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Abstract: In this paper, a positioning algorithm based on the combination of K-means clustering and
deep neural networks (DNNs) is first presented for multiple light emitting diodes (LEDs) integrated
with visible light positioning (VLP) systems. We extracted the maximum value from the collected
optical power of LEDs, utilizing the ratio of each optical power to this maximum optical power as the
input training data. The experimental results demonstrate that the proposed algorithm outperformed
the conventional DNN algorithm in terms of anti-jamming capability and positioning accuracy. In
addition, the positioning accuracy of the proposed system reached a millimeter level, which is the
highest experimental VLP accuracy, to the best of our knowledge.
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1. Introduction

With the wide deployment of phosphor white light emitting diodes (LEDs) and silicon-
based photodetectors (PDs), smart devices using light information have emerged as a
potential solution to support Internet of Things (IoT) services. Phosphor white LEDs,
created by applying a yellow phosphor coating to blue LEDs to generate white light,
offer a substantial benefit through their high quantum efficiency and low cost, crucial for
general lighting applications. Therefore, fluorescent LEDs are being considered as optical
information emitters for large-scale applications.

Because of the widespread use of phosphor-based LEDs and silicon-based PIN pho-
todetectors, wireless light-based information systems are expected to provide reliable and
stable indoor interconnection and positioning services. Over the past decade, wireless
positioning systems have become crucial in our daily lives, particularly with the growing
demand for indoor positioning services. Accurate positioning is essential for deploying
artificial intelligence devices, such as robots, in indoor settings. While global positioning
systems (GPS) are prevalent in outdoor environments, their effectiveness is significantly
reduced indoors due to signal attenuation through solid walls [1,2]. Various indoor po-
sitioning techniques have been developed to address the limitation of GPS, including
wireless signal transmission-based methods, wireless local area networks (WLAN) [3],
Bluetooth, ZigBee, and infrared-based systems [4,5], as well as radio frequency identifi-
cation, ultra-wide band (UWB), and other emerging technologies [6,7]. Despite enabling
indoor positioning, these techniques face several challenges, including low accuracy, electro-
magnetic interference, security concerns, and limited spectrum resources, which currently
limit their widespread adoption. In contrast, indoor visible light positioning (VLP) tech-
niques have garnered considerable attention due to their multifaceted advantages, such
as their cost-effectiveness; enhanced security; and the simultaneous provision of lighting,
positioning, and communication [8,9].
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Indoor VLP systems utilize LEDs as signal sources to achieve indoor positioning by
receiving light signals. The systems are classified into two types based on the receiver:
camera-based and PD-based positioning. The camera-based system consists of an array
of LEDs and a high frame rate image sensor [10,11], which requires a stabilized camera
to reduce jitter. However, this approach, which necessitates constant image capture and
processing, imposes substantial requirements on the system memory and commonly en-
counters difficulties in achieving real-time positioning due to computational intricacy. As a
comparison, the PD-based system demonstrates the capacity to rapidly respond to light
signals, facilitating a lower latency. Furthermore, it typically obviates the need for intricate
image processing hardware and algorithms, thereby streamlining hardware design and
diminishing costs.

In VLP systems based on PD positioning techniques, triangulation algorithms are a
widely employed positioning scheme that integrates methods such as time of arrival (TOA),
time difference of arrival (TDOA), angle of arrival (AOA), and received signal strength
(RSS). The study in [12] presents a VLP system employing RSS methodology, enhanced
by the importance of the sampling method to reduce the computational complexity. The
experimental results highlight this scheme’s robustness. The authors of [13] proposed a
TOA-based VLP system that can achieve a centimeter-level positioning accuracy. In [14], the
AOA positioning algorithm is utilized, enhancing positioning precision at the expense of
increased system complexity. The results indicate that this approach achieves a positioning
accuracy of up to 10 cm. A TDOA-based VLP system indicates that high sampling rates
and precise timing can further complicate the system. The outcomes reveal that this
approach attains a positioning accuracy of 3.9 cm [15]. A comparative analysis suggests
that the RSS positioning algorithm is more suitable for VLP systems because of its broader
applicability. To enhance the positioning accuracy, machine learning has created numerous
advancements in the domain of indoor VLP. As detailed in [16], RSS data samples are
gathered from various locations during offline training. These samples are then utilized
as training data to construct a model that can accurately estimate the position of PD
from the new RSS samples received during online positioning, achieving a positioning
accuracy of 10.5 cm. A new positioning algorithm based on a long short-term memory
fully connected network (LSTM-FCN) has been proposed in [17], for enhanced positioning
accuracy in scenarios with multiple LEDs and a single PD in VLP. The approach achieves
considerable complexity, albeit with a positioning accuracy of less than 5 cm. In [18],
the adaptive residual weighted k-nearest neighbors (ARWKNN) fingerprint positioning
algorithm demonstrates an improvement over the traditional K-nearest neighbors (KNN)
algorithm in terms of performance. In addition to traditional machine learning algorithms,
neural network techniques have also been applied to indoor VLP systems. A multiple-
bandwidth generalized regression neural network (GRNN) with the outlier filter indoor
positioning approach (GROF) is proposed in [19], which enhances the robustness of the
positioning against environmental variations. However, it requires further refinement to
improve its accuracy in positioning. A VLP algorithm based on a deep neural network
with Bayesian regularization (BR-DNN) is proposed in [20], which achieves positioning
with few training points, reducing complexity of the system. However, the accuracy of
the positioning needs further improvement. In [21], a dual-layer fusion network-based
algorithm is proposed for indoor VLP, which addresses the challenge of signal fluctuations
at the receiver due to unstable power output from the light-emitting LEDs. However, the
emphasis was not on positioning accuracy, leading to a compromise in positioning precision.
In [22], an integrated PD and camera VLP receiver was proposed based on RSS algorithm.
In the scheme, two-dimensional and three-dimensional positioning can be achieved using
only one PD and one camera under the scenario of three LEDs, but the proposed system
can be further improved in terms of positioning accuracy. The aforementioned research
successfully implemented the application of machine learning and deep neural networks
(DNN) in VLP systems. However, the positioning accuracy could be further improved for
most of the VLP systems. Drawing inspiration from insights acquired in previous research,
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we propose a novel positioning algorithm based on the combination of K-means clustering
and DNN for a VLP system to enhance the positioning accuracy. The main contributions of
our work can be summarized as follows:

• For the first time, in this article, in order to achieve high-precision positioning of LED and
PD-based indoor devices, we present a novel algorithm based on the combination of K-
means clustering and DNNs. This algorithm achieves a better anti-interference capability
and higher positioning accuracy compared with conventional DNN algorithms.

• To evaluate and analyze the performance of the proposed system, we developed and
executed a comprehensive experimental framework. The VLP system exhibits an
excellent performance in terms of interference resistance, and the highest millimeter-
level positioning accuracy, to the best of our knowledge.

2. VLP System Model

In this section, a comprehensive exploration of the proposed VLP system model is
presented. Figure 1 illustrates the model’s adaptability to scenarios involving multiple
LEDs and a single PD. Initially, signals are transmitted to the LEDs. Subsequently, the
PD receives and amplifies the signals. The signals undergo fast Fourier transform (FFT),
followed by a two-phase K-means clustering process: the offline phase and the online
phase. During the offline phase, a training set and model are established using the received
RSS data. In the online phase, the PD’s positioning is calculated using the positioning
algorithm based on DNN and the trained model, thereby realizing VLP.

LEDs
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Figure 1. The schematic block diagram of the proposed system.

2.1. The Channel Model

In the domain of VLP, the influence exerted by directional light is pronounced and
plays a pivotal role in system [23]. Given this premise, our investigation is circumscribed
to Line-of-Sight (LOS) links exclusively. It is imperative to highlight that, within the
conventional indoor illumination spectrum, the inter-symbol interference attributed to
multipath is insubstantial and can be ostensibly disregarded. Within the realm of visible
light links, the LOS channel gain intertwining the k-th LED and PD is articulated by the
following equation:

Gk =
(mk + 1)Ar

2πd2
k

cosmk (ϕk)Ts(ψk)g(ψk)cosψk (1)

where mk = −ln2/ln(cosϕ1/2) denotes the Lambertian radiation order, ϕ1/2 represents
the half power angle of LEDs, while Ar epitomizes the surface area of PD. The distance
between the k-th LED and PD is represented by the term dk. The angles ϕk and ψk denote
the irradiation and incident angles, respectively. The constructs Ts(ψk) and g(ψk) represent
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the gains of the optical filter and concentrator, respectively. The gain in the channel depends
on the unique characteristics of both the LEDs and PD, in conjunction with the prevailing
transmission distance, g(ψk) is defined as follows:

g(ψk) =

{
n2

sin2(ψc)
0 ≤ ψk ≤ ψc

0 ψk ≥ ψc
(2)

For PD, the electrical power received from the positioning subcarrier of the k-th LED
can be expressed as: Prec

k = GkPk. To elaborate further, assuming that the PD and LED are
perpendicular to the ceiling, it follows that cos(ϕk) = cos(ψk) = h/dk, where h represents
the vertical distance between the LEDs and PD, and thus Gk in (1) can be rewritten as [24]:

Gk =
hmk+1(mk + 1)Ar

2πdmk+3
k

Ts(ψk)g(ψk) = F(mk + 1)
hmk+1

dmk+3
k

(3)

In the equation, where F(•) = ArTs(ψk)g(ψk)/2π is a constant depending on the
characteristics of the LEDs and PD. The electrical power received by PD can be rephrased as:

Prec
k =

PkF(mk + 1)hmk+1

dmk+3
k

(4)

2.2. K-Means-DNN Model

The structure of the proposed K-means DNN is depicted in Figure 2. Firstly, the
captured RSS data are clustered by K-means model based on the number of LEDs. In the
proposed system, the RSS data are clustered in three groups. After that, the clustered data
are sent to DNN containing five hidden layers for positioning. Figure 3 details the flowchart
of the K-means DNN algorithm. K-means is an iterative cluster analysis algorithm that
involves several steps. Initially, the data are divided into K groups and K samples are
randomly selected as the initial cluster centers. The distance between each object and
centroid is then calculated, and the objects are assigned to their nearest centroid. The
centroids and the objects assigned to them constitute a cluster. For each assigned sample,
the centroids are recalculated based on the current members of the cluster. The centroids
are recalculated for each assigned sample based on the cluster’s current objects. This
process persists until specific termination criteria are met, which include minimal or no
reassignment of objects to different clusters, minimal or no change in cluster centroids, or
local minimization of the sum of squared errors. After performing K-means clustering,
the DNN algorithm extracts the optical power of three LEDs in the frequency domain,
using it as the input. Subsequent to the computation of the outputs from the hidden layer
neurons and the output layer neurons, the loss is ascertained by quantifying the discrepancy
between the calculated values and the true values. The loss is then evaluated against a
predefined threshold of acceptability. Should the loss not align with the desired benchmark,
an update to the parameters of both the hidden and output layers is performed. This
iterative process of evaluation and parameter adjustment continues until the conclusion
of the training phase. The extraction of LED optical power involves frequency analysis
to distinguish frequencies of background or natural light from those of LED transmission
signals, thus facilitating the filtering out of background and natural light, which enhances
the interference resistance. Subsequently, the data undergo preprocessing, including the
normalization of the signals, to mitigate the discrepancies among LEDs.

The positioning algorithm based on the combination of K-means and DNNs has two
distinct phases: an online phase and an offline phase. To acquire training data, m × n
coordinate points are selected for placing PD; the received power at each coordinate point
is then recorded.

Prec
ij =

[
Prec

ij1 Prec
ij2 Prec

ij3

]
1 ≤ i ≤ m, 1 ≤ j ≤ n (5)
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K-means

          

Figure 2. The structure diagram of K-means-DNN.

Figure 3. The flowchart of K-means-DNN.

where Prec
ijk represents the optical power of the k-th LED received by PD. Thus, the optical

power received by PD from different LEDs can be described as follows:

Prec
ijk =

[
Prec

ijk,1 Prec
ijk,2 . . . Prec

ijk,t

]
(6)

where t denotes the number of consecutively collected optical power data at the same
coordinate point. In order to reduce complexity, the experiment independently processes
the x and y coordinates of the data points, training them separately. The description of a
single training data point for the x-coordinate is as follows:

TrainXrk =
[

Prec
ij xrk

]
=
[

Prec
ij1,1 · · · Prec

ij1,t · · · Prec
ij3,1 · · · Prec

ij3,t χrk

] (7)

where xrk indicates the x-coordinate of the training data. The Euclidean distance between
the estimated point and the training point values can be expressed as:

dise =

(
3

∑
k=1

|x̂ek − x̂rk|2
) 1

2

(8)

where xek represents the fingerprint information of the estimation point of the k-th LED.
After calculating the Euclidean distances within the feature space of each sample in the
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fingerprint database, dise is arranged in ascending order. Subsequently, the coordinates
of the points corresponding to the first D Euclidean distances dise are selected, and the
estimation point coordinates (xe, ye) are determined by computing the average values of
these points.

(xe, ye) =
1
D

D

∑
e=1

(xe, ye) (9)

The positioning mean square error (MSE) of the device is given by the follow:

MSE =
1
D

D

∑
e=1

[(x̂e − x̂r)
2 + (ŷe − ŷr)

2] (10)

3. Experimental Results

Our experimental scenario represents a typical indoor environment with dimensions
of 1 m×1 m×2 m containing three LEDs and a PD, as illustrated in Figure 4. To reduce
the impact of natural and background light, each LED employs a distinct modulation
frequency: 5000 Hz, 6500 Hz, and 7800 Hz, respectively. For a complete description of the
remaining parameters, please refer to Table 1.

Table 1. The parameters of VLP system.

Symbol Parameter Value

Disled Adjacent LED distance 0.85 m
xr, yr The coordinates of LEDs (0.5, 0.5) (0.5, 1.25) (1.5, 1.0)

Pt The emission power of LEDs 30 W
Φ Illuminance 300∼900 Lx

APD Area of photo diode 1 cm2

m Order of Lambertian emission 0.646
FOV The field of view of PDs 70◦

LEDs

Raspberry Pi

PD

Figure 4. The experimental setup of VLP system based on K-means-DNN.

This study presents a comprehensive analysis of the initial phase of the K-means-DNN
algorithm, specifically focusing on the K-means clustering component. As a widely applied
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machine learning algorithm, K-means plays a key role in positioning systems. Notably, the
selection of the number of clusters K is crucial for optimal positioning accuracy.

Figure 5a illustrates that with the DNN performance stable and parameters fixed,
when the K values are 2, 3, 4, and 5, the corresponding positioning accuracies are 1.48 cm,
0.78 cm, 0.73 cm, and 0.74 cm, respectively. These outcomes indicate that as the K value
increases, the positioning error shows a continuous decreasing trend. Specifically, when
the K value increases from 2 to 3, the positioning error significantly reduces from 1.48 cm
to 0.78 cm, achieving millimeter-level accuracy. However, when the K value increases to
5, the improvement in the positioning accuracy is limited compared with the increase in
computational load and time.

Therefore, after considering both the accuracy improvement and computational effi-
ciency, this paper selected K = 3 as the optimal parameter in the subsequent performance
analysis. This decision was based on experimental data, aiming to achieve the best bal-
ance between accuracy and computational efficiency in the positioning system. Figure 5b
presents the cumulative distribution function (CDF) curves of the positioning errors along
the x-axis and y-axis. The analysis reveals that the CDF curve of the x-axis exhibited a
higher degree of smoothness. While the CDF curve for the y-axis showed slight fluctuations
in certain regions, it generally tended towards smoothness. By comparing and analyzing
errors along the x-axis and y-axis, it can be observed that the average positioning error of
the x-axis was lower than that of the y-axis. This can be attributed to the uneven indoor
lighting environment where the interference area from lighting fluorescent tubes were
rectangles even if the positioning LED was square.
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Figure 5. The proposed positioning error with (a) different value of K (b) CDF of positioning errors.

We compared the performance between the K-means-DNN algorithm and the conven-
tional DNN algorithm in the same indoor VLP system. The system adopted multi-LEDs
and single PD environment and both algorithms used the same RSS training dataset. The
results showed that the average positioning errors of the K-means-DNN algorithm and the
conventional DNN algorithm were 0.78 cm and 1.67 cm, respectively. It can be observed that
K-means-DNN outperformed the conventional DNN in positioning error. Figure 6 demon-
strates the CDF of the VLP system based on K-means-DNN and conventional DNN. It can
be observed that the positioning errors at a 90% confidence interval were 1.6 cm and 3.2 cm
for the respective methods. For the proposed K-means-DNN algorithm, approximately
75% of the errors were less than 1 cm and 95% of the positioning errors were less than 2 cm,
with only a minimal number exceeding this margin. In contrast, in the DNN algorithm,
33% of the positioning errors were below 1 cm and the worst error exceeded 8 cm.

Figure 7a,b illustrate the performance comparison of two algorithms in the CDF
charts for both the x and y-axis, respectively. In the context of positioning accuracy, the
K-means-DNN algorithm outperformed the DNN algorithm, achieving approximately 95%
accuracy in positioning errors under 1 cm on the x-axis, compared with about 85% for the
DNN algorithm. Furthermore, the K-means-DNN algorithm maintained approximately
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95% for positioning errors under 2 cm on the y-axis. In contrast, the DNN algorithm
showed a marked decrease in accuracy, achieving only 60%. The K-means-DNN algorithm
showed a significantly better positioning performance than the DNN algorithm in both the
x and y-axis.
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Figure 6. The CDFs of different positioning methods.
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Figure 8 displays the positioning coordinate diagram of the K-means-DNN and con-
ventional DNN algorithms. The blue square points indicate the actual positioning coor-
dinates, while the red circular points signify the estimated coordinates of the algorithms.
The comparison reveals a greater overlap between blue and red points in the K-means-
DNN algorithm than in the conventional DNN algorithm.As shown in Figure 8a, in the
K-means-DNN algorithm, the errors are mostly focused on individual points located at
the edges. Conversely, as shown in Figure 8b, the conventional DNN algorithm tends
to produce larger errors on most positioning points randomly, even if some positioning
results are relatively precise. Thus, regarding individual positioning point outcomes, the
K-means-DNN algorithm surpasses the DNN algorithm.

To provide a visual comparison of the performance of the K-means-DNN and conven-
tional DNN algorithms, we present error bar charts for both algorithms. Figure 9 shows
the error distribution at 121 positioning points, with Figure 9 representing the K-means
DNN and conventional DNN algorithms, respectively. In the bar chart, the depth of color
and height indicate the range of errors at each point. As shown in Figure 9a, the maximum
error for the K-means-DNN algorithm is 4.44 cm. For the conventional DNN algorithm
shown in Figure 9b, the maximum error is 8.32 cm. This indicates that in a VLP system,
using the K-means-DNN algorithm as opposed to the conventional DNN algorithm alone
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provides a more accurate positioning performance. The output results show smaller errors
and better stability for the positioning system, approaching the true coordinates.
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Figure 8. The VLP positioning coordinates of (a) K-means-DNN and (b) conventional DNN.

( a ) ( b )
Figure 9. The positioning error histogram of (a) K-means-DNN and (b) conventional DNN.

Please consult Table 2 for a detailed comparison of the work.

Table 2. Comparative Analysis of Positioning Accuracy and Complexity Across Various Studies.

References Methodology Complexity Positioning Accuracy

This Work K-means-DNN Medium 0.78 cm
[12] Luminance Distribution Model Medium 7 cm
[13] Cramer-Rao Bound Medium 7 cm
[14] Maximum Likelihood Medium 10 cm
[15] Pilot Signals Low 3.9 cm
[16] Cayley–Menger Medium 10.5 cm
[17] LSTM-FCN Low 0.92 cm
[18] ARWKNN Medium 3.8 cm
[19] GRNN Low 0.96 cm
[20] BR-DNN Medium 4.5 cm

4. Conclusions

This article investigates the positioning accuracy challenges in VLP systems. Con-
ventional DNN algorithms limit the positioning accuracy of VLP systems, necessitating
the development of a novel, more effective algorithm. We introduce an advanced VLP
system employing the K-means-DNN algorithm, which incorporates a training set that
gathers received power data from 121 distinct points. Additionally, to reduce ambient noise
interference and improve the VLP system’s resilience, we applied varying frequencies to the
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three LEDs. The experimental results demonstrate the system’s exceptional performance,
highlighting its significant improvements in positioning accuracy. The system achieves an
average positioning error of 0.78 cm and a maximum error of less than 4.5 cm, evidencing
its precision in positioning accuracy.
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LED Light Emitting Diode
DNN Deep Neural Network
PD Photo Detectors
VLP Visible Light Positioning
IoT Internet of Things
RGB Red-Green-Blue
GPS Global Positioning System
WLAN Wireless Local Area Networks
UWB Ultra-Wide Band
TOA Time of Arrival
AOA Angle of Arrival
TDOA Time Difference of Arrival
LSTM-FCN Long Short-Term Memory Fully Connected Network
ARWKNN Adaptive Residual Weighted K-nearest Neighbors
GRNN Generalized Regression Neural Network
BR-DNN Deep Neural Network with Bayesian Regularization
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