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Abstract: Image reconstruction is a crucial aspect of computational imaging. The compressed sensing
reconstruction (CS) method has been developed to obtain high-quality images. However, the CS
method is commonly time-consuming in image reconstruction. To overcome this drawback, we
propose a compressed sensing reconstruction method with fast convolution filtering (F-CS method),
which significantly increases reconstruction speed by reducing the number of convolution operations
without image fill. The experimental results show that by using the F-CS method, the reconstruction
speed can be increased by a factor of 7 compared to the conventional CS method. Moreover, the F-CS
method proposed in this paper is compared with the back-propagation reconstruction (BP) method
and super-resolution reconstruction (SR) method, and it is validated that the proposed method has a
lower computational resource cost for high-quality image reconstruction and exhibits a much more
balanced capability.

Keywords: image reconstruction; computational imaging; compressed sensing; fast convolution
filtering

1. Introduction

Computational imaging has been rapidly developed from coherent diffractive imaging
in recent years due to its high flexibility and reduced limitation of optical components [1–4],
with wide application prospects for biomedical imaging, virtual reality, and remote sensing,
etc. As an indispensable aspect, image reconstruction is of great importance for computa-
tional imaging and other image-related applications [5–9], which can transform collected
signals into visual images with increased resolution and noise reduction. Furthermore,
image reconstruction should be able to meet a variety of imaging requirements such as fast
imaging, high-resolution imaging, and low-dose imaging.

As a new type of signal sampling and reconstruction theory, compressed sensing (CS)
was proposed in 2006 [10]. The main content of the CS theory is the reconstruction of large
dimensional signals from a small number of samples by means of the signal sparsity, which
overcomes the limitation imposed by the Nyquist–Shannon theorem. CS employs sparsity
of the original signal to realize reconstruction with only a few non-zero coefficients on a
suitable basis [11]. On the premise of ensuring reconstruction accuracy, the CS method can
effectively reduce the sampling complexity and data storage amount [12]. Compared with
the conventional sampling method, the CS method greatly improves the sampling efficiency.
It is especially suitable for signal processing with high dimensions, high complexity, and a
large data amount.

Due to the advantages of the CS theory, in recent years, scholars have conducted ex-
tensive research on it and proposed various CS-based reconstruction methods. Needell [13]
developed a total variation minimization algorithm, which can reconstruct images by
minimizing the total variation in all image blocks. Iterative threshold algorithms [14] were
proposed to gradually approximate and reconstruct the signal by iteratively calculating
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the main coefficients in the original signal; while evaluating the difference between the
reconstructed signal and the original signal in each iteration, the reconstruction accuracy
can be increased by continuously reducing the gap with sparse original signals. The orthog-
onal matching pursuit (OMP) algorithm was born by analyzing the part of the observation
matrix that has the highest correlation with the original sparse signal. This further im-
proves the accuracy of signal reconstruction [15]. Kulkarni [16] developed the classical
algorithm ReconNet based on a convolutional neural network, and it can directly recon-
struct the original images into compressed sensing measurements enhancing the image
reconstruction efficiency. Next, Yao [17] proposed the deep residual network (DR2-Net) on
the basis of ReconNet, which applied the residual network to the compressed sensing image
reconstruction. Du [18] launched the full convolutional measurement network (FCMN),
and Sun [19] proposed the DPA-Net method combined with the attention mechanism to
optimize image reconstruction. All these efforts have driven the improvement of the CS
reconstruction method.

At present, the compressed sensing reconstruction methods are generally able to
reconstruct images of high quality and have flexible usage conditions. However, these
methods also have an obvious problem of low reconstruction efficiency. The reconstruc-
tion process involves numerous steps and requires a significant amount of time and
computational resources.

To address the above issue, this study proposes a compressed sensing reconstruction
method with fast convolution filtering (F-CS method) to greatly increase the reconstruction
speed. Section 2 introduces the principle and optimization of the F-CS method. Experiments
are conducted for validation by comparing the F-CS method with various conventional
reconstruction methods, as described in Section 3. The experimental results are investigated
and demonstrate that our method significantly enhances reconstruction speed.

2. Principle and Optimization
2.1. Principle of Compressed Sensing Reconstruction

The compressed sensing reconstruction algorithm is developed based on data col-
lection according to the Nyquist–Shannon sampling theorem and fast Fourier transform.
Utilizing the nature of discreteness, a pulse function δ(t) with a sampling period of Ts and
a length of n can be used to represent the periodic sampling function P(t) by [20]

P(t) =
+∞

∑
n=−∞

δ(t − nTs). (1)

The sampling of an original signal x(t) is conducted by using P(t), and thereby the
discrete signal xs(t) can be expressed as

xs(t) =
+∞

∑
n=−∞

x(t − nTs). (2)

With ωs = 2π/Ts, if the Fourier transform of x(t) is F(ω), the Fourier transform Fs(ω)
of xs(t) can be described by

Fs(ω) =
1
T

+∞

∑
n=−∞

F(ω − nωs). (3)

A Fourier transform domain is used for sparsifying the signal, which is necessary for
the compressed sensing reconstruction. In this case, a certain orthogonal transformation
basis needs to be introduced to make the original signal sparse. For the original signal
x ∈ RN , ψ is assumed as a set of orthogonal bases ψ = [ψ1, ψ2 ... ψN ] in RN . Then, x can be
described as

x =
N

∑
i=1

ψiαi = ψα. (4)
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α = [α1, α2 ... αN ] is the vector of the transformation coefficient and is the sparse representa-
tion of the signal x on the orthogonal transformation basis. We introduce the measurement
matrix Φ ∈ RM×N with M ≪ N. The measured values of compressed sensing are expressed
as y ∈ RM. Thus,

y = Φx. (5)

Considering the expansion of x, it can be written as

y = Φψα. (6)

The compressed sensing reconstruction requires that the measurement matrix meets
the restricted isometry property (RIP). That is, any M column vector in the measurement
matrix can form a non-singular matrix. Therefore, the RIP can ensure the measurement
matrix does not map different sparse signals into the same transformation domain. It means
the original signal space corresponds to the unique sparse space, and different observations
can be achieved for a high-quality reconstruction of the image. If k = 1, 2, 3, ..., n and the
isometric coefficient δk of the measurement matrix is minimum, the RIP can be expressed by

(1 − δk)∥x∥2
2 ≪ ∥Φx∥2

2 ≪ (1 + δk)∥x∥2
2. (7)

When the process runs to this step, the reconstruction image can be achieved by
inputting the measured values y of compressed sensing into the reconstruction algorithm.
The original signal x ∈ RN is reversibly solved via the measured value y ∈ RM and the
orthogonal transformation basis ψ. However, the values obtained through reverse solving
may not be unique, and regularization terms for sparsity constraints and, thus, for reducing
the number of solutions need to be introduced. The regularization can be realized by L1
norm regularization [21]. When meeting the RIP condition, sparse signals α can be obtained
by finding the minimum L1 norm. Inverse transformation is then performed to achieve the
reconstruction signal x̂. The process yields

min
x

∥α∥1 s.t. y = Φx̂ = Φψα, (8)

where ∥α∥1 indicates its L1 norm.

2.2. Optimization of Compressed Sensing Reconstruction

A compressed sensing reconstruction method was developed with a simulation al-
gorithm using a Fourier zone aperture (FZA) for single lens imaging. In the process of
image reconstruction, this method can not only simulate the imaging process of the original
image on the detector but also show the distance between the image and the lens. The
reconstruction process is shown in Figure 1.

Figure 1. Scheme of a compressed sensing image reconstruction.
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The beginning of compressed sensing reconstruction is preprocessing of data, which
reads the images in the dataset and inputs the image data into the data processing
module group.

The first module of compressed sensing data processing is the pinhole imaging module,
which enables the distance effect of the original image in front of the lens to be simulated.
Assuming the object is placed in front of the FZA at a distance of z1 and the distance
between the FZA and the image sensor is z2, if the height of the object is ho and the imaging
height is hI , the magnification MI of the pinhole imaging is

MI =
hI
Ho

=
z2

z1
. (9)

As the discrete signal xs, the input original image I(ẋ, ẏ) is then interpolated to I(x̃, ỹ).
The second module of data processing is a simulation mask imaging module, which

is mainly to imitate the image projected by the FZA mask. It can stack with the original
image, so that each pixel and its neighborhood has a unique feature mark. If the innermost
region radius of the FZA is r1 and the radial distance from the aperture center is r, a mask
factor matrix can be given by

K(ĩ, j̃) = ∑ ∑
1
2

[
1 + cos

πr2

r2
1

]
. (10)

Next, the mask factor matrix K(ĩ, j̃) is used as the convolution kernel to convolve with
the image I(x̃, ỹ), where (ĩ, j̃) and (x̃, ỹ) represent the spatial coordinates of the convolution
kernel and the image, respectively. The gray value variation in each pixel in the image can
thus be calculated. However, the conventional convolution is time-consuming and occupies
considerable computational resources. Therefore, here, a two-dimensional fast convolution
filtering method is introduced for the first time into compressed sensing reconstruction to
replace the conventional convolution and, thus, to optimize reconstruction speed.

When the size of the input image I(x̃, ỹ) is HI × WI and the size of the convolution
kernel K(ĩ, j̃) is HK × WK, the principle of the fast convolution filtering can be written as

O(x̃, ỹ) = ∑ ∑ K(ĩ, j̃)× I(x̃ + ĩ − HK/2, ỹ + j̃ − WK/2), (11)

in which ∑ ∑ represents the multiplication and summation operation of all elements of
the convolution kernel and the corresponding pixels in the input image. The coordinates
(x̃ + ĩ − HK/2, ỹ + j̃ − WK/2) are the corresponding positions of the convolution kernel on
the input image. That is to say, this convolution operation multiplies each element of the
convolution kernel with the corresponding pixel. Therefore, the number of computations
is HI × WI × HK × WK. Then, all the results are summed to obtain the pixel values of the
corresponding positions in the output image.

For conventional convolution operations, the input image boundary should be filled
to ensure the sizes of the input and output images remain consistent. Besides HK × WK
multiplication operations at each pixel, each multiplication operation must be multiplied by
HK × WK weights of the convolution kernel, and the results are accumulated. Thereby, the
computation count of traditional convolution operations is HI ×WI × HK ×WK × (HK +WK).
Obviously, compared to the conventional convolution, the optimized fast convolution has
much higher computation speed, which will be validated by the following experimental results.

Finally, a two-step iterative shrinkage/thresholding (TwIST) algorithm [22] is used
for the image signal reconstruction. The TwIST algorithm can improve the convergence
speed and provide L1 norm regularization. The convolution filtered image data are used
as input to the TwIST algorithm, and the TwIST algorithm iteratively approximates the
original image by alternating two steps during the iterative process. The first step is to
update the coefficient vector by iteratively using the proximal operator. The second step
is to sparsify the coefficient vectors by applying a threshold function. This reversible
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sparsification process guarantees the obtained solutions are sparse and, thus, ensures the
quality of the image reconstruction. Consequently, a compressed sensing reconstruction
with fast convolution filtering (F-CS) is developed.

3. Experimental Results and Discussion

In the experiments, the performance of F-CS is compared with that of the compressed
sensing reconstruction (CS) without fast convolution, back-propagation reconstruction
(BP) [23] and super-resolution reconstruction (SR) [24]. As the reference method, BP is an
effective technique used in the field of image reconstruction, particularly in the context of
computed tomography imaging. It involves the iterative process of refining an initial image
reconstruction by propagating the error backward through the imaging system. SR is used
in image reconstruction to enhance the resolution of an image beyond its original resolution.
It aims to generate a high-resolution image from one or more low-resolution images or
from a single low-resolution image. All the image reconstruction algorithms involved in
this paper are implemented by using Python with a computer (Intel(R) Core(TM) i7-9750H
CPU @ 2.60 GHz, RAM 8.00 GB, GPU NVIDIA GeForce GTX 1650).

The LabelMe-12-50k dataset (url: www.kaggle.com/datasets/dschettler8845/labelme-
12-50k, accessed on 20 April 2023) is employed to test the applicability of the reconstruction
methods for various images ensuring the training accuracy of relevant models. This dataset
is a subset of the LabelMe dataset developed by Massachusetts Institute of Technology
(MIT). It contains a total of 50,000 images, including 40,000 for training and 10,000 images
for testing. 50% of the image subjects in the training and test sets are in center positions,
while the remaining 50% are in randomly selected image regions. In addition, each image
is annotated with the semantic level and instance level including up to 12 categories of
humans, animals, vehicles, architecture, and landscapes, as well as accurate information
such as bounding boxes and masks. Note that the images are selected for direct visu-
alization comparisons in this paper due to their sharp light and dark areas as well as
distinctive subjects.

3.1. Design of Evaluation Criteria

In order to objectively evaluate the performance of different methods, the resolution,
mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity
(SSIM) are used as evaluation indicators for comparative analysis. MSE is commonly
used in various fields such as statistics, machine learning, signal processing, and image
processing to assess the accuracy of models or algorithms. A lower MSE indicates better
predictive performance, as it signifies smaller deviations between predicted and actual
values. SSIM is utilized to evaluate the image similarity with brightness, contrast and
structure. The similarity of two images is higher with a higher SSIM. PSNR is based on
the maximum possible value MAX and mean square error of image pixels, which reads

PSNR = 20 × lg
(

MAX√
MSE

)
. (12)

The image distortion is smaller with a higher PSNR . The usage rate of CPU, RAM, and
GPU will be evaluated for the analysis of the occupation of computational resources.

The mean option score (MOS) [25] is used as the subjective evaluation index to quantify
the reconstruction effect of diverse methods. The specific evaluation operation is that
20 examiners should use 1 to 5 points to score the image quality with the premise of
unknown image version. The image quality is better with a higher score, and finally the
mean score is taken as the subjective evaluation index.

3.2. Performance of Compressed Sensing Reconstruction with Fast Convolution Filtering

In compressed sensing image reconstruction, the quality of image reconstruction is
largely determined by iterations. Too few iterations will cause the algorithm not to converge

www.kaggle.com/datasets/dschettler8845/labelme-12-50k
www.kaggle.com/datasets/dschettler8845/labelme-12-50k
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to optimum, while too many iterations is time-consuming. The experimental results of
image reconstruction for different numbers of iterations are shown in Figure 2.

Figure 2. Reconstruction images with various iterations.

It depicts that the image reconstructed with 10 iterations is far from the original
image in terms of clarity and brightness, which indicates too few iterations. With 200 or
300 iterations, the reconstruction images almost show no difference from the image at
500 iterations, and they are closer to the original image.

In order to intuitively compare reconstruction quality, the MSE, PSNR, and SSIM of
the reconstruction images and original images with varying numbers of iterations were
evaluated. The results are listed in Table 1.

Table 1. Evaluation parameters of image reconstruction for different numbers of iterations.

Iterations 10 50 100 200 300 500

MSE 932.75 675.22 659.60 613.53 555.17 456.28
PSNR (dB) 18.43 19.84 19.94 20.25 20.69 21.54

SSIM 0.79 0.82 0.82 0.82 0.83 0.84

As can be seen from the results, MSE gradually decreases as the iterations increase,
but the decrease rate gradually slows down, while PSNR and SSIM gradually improve,
and the quality of the reconstruction images constantly becomes better.

In order to further verify the capability of the F-CS method, three datasets containing
different sample sizes were reconstructed by using the F-CS method and the CS method.
To highlight the changes in reconstruction speed, the image data were preprocessed. We
randomly selected several images from the image database and divided them into three
datasets with different sample sizes. The images were preloaded from the same dataset
into a file (.npz) for a simple direct reading, and the image reconstruction process was then
carried out. The experimental results are shown in Table 2.
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Table 2. Evaluation parameters of image reconstruction with the F-CS and CS methods.

CS

Sample size Resolution MSE PSNR
(dB) SSIM Time (s)

1 256 × 256 3517.651 12.668 0.562 35.407
20 256 × 256 3545.595 12.921 0.523 689.741
50 256 × 256 3221.781 13.445 0.530 1797.955

F-CS

Sample size Resolution MSE PSNR
(dB) SSIM Time (s)

1 256 × 256 3541.930 12.638 0.573 4.831
20 256 × 256 3524.768 12.952 0.533 89.822
50 256 × 256 3186.801 13.495 0.541 229.565

The evaluation parameters of the reconstruction results indicate that due to the opti-
mization of the fast convolution filtering in F-CS method, the time of reconstruction has
been greatly reduced. The reconstruction speed is increased by about factor 7 compared to
the CS method. Meanwhile, the other image quality parameters are also improved. These
validate that the proposed F-CS method is effective to enhance the image reconstruction
efficiency and quality.

3.3. Comparison of Objective Indicators between Different Reconstruction Methods

The objective comparison analysis of the F-CS, BP, SR methods is conducted using the
uniform criteria. Three standard datasets are divided by the number of images, which have
small, medium and large quantities. The performances of the three methods are tested with
the standard datasets. The reconstruction results of the same original image by utilizing
the three methods are illustrated in Figure 3.

Figure 3. Reconstruction images with the F-CS, BP, and SR methods.

It can be seen that compared with the BP result, the F-CS result shows much higher
image reconstruction quality. The SR method also offers an effective reconstruction, but it
is difficult to conduct a visual comparison with the F-CS method. Therefore, nine objective
evaluation parameters of the reconstruction results were computed and are listed in Table 3
for comparison.
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Table 3. Evaluation parameters of image reconstruction with the F-CS, BP, and SR methods.

F-CS

Sample
size Resolution MSE PSNR

(dB) SSIM Time (s) CPU
usage rate

RAM
usage rate

GPU
usage rate

1 128 × 128 2845.28 13.56 0.74 5.15
15.1% 12.9% 0%20 128 × 128 1868.85 18.57 0.83 101.16

50 128 × 128 1381.65 18.11 0.83 254.15

BP

Sample
size Resolution MSE PSNR

(dB) SSIM Time (s)

1 128 × 128 6114.53 10.27 0.37 0.06
7.0% 11.0% 0%20 128 × 128 4889.76 12.27 0.48 1.53

50 128 × 128 4480.22 12.29 0.51 3.48

SR

Sample
size Resolution MSE PSNR

(dB) SSIM Time (s)

1 128 × 128 166.61 25.91 0.78 2.82
17.4% 67.2% 15%20 128 × 128 272.85 25.86 0.89 43.80

50 128 × 128 509.01 22.89 0.75 122.36

The evaluation parameters reveal that the BP method offers a relatively low image
reconstruction quality in the test, which can be due to the twin image effect. On the
other hand, it is very obvious that the reconstruction speed of the BP method is very high.
Therefore, the BP method is suitable for the situations where a large number of images
need to be reconstructed quickly and the requirement of reconstruction quality is low.

Regarding the SR method, the MSE of pixels is small and has a high PSNR, and its
reconstruction process has a significant inhibitory effect on the noise. However, due to
numerous parameters in model training, the SR method is resource-consuming and has
high RAM and GPU usage in the image reconstruction.

The F-CS method exhibits high structural similarity when reconstructing a same
dataset. Although it is relatively time-consuming, the reconstruction speed of the F-CS
method has already been significantly increased compared with the conventional CS
method as mentioned in Section 3.2. In comparison to the SR method, the F-CS method
does not require the construction of high complexity models, which saves computational
resources. This makes it much easier achieve image reconstruction meeting high-resolution
requirements. Meanwhile, as the limitations, the MSE and PSNR of the F-CS-based image
reconstruction still need to be improved compared to those when using the SR method.

Consequently, the F-CS method proposed in this paper greatly improves the speed of im-
age reconstruction compared to the CS methods that do not use the fast convolution [13–15].
Compared with the BP method [23], using the F-CS method can significantly improve the
reconstruction quality. Compared to the AI-driven methods [16–19,24], the F-CS method
enables large amounts of RAM and GPU resources to be saved and more conveniently
obtains high-quality reconstruction images without training model. Thus, the F-CS method
exhibits much balanced performances in terms of reconstruction speed and quality, as well
as consumption of computational resources.

3.4. Comparison of Subjective Indicators between Different Reconstruction Methods

The mean option score (MOS) is used as a subjective evaluation index for comparing
the image reconstruction quality. Twenty images to be evaluated are in the form of Figure 3.
The positions of the reconstruction images on each comparison map are disrupted, and
the reconstruction category logo is erased while retaining only the logo of the original
images. Twenty judges were asked to anonymously score the quality of each reconstruction
image using five score grades of 1–5. The 20 judges are all young people aged 20–23. They
completed the scoring separately in sequence. There was no communication during the
scoring process, and all images were displayed on the same computer. All scoring results
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were summarized to obtain the average score for each image reconstructed by using the
three methods, as shown in Table 4.

Through data statistics, the mean option scores of the reconstruction images by using
the F-CS, BP, and SR methods are 3.60, 2.42, and 3.68, respectively. It can be seen that from
the perspective of human eye observation, the reconstruction quality of the BP method
is still low, and the reconstruction quality of the SR method is slightly 0.08 points higher
than that of the F-CS method, which is very close to the analysis results achieved under
objective standards.

Table 4. Mean option score of reconstruction image quality.

Reconstruction Image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F-CS 3.3 3.7 3.7 3.55 3.55 3.45 3.65 4.75 3.5 3.65 3.3 3.35 3.4 3.55 3.55 3.35 3.4 3.45 3.45 4.35
BP 1.6 3.55 3.7 1.5 3.55 3.6 3.3 1.7 1.4 1.35 1.5 3.55 1.65 1.4 3.6 1.5 3.55 1.45 1.45 3.45
SR 4.6 4.4 3.45 3.45 3.45 3.4 4.65 3.45 3.55 3.45 3.5 3.55 3.3 3.75 4.5 3.55 3.35 3.55 3.4 3.35

From the comparative analysis of the subjective and objective evaluations, it is revealed
that the combination of subjective and objective evaluations can more comprehensively
reflect the quality of image reconstruction.

4. Conclusions

In this paper, a compressed sensing reconstruction method with fast convolution
filtering (F-CS method) is proposed. The fast convolution filtering can greatly reduce
the number of convolution operations and, thus, increase the reconstruction speed. The
experimental results indicate, compared to the CS method that does not use the fast
convolution, that the image reconstruction speed of the F-CS method is increased by a
factor of 7. Furthermore, the objective and subjective evaluations shows that the F-CS
method has a lower computational resource cost for high-quality image reconstruction
compared with the BP and SR methods.

In further work, the F-CS method will be applied to computational imaging such as
laser speckle imaging and biomedical imaging. The fast convolution filtering can also be
used in other signal reconstruction methods that are limited by the convolution speed.
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