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Abstract: Optical phase control is essential for optical beam steering applications. The silicon nitride
thermo-optic modulator generally suffers from high electrical power consumption. Microresonator
and multipass structures could reduce the electrical power consumption of silicon nitride thermo-
optic modulators, with the drawback of a narrow operating bandwidth and high insertion loss. We
demonstrate a single-pass silicon nitride thermo-optic phase modulator at 532 nm with low insertion
loss and low power consumption, achieving a π phase shift power consumption down to 0.63 mW in
a Mach–Zehnder switch. The rise and fall time are around 1.07 ms and 0.67 ms, respectively.
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1. Introduction

Integrated photonics in the visible spectrum holds significance for a variety of emerg-
ing applications, such as augmented- and virtual-reality displays [1,2], quantum informa-
tion processing [3,4], nonlinear optics [5,6], optical sensing [7,8], and optogenetics [9,10].
The large-scale integration of phase modulators is at the core of photonic systems for
on-chip optical routing and free-space wavefront shaping, two fundamental operations
that are crucial to the achievement of the aforementioned applications at telecom, as well as
visible, wavelengths [11,12]. Light can be routed toward different output ports by means of
constructive and destructive interference between different waveguides.

Complementary metal-oxide-semiconductor (CMOS) process-compatible material
platforms for visible-spectrum integrated photonics, such as silicon nitride (SiNx) [9,13–20],
aluminum nitride (AlN) [5,21,22], and silicon dioxide (SiO2) [23,24], exhibit relatively weak
thermo-optic (TO) and almost nonexistent electro-optic (EO) effects. In particular, the
TO coefficient of SiNx is significantly smaller than that of silicon [25]. In the case of TO
modulators based on SiNx, the typical power required for phase tuning, denoted as P(π),
is in the tens of milliwatts (mW) range at visible wavelengths [2,10]. This level of power
consumption is not scalable for large arrays for optoelectronic devices. To reduce power
consumption, one strategy is to use a resonant cavity as a phase modulator, which reduces
power consumption to the order of mW, but has the drawback of narrow band operation
and low fabrication tolerance [11]. Another strategy is to use a suspended structure, which
can result in significantly lower power consumption, as reported by several groups [26,27].
An integrated multipass strategy with a suspended structure can achieve sub-milliwatt
operation at a shorter wavelength, with the drawback of high insertion loss and crosstalk
between spiral waveguides [26]. To enhance the performance of modulators, emerging two-
dimensional (2D) materials [27,28] (Ref: Nature Reviews Materials 8, 498–517, 2023) have
demonstrated excellent performance in thermal-optic modulation. However, the complex
preparation and transfer processes of 2D materials also face the challenge of low yield in
practical PIC applications. In order to achieve better modulation rates, lithium niobate
electro-optic modulators have shown low loss and ultra-high-speed characteristics in the
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C-band, but, due to processing difficulties and high costs, they cannot be widely applied
on a large scale [29]. We compared the performance of our proposed phase modulator with
the state-of-the-art TO SiNx modulators in visible-spectrum devices developed in recent
years, as shown in Table 1.

Table 1. Performance of the SiNx modulator for the visible spectrum.

λ (nm) Structure Pπ (mW) IL (dB)

488 Conventional [2] 30 /

473 Conventional [10] 30 /

488
Micro-ring [11]

1.8 0.61

532 0.85 0.87

445

Suspended + multipass [26]

0.78 6.1 (MZI)

488 0.93 3.6 (MZI)

532 1.09 2.5 (MZI)

561 1.2 4.8 (MZI)

532 Suspended + singlepass [30] 3.1 1

532 Suspended + singlepass [this work] 0.61 0.8
λ—wavelengh, IL—insertion loss.

In this wok, we optimized the suspended TO phase modulator and demonstrated a
power-efficient, high-performance suspended TO modulator on a high-confinement SiNx
waveguide platform at green wavelengths (λ = 532 nm). We achieved a π phase shift in
power consumption down to 0.63 mW in a Mach–Zehnder interferometer (MZI) with a rise
and fall time of around 1.07 ms and 0.67 ms, respectively.

2. Design and Simulations

Our SiNx suspended MZI is shown schematically in Figure 1a. It was designed on a
silicon substrate with a 3 µm thermal silicon oxide layer and a SiNx thickness of 180 nm.
The top-view and cross-section schematics of the proposed phase modulator are shown in
Figure 1b,c, respectively. The MZI structure is used to measure the TO tuning performance
of the phase modulator with NiCr heating resistors, connected by gold wiring and bonding
pads. The waveguide width is 300 nm. The width of the suspended SiO2 waveguide beam
is w, while a window of length p and spacing d is cut through the silicon oxide in order to
further etch the substrate below the waveguide. The spacing d serves as the supporting
arm that connects the suspended waveguide beam to the surrounding structure.

We carried out a series of simulations to assess the impact of various structural pa-
rameters on TO tuning performance and structural stability, as presented in Table 2. When
comparing Device 1 with Device 2, we observed a drastic drop in the power consumption
by reducing the suspended opening window spacing (d). A smaller d resulted in a much
lower power consumption for the phase modulator. This can be attributed to the fact that
in the suspended region, heat is primarily transferred away via the silicon oxide support
arms. Reducing d corresponds to a reduced rate of heat transfer. We set d to 2 µm, which
maintains a low power consumption with an acceptable fabrication tolerance.

To further reduce the power consumption of the phase shifter, we reduced the cross-
sectional area of the heated waveguide beam section by reducing w from 12 µm (Device
2) to 8 µm (Device 3), which reduced the total thermal capacitance of the heated sec-
tion. A minimum w of 8 µm was used to ensure efficient waveguide transmission while
maintaining structural stability and an acceptable tolerance of alignment errors between
different layers.
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Figure 1. (a) The 3D schematic of the suspended MZI. (b) The cross-section diagram of the sus-
pended phase modulator. w—the width of the suspended SiO2 waveguide beam. (c) The surface 
diagram of the suspended phase modulator. p—length of window and d—spacing between the win-
dows. 
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sectional area of the heated waveguide beam section by reducing w from 12 µm (Device 
2) to 8 µm (Device 3), which reduced the total thermal capacitance of the heated section. 

Figure 1. (a) The 3D schematic of the suspended MZI. (b) The cross-section diagram of the suspended
phase modulator. w—the width of the suspended SiO2 waveguide beam. (c) The surface diagram of
the suspended phase modulator. p—length of window and d—spacing between the windows.

A comparison was performed between the effects of different window lengths (P)
on TO tuning performance and structural stability, shown as Device 3 through Device
7. In this analysis, the phase modulator structures were categorized into five types, each
covered with windows of varying lengths: 50 µm, 80 µm, 100 µm, 150 µm, and 300 µm,
respectively. Longer windows (and, hence, fewer supporting arms) resulted in a lower
power consumption for the device. Although this improvement comes with the drawback
of an increased danger of stress and deformation, this deformation is a maximum of only
63 nm, with a maximum stress of 1.6 × 108 Pa, which is much smaller than the allowable
stress (1.34 × 109 Pa) for silica [31].

Figure 2 shows the simulated temperature distribution, stress distribution, and defor-
mation distribution for the suspended region based on the finite element method (FEM),
respectively. The thermal convection coefficient of air is assumed to be 5 W·m−2·K−1 [12],
while the thermal conduction coefficient of SiNx is considered to be 2.45× 105 W·m−2·K−1 [25],
and the room temperature is set at 300 K. This analysis reveals that the temperature of the
waveguide core could potentially increase to 360 K. The phase tuning ∆φ as a function of
temperature variation can be expressed as [12]

∆φ =
2πL∆ne f f

λ0
(1)

where λ0 is the free-space wavelength, L is the heating length, and ∆ne f f is the variation in
the effective refractive index of the waveguide. Therefore, for a 300 µm-long waveguide
phase modulator, as the temperature of the waveguide increases from 300 K to 342.7 K
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(corresponding to Table 2), the effective refractive index increases by 8.8 × 10−4. Figure 2a,b
depict the simulated temperature distribution of Device 1 and Device 7 when the average
temperature of the waveguide is elevated by 42.7 ◦C. This temperature rise is expected to
result in a phase shift of ∆φ = 0.99π. The figures illustrate lower waveguide temperatures
around the supporting arms, confirming that the primary route of heat dissipation is via
the support arms of the silicon oxide to the surrounding environment. This observation
explains why reducing both ‘p’ and ‘d’ can effectively diminish power consumption.
Figure 2c,d depict the stress distribution in Device 1 and Device 7, with minimal observable
differences. In Figure 2e,f, the thermal deformation distribution of these two devices is
presented, primarily concentrated in the suspended sections. Device 1 exhibits a maximum
deformation of 2.1 nm, whereas Device 7 experiences a more significant deformation of
63 nm. The maximum deformation is within 0.02% of the waveguide length. The optical
effects induced by this waveguide bending are considered negligible.
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Figure 2. Device 1 (a,c,e) and Device 7 (b,d,f) when the average temperature of the waveguide
increases by 42.7 ◦C. (a,b) Temperature distribution; (c,d) stress distribution; and (e,f) the distribution
of deformation.
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Table 2. The power consumption Pπ and the maximum stress σ and deformation ∆ of the suspended
modulator with respect to the structural parameters at a waveguide temperature rise of 42.7◦.

Device Parameters (µm) Pπ (mW) σ (108 N/m2) ∆ (nm)

1 w = 12, d = 8, p = 50 3.0 1.46 2.1

2 w = 12, d = 2, p = 50 1.4 1.47 3.18

3 w = 8, d = 2, p = 50 1.3 1.48 3.4

4 w = 8, d = 2, p = 80 1.2 1.46 3.47

5 w = 8, d = 2, p = 100 0.76 1.46 5.2

6 w = 8, d = 2, p = 150 0.54 1.54 10.6

7 w = 8, p = 300 0.27 1.60 63

3. Chip Fabrication

To fabricate the suspended MZI, the process began with the deposition of 180 nm of
our proprietary [32,33] (Figure 3a) inductively coupled plasma chemical vapour deposi-
tion (ICPCVD) SiNx on a silicon substrate layered with 3µm of thermal silicon oxide, as
presented in Figure 3b. Subsequently, the pattern was defined by means of electron beam
lithography (EBL) and transferred into the SiNx layer via reactive ion etching (RIE), as
depicted in Figure 3c.
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Figure 3. Manufacturing process of the suspended phase modulator. CVD: Chemical Vapor Deposi-
tion; EBL: Electron Beam Lithography; RIE: Reactive Ion Etching; EBE: Electron Beam Evaporation;
ICP-RIE: Inductively Coupled Plasma-Reactive Ion Etching.

Following the etching, the waveguides were coated with 600 nm of PECVD oxide,
as indicated in Figure 3d. To pattern the switch, a metal lift-off process was employed to
define layers of 200 nm of NiCr and 600 nm of Au, as shown in Figure 3e. Utilizing a 4µm
thick photoresist, an etch mask was created to safeguard the silicon oxide cladding, leaving
the silicon etching window regions exposed, as displayed in Figure 3f. The silicon oxide
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cladding in these window regions were selectively removed using reactive ion etching (RIE),
as illustrated in Figure 3g. Finally, the suspended structure was achieved by executing a
series of undercut etching processes, resulting in deep trenches etched into the Si substrate,
as shown in Figure 3h. The remaining photoresist was removed using O2 plasma, as
demonstrated in Figure 3i. For characterization, the MZI chip was wire-bonded to a printed
circuit board (PCB).

In Figure 4a, a microscope image of the suspended phase modulators is presented,
wherein both arms of the MZI structure are coated with NiCr films and suspended to
achieve loss equilibrium. Gold (Au) deposition is carried out on both of the MZI tuning
arms for connection to the PCB. The NiCr layer covering the cladding above the waveg-
uide extends 300 µm along the waveguide. A pair of grating couplers designed for TE
polarization are used to couple with the input/output fibers. To provide further insight, a
scanning electron microscope (SEM) image illustrating the cross-section of the phase modu-
lator is shown in Figure 4b. The cross-sectional area of the suspended section measures
12 µm × 3.8 µm (width × height), including the 8 µm wide windows on both sides. The
isotropic etching of the silicon substrate is carried out through the 20 µm deep window.
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Figure 4. (a) Microscope photograph of a representative device. (b) SEM photograph of a cross-
section of a suspended structure. (c) The tested Pπ of Devices P1 and P2 are the optical power of the
two output ports of the MZI κ2 = P2/(P1 + P2). (d) The extinction ratio for Device 7. (e) The tested
response time of devices at λ = 532 nm.

4. Chip Characterization

The measured interference characteristics of Devices 1–7 at λ = 532 nm versus the
heating power applied to one of the arms are shown in Figure 4c. Device 7 exhibits a
reduction by a factor of 5 in terms of power consumption compared with Device 1, achieving



Photonics 2024, 11, 213 7 of 9

a half-wave power Pπ of only 0.63 mW compared to 3.1 mW with the same waveguide
parameters. The test results for Devices 1–5 are more consistent with the simulated structure
and verify that the power consumption of the phase modulator decreases as the length
of the open window increases. The power consumption of Devices 6–7 is slightly higher
than in the simulation. In Figure 4d, we show the plot of the optical power as a function
of the heating power for the two ports of Device 7, where an extinction ratio of 50 dB is
demonstrated. The MZI insertion loss of the device was measured as ~9 dB, which included
the coupling loss, transmission loss, and excess loss. The primary optical losses within
the structure are due to coupling between the fiber and the chip and propagation losses
through the waveguides. Regarding the coupling loss, in this preliminary demonstration,
the mode mismatch between the fiber and the input grating resulted in a coupling loss of
about 4.1 dB. Similarly, our propagation losses were of approximately 3 dB/cm.

The modulation speed of the devices was measured by applying a square wave to
the microheater and monitoring the output from one port of the devices. As shown in
Figure 4e, the time constants of the rising and falling edges of the signals are extracted by
fitting the 10−90% portion of the edges to an exponential function. The response times are
0.33 ms (rising) and 0.69 ms (falling) for Device 1, with 1.07 ms (rising) and 0.67 ms (falling)
for Device 7, respectively.

Essentially, the low Pπ and slower response time result from the better thermal insula-
tion that comes with fewer support arms and smaller suspended structures. The slower
speed is a potential disadvantage for the suspended phase modulators with a longer win-
dow. However, many applications in the visible range, unlike in telecommunications, do
not require very high modulation speeds. For example, optogenetic probes only need to
fire faster than neurons (which typically fire at a few hundred Hertz), and atomic trapping
is a near-static scenario [30].

We conducted a comparative study of 34 suspended MZI devices and 8 conventional
MZI devices manufactured on the same chip. These two types of devices had the same
grating coupler, MZI, and microheater, except that the suspended MZI opens a specific
size of silicon dioxide window and excavates the silicon substrate. After testing, the light
at 532 nm had a loss of about 10 dB across all devices, and the suspended structure or
fewer-support-arm structures did not show a greater insertion loss. Unfortunately, there
were two suspended MZIs (Device 2 and Device 5) and one conventional MZI microheater
that had no resistance when measured with a multimeter. This may be caused by the partial
metal fracture during electron beam evaporation (EBE) deposition.

Our research shows that the suspended MZI devices have good repeatability during
the manufacturing process, showing similar performance and characteristics. This indicates
that our manufacturing process has excellent control capabilities and can achieve consistent
performance between different devices. After 5 months of testing, our suspended MZI
devices still maintain good working condition. This indicates that the devices have long-
term stability and reliability.

5. Conclusions

In conclusion, we minimize the power consumption of the suspended TO phase
modulator and demonstrate an extremely power efficient high-performance TO modulator
at green wavelengths (λ = 532 nm). Fabricated using a CMOS-compatible SiNx platform,
the device achieves a π phase shift power consumption down to 0.63 mW and an extinction
ratio over 50 dB in an MZI, respectively. Thus, our work not only demonstrates a highly
efficient extinction ratio phase modulator, but also offers a new design pathway for optical
modulation devices in large-scale PICs.
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