB/km), (9)

where the coefficients k and α are the signal’s frequency and the elevation angle. The
attenuation of the RF link caused by fog can be expressed as

α2, f og = Kl M(dB/km), (10)

where M is the liquid water density in fog. Kl is the specific attenuation coefficient.

3. Threshold Estimation and Data Set Generation by Machine Learning

According to the atmospheric characterization parameters given in the CCSDS141.1-R-1
red book, we gain the original data set S1 from the website of https://rp5.ru/(accessed on
1 September 2020 to 1 December 2022), which involves rainfall rate, visibility, temperature,
humidity, etc. The LB is used to plan the resource allocation for each modulation and to
determine the working mode for hybrid FSO/RF links. The ML model is constructed to
learn and predict from the data on rainfall and visibility on rainy and foggy days.

3.1. Construction of the Random Forest Algorithm Model

The random forest algorithm is an ensemble model suitable for classification problems,
consisting of multiple decision trees. When training data are input into the model, a subset
is randomly selected along with some of its feature attributes to build multiple small
decision trees. When unknown data are input, predictions are made for each decision tree,
and the final prediction is obtained through a voting process based on the predictions of
the decision trees. In this experiment, 500 decision trees are selected, each with a maximum
depth of 3.

The model works in two phases: the training part and the testing part. The training
part includes defining the optimal range of multiple modulations based on a given target
BER and S1. Then, their corresponding LB threshold set S2 can be calculated to allocate
the channel state set Di,i=1,2···N . The FSO link has three modulation modes, including
L-ary pulse-phase modulation (L-PPM), M-ary phase shift keying (M-PSK), and M-ary
quadrature amplitude modulation (M-QAM). The RF link operates predominantly in two

https://rp5.ru/
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modulation modes: M-PSK and M-QAM. In Algorithm 1, the details of calculating link
budget by switching modulation is provided.

Algorithm 1: Link budget switching scheme
Input: parameter1, parameter2, · · · , parametern (1, 2, · · · , n for modulation mode.)
Result: An optimum spanning random forest model, LinkBudget
Data: Weather set S1
/* Now this is an if· · · else conditional loop */

1 for i = 1:length (rainfall rate (R) or visibility (V))
2 if 0 < R(i)/V(i) ≤ parameter1 then
3 Modulation1;

4 else if parameter1 < R(i)/V(i) ≤ parameter2 then
5 Modulation2;

6
... else if parametern−1 < R(i)/V(i) ≤ parametern then

7 Modulationn;

8 else if R(i)/V(i) > parametern then
9 Outage;

10 Substituting of parameter1, parameter2, · · · , parametern into the formula of the
LinkBudget results in LB1, LB2, · · · , LBn. Determine the total number of each
modulation, along with the number of correct and incorrect judgments.

For the channel state of each modulation (Di,i=1,2···N) and the proper target BER (Pe.obj),
set S1 is taken into account to construct a relational graph that delineates the correlation
between the weather parameter and the average BER (Pe) across different modulations. The
relational graph as shown in Figure 2 is divided into some areas representing the optimum
modulation range when Pe is smaller than Pe,obj, and the LBthi,i=1,2···N is calculated when
Pe is equal to Pe,obj. And we calculate the LB from arbitrary weather data. A comparison
between LB and LBthi,i=1,2···N determines the channel state (S2). If it is less than the
minimum threshold (LBthi,min), the communication is interrupted. If it is between LBthi and
LBthi+1, the channel state of the current weather is Di.

Figure 2. Optimum modulation range.

The second component focuses on constructing a random forest model that utilizes
the weather set (S1) and channel state set (S2). Within the training phase, multiple channel
states are formulated as the output labels for the decision trees. The optimal channel state
can be obtained by inputting data from real-time weather into the random forest model,
but it requires in-depth analysis to determine whether Pe of the channel state (Di+1) under
current weather data is less than Pe,obj. In cases where Pe exceeds Pe,obj, the LB threshold is
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fine-tuned iteratively until it descends below Pe,obj. This iterative process is performed to
produce the channel state congruent with the channel state set (S2) established during the
training phase.

3.2. Basic Parameters
3.2.1. Link Budget

LB refers to the remaining signal power or bandwidth in a communication link.
Suppose LBFSO denotes the LB of the FSO link, and it can be expressed as [14]

LBFSO = P1 + |Sr| − αFSO,atmo − αgeo − αsys, (11)

where P1 is the transmitter power, Sr is the receiver sensitivity, αgeo is geometrical attenua-
tion, αsys is system losses, and the atmospheric attenuation in the FSO link is denoted as
αFSO,atmo, which is a collective representation of α1, f og and α1,rain. Suppose LBRF denotes
the LB of the RF link, and it can be expressed as [11]

LBRF = EIPR + Gr −
(

Eb
N0

)
reg

− R − kT − Ls − αRF,atmo, (12)

where EIPR is the effective isotropic radiated power, Gr indicates the receiver antenna gain,
( Eb

N0
)reg represents the lowest normalized SNR, R indicates the bit rate of the system, and k

is the Boltzmann constant. The receiver noise temperature is presented as T, Ls represents
path loss, and αRF,atmo is the atmospheric attenuation under the RF link, given by α2,rain
and α2, f og.

3.2.2. Instantaneous BER

The average BER that reflects the performance of the system is the average value of
the instantaneous BER over a time period. For the FSO link, the average BER (Pb1,modulation)
can be given by the instantaneous BER (Pe,modulation) and the PDF, and is denoted as

Pb1,modulation =
∫ ∞

0
Pe,modulation fγFSO(γFSO)dγ. (13)

Similarly, the instantaneous BER of the RF link can be expressed as

Pb2,modulation =
∫ ∞

0
Pe,modulation fγRF (γRF)dγ, (14)

to express Pb2,modulation as the average BER of the RF link. Simultaneously, the instantaneous
BER of modulation modes can be expressed as

• BER of L-PPM:

Pe,LPPM =
1
2

er f c


√

γ L
2 log2 L

2
√

2

, (15)

where L is the symbol order, L = 2n.
• BER of M-PSK:

Pe,BPSK =
1
2

er f c(
√

γ), M = 2, (16)

Pe.MPSK =
1

log2 M
er f c

(
sin

π

M
√

γ
)

, M ≥ 4, (17)

where M stands for the modulation length of PSK.
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• BER of M-QAM: the instantaneous BER of M-QAM is shown as [17]

Pe,MQAM =
2
(√

M − 1
)

√
M log2 M

er f c

(√
3 log2 M
2(M − 1)

γ

)
. (18)

3.3. Adaptive Modulation

The spectral efficiency of M-PSK is defined as the data rate transmitted within a given
bandwidth, and can be given by [18]

ηMPSK =
C
W

=
∑N

j=1 bj log2 Mj

2
, (19)

where C represents the data rate used for transmission, W shows the channel bandwidth,
the modulation order is represented as Mj, Mj = 2j, j = 1, 2· · ·N, and bj is the probability
of receiving SNR in the interval [γj, γj+1], which can be expressed as

bj = Pr{γj ≤ γj+1} = Fγ(γj+1)− Fγ(γj), (20)

where Fγ(.) is the cumulative distribution function (CDF) of the turbulence-induced fading.
Given Fγ(γj+1) → 1, (18) can be simplified to

ηMPSK =
N − ∑N

j=1 Fγ(γj)

2
. (21)

And the spectral efficiency of the M-QAM is as follows [19]:

ηMQAM =
N

∑
j=1

jaj = N −
N

∑
j=1

F(γj), (22)

The spectral efficiency of the L-PPM is as follows [20], there is only one optical pulse among
the N times slots:

ηLPPM =
log2 L

L
. (23)

where have only one optical pulse among the L times slots.

4. Numerical Results
4.1. BER versus Link Budget

The characterization of both the FSO link and RF link was substantiated through
numerical simulations, and the specific parameters utilized for the simulation were detailed
in Table 1. The comparison that obtains the relationship between weather and BER among
the modulations is presented in Figures 3 and 4. The BER increases with worsening weather
conditions. It is worth noting that the BER remains relatively stable on foggy days due to
the strength of the RF link against fog.

Tables 2 and 3 show the LB thresholds for the modulations we have listed, indicating
that the modulation order changes in adverse weather conditions. To achieve the switching
of multiple modulations between the FSO link and RF link under rainfall rate and visibility
changes, the target BER Pe,obj needs to be set. The BER of these modulations should be
lower than or equal to the set target BER Pe,obj. In the rain, Pe,obj set on the FSO link is 10−6

and its value set on the RF link is 10−3. In the fog, Pe,obj is set on the FSO link as 10−9. Given
that the RF link has less variation on foggy days when using the random forest model, its
Pe,obj and threshold range are ignored.
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Table 1. Parameters for Simulation.

Parameter of FSO Sub-System Value

Link range 3 km
Wavelength 1550 nm

Transmitting power 50 dBm
System loss 3 dB

Divergence angle 1.25 mrad
Receiver sensitivity −31 dBm

Parameter of RF Sub-system Value

Link range 3 km
Carrier frequency 60 GHz

Receiver antenna gain 44 dBi
Transmitting power 40 dBm

Signal-to-noise power ratio 50 dB
Bit rate 84.1 bps

(a) (b)

Figure 3. Bit error rate performance of FSO system in rainy and foggy weather condition. (a) Rainfall
rate. (b) Visibility.

(a) (b)

Figure 4. Bit error rate performance of RF system in rainy and foggy weather condition. (a) Rainfall
rate. (b) Visibility.
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Table 2. The range of LB threshold of FSO link.

Modulation FSO-Rain FSO-Fog

Interrupt ≤38.158 ≤34.914
16PPM 38.158∼40.424 34.914∼37.091
8PPM 40.424∼41.227 37.091∼37.860
BPSK 41.227∼42.798 37.860∼39.249
QPSK 42.798∼43.829 39.249∼40.178

32QAM 43.829∼45.068 40.178∼41.795
64QAM 45.068∼45.801 41.795∼42.722

128QAM 45.801∼47.065 42.722∼43.929
256QAM ≥47.065 ≥43.929

Table 3. The range of LB threshold of RF link.

Modulation RF-Rain

Interrupt ≤35.313
BPSK 35.313∼38.091
QPSK 38.091∼38.517

16QAM 38.517∼40.378
32QAM 40.378∼42.456
64QAM 42.456∼44.554
128QAM 44.554∼46.849
256QAM ≥46.849

4.2. Comparison of the Prediction Model with the Real Modulation Selection

The model is trained with 80% of the data and tested for the remaining 20%. A
predefined threshold of 12.05 dB is used to classify the link. The test and training sets
required for the model are selected randomly from the original data to ensure that the
features and patterns learned by the model on the training set can be generalized to unseen
data. Figures 5–7 all indicate the results from training and testing. The modulation order
decreases as the rainfall rate increases and increases as the visibility increases. However,
random forests contain randomness that can lead to varied results each time they are run.
Incomplete modulation may be generated if the weather values during testing do not cover
the entire range of the set weather values, as shown in Figure 6.

The case of the RF link in rainy conditions, as well as the FSO link in rainy and foggy
conditions all have the same number of data points. Take the results of the FSO link in rainy
conditions as an example. The total number of samples is 1346, the number of training sets
is 1014, and the number of test sets is 332. Table 4 summarizes twice the results of the test
set: ‘Right’ indicates the number of correct judgments, and ‘Wrong’ indicates the number of
incorrect judgments. The first and second experiments are indicated by 1 and 2. The model
compares the predicted results with the numerical labels in the test set and considers the
prediction to be correct if they are consistent.

Table 4. The correctness rate of test sets from FSO link.

Modulation Right 1 Wrong 1 Accuracy 1 Right 2 Wrong 2 Accuracy 2

16PPM 3 1 75.0% 2 0 100.0%
8PPM 1 0 100.0% 1 0 100.0%
BPSK 4 2 66.7% 2 0 100.0%
QPSK 1 3 25.0% 5 1 83.4%

32QAM 7 0 100.0% 7 2 77.8%
64QAM 3 1 75.0% 5 0 100%

128QAM 10 1 90.9% 9 2 81.8%
256QAM 292 0 100.0% 293 0 100%
Outage 1 2 33.3% 2 1 66.7%



Photonics 2024, 11, 404 10 of 13

(a) (b)

Figure 5. Classification of modulations for FSO link in rainy weather. (a) Results of training set.
(b) Results of test set.

(a) (b)

Figure 6. Prediction of modulations for FSO link in foggy weather. (a) Results of training set.
(b) Results of test set.

(a) (b)

Figure 7. Classification of modulations for RF link in rainy weather. (a) Results of training set.
(b) Results of test set.

4.3. The Impact of Decision Trees on Performance in Random Forests Algorithm

The final prediction result of the random forest is obtained by combining the results of
all decision trees. Each decision tree outputs a classification label, and the model determines
the final classification result by majority voting on the classification labels output by all
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decision trees. In Figure 8, the relationship between the number of decision trees and
accuracy is displayed. The experiment simulated the results from 50 trees to 1000 trees
with a step of 50, each tree being run 100 times. In this experiment, a total of 500 decision
trees were used, corresponding to an accuracy of 0.997 for FSO links in foggy conditions.
In rainy conditions, the accuracy of the RF link is 0.989, and the FSO link accuracy is 0.975.

(a) (b) (c)

Figure 8. The relationship between decision trees and classification accuracy. (a) Accuracy of FSO
link in rain. (b) Accuracy of FSO link in fog. (c) Accuracy of RF link in rain.

In each decision tree, the feature selection at each node is random, and not all features
are used for training. This random feature selection makes the rules of the decision tree
more randomized, helping to prevent overfitting and improving the accuracy and stability
of the data.

5. Discussion

This paper uses a machine learning-based random forest algorithm to implement
a soft-switching strategy in hybrid FSO/RF links and evaluate their performance. The
random forest model is established according to the channel parameters, particularly
focusing on rain and fog as the primary elements. Because the performance of the hybrid
link is limited by severe weather conditions. With a weather data set split into a training
part and a test part, the modulation adaptation accuracy performance was simulated. The
results show that the training results of each group are consistent with the homologous
testing results. The AI-based soft-switching strategy can enhance communication quality
and reliability according to real-time environmental weather conditions. Furthermore,
by using the trained link budget threshold, a suitable modulation type can be chosen to
maximize the system efficiency with double links.

Compared to [14], this work incorporates considerations for modulation. When
determining the link quality model, real-time rain and fog data are used for training, in
addition to taking into account the target BER. In order to align with the modulation,
the LB is divided to ensure the stability and reliability of link performance. In order to
maintain a balance in accuracy, this alignment may lead to a slight decrease in accuracy.
Subsequently, we will continue to research this task, striving to achieve 100% prediction
accuracy by conducting experimental testing with more external factors taken into account
in some practical application scenarios. This will provide strong support for high-speed
data transmission.
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Abbreviations
The following abbreviations are used in this manuscript:

FSO Free space optical
RF Radio frequency
AM Adaptive modulation
ML Machine learning
LB Link budget
OWC Optical wireless communication
SNR Signal-to-noise power ratio
PDF Probability density function
BER bit error rate
L-PPM L-ary pulse-phase modulation
M-PSK M-ary phase shift keying
M-QAM M-ary quadrature amplitude modulation
CDF Cumulative distribution function
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8. Lapčak, M.; Ovseník, L.; Oravec, J.; Zdravecký, N. Design of hard switching for FSO/RF hybrid system based on prediction
of RSSI parameter and environmental conditions. In Proceedings of the 2022 32nd International Conference Radioelektronika
(RADIOELEKTRONIKA), Kosice, Slovakia, 21–22 April 2022; pp. 1–6. [Crossref]

9. Kojima, S.; Maruta, K.; Ahn, C.-J. Adaptive Modulation and Coding Using Neural Network Based SNR Estimation. IEEE Access
2019, 7, 183545–183553. [CrossRef]

10. Song, S.; Liu, Y.; Xu, T.; Guo, L. Hybrid FSO/RF System Using Intelligent Power Control and Link Switching. IEEE Photon.
Technol. Lett. 2021, 33, 1018–1021. [CrossRef]

11. Wang, X.; Li, H.; Wu, Q. Optimizing Adaptive Coding and Modulation for Satellite Network with ML-based CSI Prediction. In
Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April
2019; pp. 1–6. [Crossref]

12. Ahn, J.-Y.; Wang, H. Machine Learning-based Signal-to-Noise Ratio Estimation using Amplitude Frequency Vector. In Proceedings
of the 2023 International Conference on Electronics, Information, and Communication (ICEIC), Singapore, 5–8 February 2023;
pp. 1–3. [Crossref]

13. Gupta, A.; Chauhan, K.; Yadav, A.; Rani, R.; Jain, A.; M, L. Performance Analysis of Adaptive Combining Based Hybrid FSO/RF
Communication System with Pointing Errors Over F-Distribution/ Nakagami-m Channel Models. In Proceedings of the 2023
2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN),
Vellore, India, 5–6 May 2023; pp. 1–7. [Crossref]

http://doi.org/10.1016/j.osn.2022.100697
https://doi.org/10.1109/NaNA.2017.63
https://doi.org/10.1109/ANTS.2018.8710118
http://dx.doi.org/10.1109/JPHOT.2019.2949859
http://dx.doi.org/10.1109/ACCESS.2018.2840535
http://dx.doi.org/10.1109/JPHOT.2017.2771411
https://doi.org/10.1109/NCC56989.2023.10067918
https://doi.org/10.1109/RADIOELEKTRONIKA54537.2022.9764908
http://dx.doi.org/10.1109/ACCESS.2019.2946973
http://dx.doi.org/10.1109/LPT.2021.3076467
https://doi.org/10.1109/WCNC.2019.8885616
https://doi.org/10.1109/ICEIC57457.2023.10049849
https://doi.org/10.1109/ViTECoN58111.2023.10157930


Photonics 2024, 11, 404 13 of 13

14. Kiran, K.V.; Perinbaraj, S.; Pradhan, J.; Mallick, P.K.; Turuk, A.K.; Das, S.K. Machine Learning Aided Switching Scheme for Hybrid
FSO/RF Transmission. Intell. Decis. Technol. 2021, 14, 529–536. [CrossRef]

15. Touati, A.; Abdaoui, A.; Touati, F.; Uysal, M.; Bouallegue, A. On the effects of combined atmospheric fading and misalignment on
the hybrid FSO/RF transmission. J. Opt. Commun. Netw. 2016, 8, 715–725. [CrossRef]

16. Sudhakar, K.; Subramanyam, M.V. Evaluation of atmospheric attenuation due to various parameters. In Proceedings of the 2013
International Conference on Information Communication and Embedded Systems (ICICES), Chennai, India, 21–22 February 2013;
pp. 609–612. [Crossref]

17. Lu, D.; Zhou, X.; Yang, Y.; Huo, J.; Yuan, J.; Long, K.; Yu, C.; Lau, A.P.T.; Lu, C. Theoretical analysis of PAM-N and M-QAM BER
computation with single-sideband signal. Sci. China Inf. Sci. 2021, 64, 182312. [CrossRef]

18. Chatzidiamantis, N.D.; Lioumpas, A.S.; Karagiannidis, G.K.; Arnon, S. Adaptive Subcarrier PSK Intensity Modulation in Free
Space Optical Systems. IEEE Trans. Commun. 2011, 59, 1368–1377. [CrossRef]

19. Afridi, S.; Hassan, S.A. Spectrally efficient adaptive generalized spatial modulation MIMO systems. In Proceedings of the
2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017;
pp. 260–263. [Crossref]

20. Zhou, Z.; Liang, B.; Cao, Y.; Zhang, M. MPPM Spectrum Analysis Based on PPM. In Proceedings of the 2022 14th International
Conference on Computer Research and Development (ICCRD), Shenzhen, China, 7–9 January 2022; pp. 356–362. [Crossref]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3233/IDT-190161
http://dx.doi.org/10.1364/JOCN.8.000715
https://doi.org/10.1109/ICICES.2013.6508264
http://dx.doi.org/10.1007/s11432-020-3025-4
http://dx.doi.org/10.1109/TCOMM.2011.022811.100078
https://doi.org/10.1109/CCNC.2017.7983115
https://doi.org/10.1109/ICCRD54409.2022.9730597

	Introduction
	Hybrid FSO/RF Link System
	Free Space Optical Channel
	Radio Frequency Channel
	Atmospheric Attenuation for Hybrid Links

	Threshold Estimation and Data Set Generation by Machine Learning
	Construction of the Random Forest Algorithm Model
	Basic Parameters
	Link Budget
	Instantaneous BER

	Adaptive Modulation

	Numerical Results
	BER versus Link Budget
	Comparison of the Prediction Model with the Real Modulation Selection
	The Impact of Decision Trees on Performance in Random Forests Algorithm

	Discussion
	References

