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Abstract: In this paper, the design of an atmospheric turbulence simulation system for free-space
optical (FSO) communication is proposed. The system can accurately simulate repeatable atmo-
spheric turbulent fading channels. It has a dynamic execution range of 30 dB with an execution
rate of 1 MHz. The execution accuracy of the system is higher than 0.1 dB. In addition, the reliable
TCP/IP protocol is used for communication, which ensures the convenience and versatility of the
system. Experiments are carried out to investigate the performance of the system, and the results
prove its superiority. Hence, the atmospheric turbulence simulation system can effectively simulate
the influence of atmospheric turbulence channels on FSO communication systems.

Keywords: optical turbulence; atmospheric turbulence; FSO; optical communication

1. Introduction

In recent years, FSO communication has been used in commercial, military, and sci-
entific applications, and it is emerging as a good candidate for next-generation broad-
band services, since it supports a large bandwidth and has a quick and inexpensive
setup, an unlicensed spectrum, and excellent security [1–3]. However, the effects of atmo-
spheric turbulence can cause fading, leading to a sharp deterioration in the performance of
FSO systems [4–7]. Therefore, it is of great significance to study the influence of atmospheric
turbulence on the FSO systems.

To achieve this, laboratory simulations of atmospheric turbulence channels are re-
quired. Previous studies have tended to use numerical simulation methods to simulate
atmospheric turbulence channels. Distributions such as lognormally, Gamma–Gamma,
Malaga, and K have been considered as fading channel models [8–13]. However, these
methods are not suitable for testing actual FSO systems.

In [14], the authors used an atmospheric turbulence simulation pool to simulate the
atmospheric channel. The atmospheric turbulence simulation pool was mainly composed
of a cooler, a heater, a temperature detection unit, a feedback control unit, and a pool body.
The device used the principle of airflow similarity to simulate atmospheric turbulence.
The principle of airflow similarity states that two fluid vortices are dynamically similar,
when the Reynolds number is equal, and the geometric boundary conditions are similar,
even if there is a difference in velocity and size. Although the atmospheric turbulence
simulation pool can simulate the effects of atmospheric channels, it cannot fully repro-
duce a specific atmospheric channel due to the physical conditions and the instability of
atmospheric turbulence.

In [15], the phase screen generation method was used to simulate light propaga-
tion through atmospheric turbulence. The phase screen generator using the Fast Fourier
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Transform-based method generated 1024 × 1024 phase screens at a rate of 285 phase screens
per minute.

In [16–18], liquid crystal spatial light modulators were used for atmospheric turbu-
lence simulation devices. These devices successfully demonstrated the impact of different
turbulence intensities on laser atmospheric transmission, providing flexible operational
solutions for simulating atmospheric turbulence.

In [19], the authors reported the development of an atmospheric turbulence simulator
for imaging telescopes, which consisted of two point sources, a commercially available
deformable mirror with a 12 × 12 actuator array, and two random phase plates. The results
showed that the simulator simulated atmospheric disturbances with Fried parameters that
ranged from 7 to 15 cm at 500 nm.

In this study, the design of an atmospheric turbulence simulation system for an
FSO system is proposed. A variable optical attenuator (VOA) is used as the execution unit.
To ensure the convenience of the system, it was designed to receive atmospheric turbulence
data via an Ethernet port. The experiments show that such a system can provide repeatable
atmospheric turbulence simulation with high precision.

The remainder of the paper is organized as follows. In Section 2, the design of the
atmospheric turbulence simulation system is given, and the method for measuring and
recording atmospheric turbulence channels is also introduced. Numerical and experimental
results are given in Section 3. Finally, some concluding remarks are provided in Section 4.

2. Atmospheric Turbulence Channel Model

When an optical wave propagates through an atmospheric channel, it experiences
intensity fluctuations or scintillation. Scintillation is mainly caused by small temperature
variations in the atmosphere, resulting in an index of refraction fluctuations [20]. In order
to facilitate the expression, a logarithmic normal distribution fading channel that performs
well in weak turbulence regions was used to test the system in this work. So, the probability
density function (PDF) of the atmospheric turbulence induced fading is given as

f (I) =
1√

2π IσR
exp

−

[
ln(I) + σR

2

2

]2

2σR2

, I > 0, (1)

where σR
2 is the Rytov variance. For a plane wave it can be written as

σR
2 = 1.23C2

nk7/6L11/6, (2)

where Cn
2 is the atmospheric structure constant, k = 2π/λ is the wave number, and L is

the propagation distance. For an FSO system near the ground, the atmospheric structure
constant varies from 10−17 m−2/3 to 10−13 m−2/3, according to the atmospheric turbulence
conditions [21]. The turbulent regime in the atmosphere is weak, moderate, strong, and
extremely strong when σR

2 is <<1, ~1, >1, and >>1, respectively [22].
Apart from the logarithmic normal distribution model, the Gamma–Gamma distribu-

tion model that is valid for all turbulence regimes was also used to process the experimental
results. The PDF of the Gamma–Gamma distribution model is given as

p(I) =
2(αβ)(α+β)/2

Γ(α)Γ(β)
I(

α+β
2 )−1Kα−β

(
2
√

αβI
)

, I > 0, (3)
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where Kv(·) stands for the modified Bessel function of the second kind of order v, and
Γ(·) represents the Gamma function. For a plane wave, the parameters α and β can be
approximately written as

α =

[
exp

(
0.49σR

2(
1 + 1.11σR12/5

)7/6

)
− 1

]−1

(4)

β =

[
exp

(
0.51σR

2(
1 + 0.69σR12/5

)5/6

)
− 1

]−1

. (5)

3. Generation of Atmospheric Turbulence Channel Data
3.1. Measurement and Recording of Atmospheric Turbulence Channels

In order to simulate the actual atmospheric turbulence channels, measurement and
recording are required. Figure 1 shows the schematic diagram of the system for measuring
and recording atmospheric turbulence channel data. It consists of a laser, a transmitter,
a receiver, a high dynamic range photodetector, a recorder, and an atmospheric channel.
As shown in the figure, the composition of the system is similar to that of the FSO commu-
nication system. The atmospheric turbulence measurement and recording system works as
follows: First, a continuous laser signal is sent to the atmospheric turbulence channel at
the transmitter. Then, a high dynamic range photodetector is used to convert the received
optical signal into an electrical signal. After that, the electrical signal is processed and
stored in a local file. It should be noted that in order to ensure that the measured data can
be adapted to the FSO system, the optical parameters of the transmitter and receiver must
be set the same as the FSO system to be tested.
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Figure 1. Schematic diagram of atmospheric turbulence measurement and recording system.

3.2. Generation of Atmospheric Turbulence Channel Data Using Atmospheric Channel Models

Apart from utilizing actual atmospheric turbulence channel data obtained through
measurements and recordings, the system can also simulate atmospheric turbulence chan-
nels using data generated by atmospheric channel models with different FSO link lengths,
turbulence strength, receiver characteristics, etc. This allows the system to emulate the
behavior of different channels with different atmospheric conditions in the laboratory.

4. Atmospheric Turbulence Simulation System

After obtaining the data of the atmospheric turbulence channel, the atmospheric tur-
bulence simulation system was used to simulate the channel according to the data recorded
in the local file. Figure 2 shows the architecture of the system. As shown in the figure, the
device is composed of four units: network communication unit, data processing unit, high-
precision digital-to-analog (DA) conversion unit, and execution unit. A Wiznet W5300 chip
was used as the TCP/IP embedded Ethernet controller in the network communication unit.
The TCP/IP protocol utilizes methods such as checksum, serial number/acknowledgment
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response, timeout retransmission, maximum message length, and sliding window control to
achieve reliable transmission, which ensures the integrity and reliability of the transmitted
channel data. For the data processing unit, an Intel Altera Cyclone II field programmable
gate array (FPGA) chip was used to control the network communication unit and the
high-precision DA conversion unit. A DAC7821 12-bit current output digital-to-analog
converter with a large signal multiplying bandwidth of 10 MHz from Texas Instruments
was used in the high-precision DA conversion unit. In order to simulate the deep fading
in atmospheric turbulence channels, an SCVOA-B-C VOA from Accelink was used in the
execution unit, which has a high executable dynamic range of 30 dB and an execution rate
of 1 MHz. The composition of the system ensures that it has a dynamic execution range of
30 dB and an execution rate of 1 MHz, while also having an execution accuracy of
over 0.1 dB.
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Figure 2. The architecture of the atmospheric turbulence simulation system.

Figure 3 shows the interface of the version 1.0 control software for the atmospheric
turbulence simulation system. The buttons in the upper left corner of the software are used
to control the running and stopping of the software. The IP address and port number of
the system can be entered through the editing box on the left side of the software. The path
editing box is used to input the local path of the target channel data file. The display bar
below the path editing bar is used to display the currently sent data. The waveform for the
sending data is displayed in the waveform display area above the path editing bar.
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The working process of the atmospheric turbulence simulation system is as follows:
Firstly, the software on the host computer reads the atmospheric channel data from the
local file and sends them to the atmospheric turbulence simulation system through the local
area network. Then, the atmospheric turbulence simulation system analyzes and processes
the data and converts them into executable data for the high-precision DA conversion unit.
After that, the data are converted into an analog signal by the high-precision DA conversion
unit and sent into the drive circuit in the execution unit. Finally, the driver circuit drives
the VOA to simulate the recorded atmospheric turbulence channel.

As shown in Figure 4, two FC/PC single-mode fiber interfaces are used as the input
port and output port for the optical signals. The optical path of the atmospheric turbulence
simulation system during operation is plotted in Figure 5. Firstly, the output optical signal
of the FSO system transmitter to be tested is transmitted through optical fibers to the input
port of the proposed system. Then, the VOA after the input port processes the optical signal
based on the received channel data. Finally, the optical signal is sent to the output port and
received by the receiver through optical fibers.
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The atmospheric turbulence simulation system operates at a voltage of 220 V. The
working frequency band of the system is the C-band. In addition, the reliable TCP/IP
protocol is used for communication, which is plug-and-play and ensures the convenience
and versatility of the system.

5. Numerical and Experimental Results
5.1. Experimental Setup

The experiments were carried out to investigate the performance of the proposed system.
The block diagram and the photo of the experimental setup are shown in Figures 6 and 7,
respectively. The AQ2200-132 grid TLS module of the Yokogawa AQ2212 frame controller
(Yokogawa Electric Corporation, Tokyo, Japan) was used as the laser source. The output
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of the laser source was connected to the input of the atmospheric turbulence simulation
system. The system simulated the atmospheric turbulent fading channels based on the data
sent by the host computer. The output of the system was connected to an Agilent 8163B
optical power meter (Agilent Technologies, Santa Clara, CA, USA). Finally, the analog
signal output by the optical power meter was fed into an oscilloscope. The power of the
laser source was set at 11 dBm during the experiments.
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In order to test the system, a data file for the sine wave attenuation channel with a
dynamic range of 7 dB and a frequency of 1 kHz was written and sent to the atmospheric
turbulence simulation system through the control software. As shown in Figure 8, the
atmospheric turbulence simulation system accurately simulated the sine wave attenuation
channel in the data file.
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5.2. Experimental Results of the Data Generated Using Atmospheric Channel Models

In order to verify the ability of the system to emulate the behavior of different channels
under different atmospheric conditions in the laboratory, several sets of independent
lognormal turbulence channel data with a length of 5 × 105 were generated by MATLAB
software (version R2024a), according to the parameters given in Table 1. It should be noted
that when the receiver aperture is sufficiently large, it can have a significant impact on
fading through aperture averaging. However, many FSO communication systems have
relatively small receiver apertures, which can be considered as “point apertures” [23].
Therefore, for the convenience of description, the receiver aperture was considered as
the “point aperture” in the process of generating channel data. Then, the generated data
were sent to the system by the control software on the host computer. The results of the
experiment are shown in Figures 9–11. The green bars in the figures show the distribution of
the received optical power at the output of the atmospheric turbulence simulation system,
and the red lines show the distribution curve of the generated channel data. It can be seen
that the distributions of the received optical power and the generated channel data were
in good agreement. The figures show that the system can effectively simulate different
turbulence channels based on different parameters. The power spectral density of received
signal is also given in Figures 12–14. It can be seen that the bandwidth of the received
optical power was approximately 2 kHz.

Table 1. Parameters used in the experiment.

Parameter Value I Value II Value III

Wavelength λ 1550 nm 1550 nm 1550 nm
Atmospheric structure constant Cn

2 10−16 m−2/3 10−16 m−2/3 10−17 m−2/3

Propagation distance L 15 km 20 km 20 km
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Figure 10. The distribution of the received optical power and generated channel data when the
parameters are set as Value II in Table 1.
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Figure 14. The power spectral density of the received signal when the parameters are set as Value III
in Table 1.

5.3. Experimental Results of the Data Obtained from the Field Experiment

To obtain some atmospheric turbulence channel data and verify the simulation effect
of the system on the real channels, an FSO field experiment with a distance of 9.4 km was
carried out in Changchun. Figure 15 shows the laser link used in the experiment. Point A
marked in the figure is close to the Fudelin Manhattan Center in Changchun City, and it
was the location of the transmitter used in the experiment. Point B marked in Figure 15
was the location of the receiver used in the experiment, which is close to the Changchun
Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. A Teraxion
narrow linewidth laser with a linewidth less than 5 kHz was used as the light source at the
transmitter. The transmitting power was set at 35 dBm by an Erbium-doped fiber amplifier,
and the sample rate at the receiver was set at 20 kHz. Meanwhile, the diameter of the
transmitting lens was set at 2 cm, and the diameter of the receiving lens was set at 8 cm.

Analyzing the experimental results, it can be obtained that the atmospheric structure
constant Cn

2 was 1.32 × 10−16 m−2/3. This indicates that the turbulence was weak dur-
ing the field experiment. The power spectral density of the received signal in the field
experiment is shown in Figure 16. It can be seen that the optical power received in the
experiment contained very few frequency components above 5 kHz. In Figure 17, the
distribution of the received optical power, the lognormal fitting curve at σR

2 = 0.16, and the
Gamma–Gamma fitting curve at α = 14.11 and β = 12.53 are plotted. The results indicate
that the optical power received by the receiver was mainly concentrated at about 0.12 mW,
and the lognormal distribution was more accurate in modeling the experimental results.

Then, the atmospheric turbulence channel data obtained from the field experiment
were sent to the atmospheric turbulence simulation system. In Figure 18, part of the
received optical power obtained from the field experiment is plotted. The waveform of the
output signal of the optical power meter displayed by the oscilloscope is given in Figure 19.
Figure 20 shows the absolute value of the error between the result of the field experiment
and the result reproduced by the system. From these figures, it can be seen that there was
a high degree of agreement between the two results, which shows that the system can
effectively simulate the influence of the actual atmospheric channel on the FSO system.
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Figure 16. The power spectral density of the received signal in the field experiment.
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Figure 20. The absolute value of the error between the result of the field experiment and the result
reproduced by the atmospheric turbulence simulation system.

6. Discussion

We introduced an atmospheric turbulence simulation system for an FSO system based
on the use of a VOA. The system has a dynamic execution range of 30 dB and an execution
rate of 1 MHz, while also having an execution accuracy of over 0.1 dB. Compared with
the atmospheric turbulence simulation pool [14], the atmospheric turbulence simulation
system can accurately reproduce specific atmospheric channels. The execution rate of
the system is also higher than that of the simulators using the phase screen generation
method [15] or a liquid crystal spatial light modulator (the execution rate of these simulators
is only a few hundred Hz) [16–18]. Compared with the atmospheric turbulence simulator
in [19], consisting of two point sources, a commercially available deformable mirror, and
two random phase plates, the structure of the proposed system is simpler. The experimental
results shown in Figure 17 indicate that the average error between the results of the field
experiment and the results generated by the simulation system is less than 10−2 mW, which
proves the superiority of the system.

Furthermore, the system can also be potentially applied to channel model processing
in the field of quantum communication, which will greatly facilitate the testing of quantum
communication systems similar to those mentioned in [24–26].

However, like any other system, the proposed system has its limitations. The dynamic
execution range of the system may not be sufficient to simulate atmospheric channels under
extreme fading conditions. Meanwhile, the system is unable to simulate the phase fluctua-
tions caused by atmospheric turbulence. These limitations will be gradually improved in
future research.

7. Conclusions

In this paper, the atmospheric turbulence simulation system for an FSO system was
proposed. The design of the system and the measurement and recording methods of
atmospheric turbulence channels were introduced. Then, the experiments were described.
The results showed that the proposed system can effectively simulate the influence of
atmospheric turbulence channels on FSO systems, and its appearance makes it possible to
simulate repeatable atmospheric channels indoors.
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