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Abstract: We studied theoretically and experimentally the propagation of structured Laguerre–
Gaussian (sLG) beams through an optical system with general astigmatism based on symplectic
ABCD transforms involving geometry of the second-order intensity moments symplectic matrices.
The evolution of the coordinate submatrix ellipses accompanying the transformation of intensity
patterns at different orientations of the cylindrical lens was studied. It was found that the coordinate
submatrix W and the twistedness submatrix M of the symplectic matrix P degenerate in the astigmatic
sLG beam with simple astigmatism, which sharply reduces the number of degrees of freedom, while
general astigmatism removes the degeneracy. Nevertheless, degeneracy entails a simple relationship
between the coordinate element Wxy and the twistedness elements Mxy and Myx of the submatrix M,
which greatly simplifies the measurement of the total orbital angular momentum (OAM), reducing
the full cycle of measurements of the Hermite–Gaussian (HG) mode spectrum (amplitudes and
phases) of the structured beam to the only measurement of the intensity moment. Moreover, we
have shown that Fourier transform by a spherical lens enables us to suppress the astigmatic OAM
component and restore the original free-astigmatic sLG beam structure. However, with further
propagation, the sLG beam restores its astigmatic structure while maintaining the maximum OAM.

Keywords: structured light; Hermite–Gaussian mode; symplectic matrix; orbital angular momentum

1. Introduction

The uniqueness of structured vortex beams [1] lies not only in their ability to possess
multiple degrees of freedom, but also in the possibility to control their internal mode com-
position to solve current engineering problems [2,3]. It is a striking variety of fundamental
geometric approaches for constructing structured beams in Cartesian [4], parabolic [5], or
elliptical [6–8] geometry. There are numerous ways to control the properties of scalar and
vector-structured beams, which are mostly aimed at shaping a corresponding intensity
or polarization patterns, as well as at controlling the spin (SAM) and orbital angular mo-
menta (OAM) [9], which is performed via spatial light modulators, digital micromirror
devices [10], metasurfaces, Q-plates [11,12], etc. However, such engineering of structured
beams often results in violating initial symmetry without loss of their structural stability,
which inevitably leads to manifesting new unusual effects and processes. In this stream,
the method of obtaining super-high OAM bursts by controlling the mode radial number in
the structured beams, when propagating through astigmatic elements, looks quite usual
but informative. One such large family of beams with broken symmetry is two-parametric
structured Laguerre–Gaussian (sLG) beams [13] with a complex amplitude in the form

sLGn,±ℓ(r) =
(−1)n

22n+3ℓ/2n!

2n+ℓ

∑
j=0

(±i)j(1 + εeijθ)P(n+ℓ−j,n−j)
j (0)HG2n+ℓ−j,j(r), (1)
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where r = (x, y) is a 2D vector, and P(n+ℓ−j,n−j)
j (·) is a Jacobi polynomial. The symmetry

breaking down is caused by two control parameters: the amplitude ε and phase θ parame-
ters, which evoke the appearance of the N = 2n + ℓ number of Hermite–Gaussian (HG)
modes [2]

HGN−j,j(r) = exp

(
− x2 + y2

w2
0

)
HN−j

(√
2x

w0

)
Hj

(√
2y

w0

)
, (2)

which are the main degrees of freedom of the sLG beam and destructing degenerate n ring
dislocations in the LGn,ℓ mode (ℓ is the azimuthal number). The symmetry destruction is
manifested in appearing topological dipoles with opposite signs of the vortex topological
charges (TCs), but with the same weights [14]. The control ε and θ parameters of the
sLG beam can be treated as additional independent degrees of freedom. Weak changing
of the phase parameter θ leads to fast OAM oscillations [13], the frequency of which is
controlled by the radial number n, whereas the beam OAM cannot exceed the TC of the
beam OAM ≤ ℓ. At the same time, at large amplitude parameters, ε ≫ 1, the astigmatic
sLG beam turns into a hybrid Hermite–Laguerre–Gaussian (HLG) beam with symmetry
but rotated by −π/4 relative to the standard HLG beam [4,15]. The equilibrium between
the TCs and weights of positively and negatively charged vortices is broken down when
the light beam propagates through an astigmatic element (e.g., a cylindrical lens). As a
result, the OAM can be controlled by rotating the astigmatic element axes, while the sLG
beam control parameters are transformed in such a way that the OAM can exceed the
sum of the radial and azimuthal numbers ℓz > n + ℓ [16–18]. As a rule, the description
of sLG beam reconstruction and its OAM calculation in optical systems with general
astigmatism assumes employing non-traditional integral procedures identical to mapping
onto the 2D sphere [19], which turns out to be cumbersome and unwarrantable for even
simple engineering developments. In our opinion, the matrix approach for describing
such complex optical systems can turn out to be relatively simple and clear. To achieve
this, we use the formalism of symplectic transformations [20,21], which are associated with
the formalism of Hamiltonian mechanics, i.e., SU(2) and SU(3) symmetry groups. Such
a symplectic matrix approach is now widely used in optical signal processing [22], for
mapping a structured beam onto the orbital Poincare sphere [23], and for analyzing the
wavefront structure of the complex singular beams [24], and it was the basis for standards
for measuring the parameters of complex laser beams [25].

Arnaud [26] took the first steps in the 4 × 4 matrix representation of fundamental
Gaussian beams in an optical system with a simple astigmatism. The authors of [27]
extended their approach to the transformation of Gaussian beams in systems with general
astigmatism at the same time, a technique of symmetrizing astigmatic Gaussian beams
in an optical system of five cylindrical lenses was proposed by Nemes and Siegman
in [28]. Their description was based on the properties of symplectic ray tracing and
intensity moment transforms [20,21] generalizing the standard approaches of the ABCD
matrices [29]. Alieva and Bastiaans [23,30] highlighted the basic principles of symplectic
transformations in standard laser beams of higher orders. Indeed, the optical system even
with a simple astigmatism, destroys the vortex beams’ symmetry [15]. Therefore, detecting
the description in frameworks of the ray-tracing ABCD matrices turns out to be insufficient,
so it also has to be enriched with symplectic 4 × 4 block intensity moment matrices [31]
that “sense” even the slightest symmetry violation. It is interesting to note that in the
simplest of cases, e.g., for a simple astigmatism, the 4 × 4 matrices may be reduced to
2 × 2 matrices, as described by Anan’ev and Bekshaev in Ref. [32] and later by Bekshaev
et al. [33,34], for breaking down the vortex beam symmetry. At the same time, all sub-blocks
of symplectic matrices are used for the laser beam classification by Nemes and Siegman in
Ref. [28] and for the beam characterization in Refs. [35,36]. Recently, we also used such a
stripped-down approach to describe the transformation of structured beams with a simple
astigmatism [37].
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In our article, we consider sLG beam transformations in an optical system of the first
order with general astigmatism in terms of ray-tracing matrices enriched by a formalism
of the second-order intensity moment matrices. Moreover, we touch upon symmetrizing
the general astigmatic beam due to the Fourier transform in which the astigmatic OAM is
suppressed, but when further propagating, the astigmatic sLG beam becomes a structurally
stable one, while the OAM super-burst is maintained.

2. A Ray-Tracing Matrix Approach to a General Astigmatism
2.1. The Beam Structure

According to Arnaud and Kogelnik [38], an optical system with general astigmatism
should contain a sequence of astigmatic lenses with oblique axes orientations. Such an
optical system does not possess meridional planes of symmetry, and it came to be called a
nonorthogonal one, whereas the beam becomes nonorthogonal with general astigmatism at
the observation plane [28] (see Figure 1). As a rule, to describe such a system, the integral
astigmatic transforms of stigmatic beams are used, as discussed in our recent article [37].
But here, we have chosen a simpler approach, acceptable for engineering calculations. Let
the stigmatic HG beam (2) fall onto the input of a cylindrical lens, the axis of which is
rotated by the angle ϕ relative to the laboratory coordinate system. It is known [39] that
HG beams are eigenmodes of the astigmatic lens if their axes are aligned along the lens
astigmatic axes so that the HG mode complex amplitude can be represented in terms of the
lens eigenmodes [39] (see also Equation (3.8) in Ref. [40]):

HGn,m(x′, y′) = HGn,m(x cos ϕ − y sin ϕ, x sin ϕ + y cos ϕ)

=
n+m

∑
k=0

(−1)kc(n,m)
k (ϕ)HGn+m−k,k(x, y),

c(n,m)
k (ϕ) = (cos ϕ)n−k(sin ϕ)m−kP(n−k,m−k)

k (− cos 2ϕ). (3)

x
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2w0(z) 2wx(z)

2w2x(z)
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y

xy

x՛
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Á

Figure 1. (a) Sketch of the astigmatic optical system with a cylindrical and spherical lenses; (b) Mutual
orientation of the astigmatic beam cross-section in the coordinates of the cylindrical lens (x, y) and
laboratory system (x′, y′).

For simplicity, we assume that the astigmatic element is made in the form of a cylin-
drical lens with a focal length fx ( fy → ∞). In essence, this means that the HG modes in
Equation (4) along the x and y axes are scaled in different ways. But the transformations
along the x and y axes are not coupled to each other. In this case, we still remain within the
framework of a simple astigmatism. If the beam then passes through the next astigmatic
element with a different axes orientation, or observations are carried out in laboratory
coordinates, then we are faced with general astigmatism [28,36]. Obviously, such a situation
can no longer be represented in the form of a standard ABCD matrix approach, and the
representation of symplectic transforms [23] should be used.

S =

(
A B
C D

)
, (4)
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and A, B, C, and D are 2 × 2 submatrices. Note that the matrices A and D are responsible
for the independent scaling of the beam along the x and y axes, whereas the submatrices B
and C carry out coupling the x and y axes. Since the spherical lens in Figure 1 performs the
same scaling along the x and y directions, and we remain in the coordinate system (x, y) of
the cylindrical lens up to the observation plane, we can independently use matrices A and
D to transform the beam [37]. However, at the observation plane, we have to switch back
to the laboratory coordinates (x′, y′):

x = x′ cos ϕ + y′ sin ϕ, y = −x′ sin ϕ + y′ cos ϕ, (5)

which leads to coupling x and y directions. Thus, we observe the beam subject to a
general astigmatism.

Astigmatic beam transformations are tracked with two complex ray-tracing parameters

qx,y =
Ax,yq0 + Bx,y

Cx,yq0 + Dx,y
, (6)

where q0 = −iz0 stands for the initial q-parameter at the z = 0 plane, and Ax,y(z), Bx,y(z),
Cx,y(z), Dx,y(z) are elements of the unitary 2 × 2 ABCD-matrices with the property
Ax,yDx,y − Bx,yCx,y = 1. After passing through an astigmatic system, the complex ampli-
tude of the sLG beam takes the dimensionless form with x → x/w0, y → y/w0, z → z/z0,
qx,y → qx,y:

asLGn,ℓ(x′, y′, z|ε, θ, ϕ) =
(−1)n

2n+ℓn!

N

∑
j=0

CjHGN−j,j(x′, y′|qx,y), (7)

Cj = (−1)jeijΓxy
N

∑
k=0

(−i)kc(n,n+ℓ)
k (π/4)εkc(N−k,k)

j (− cos ϕ), (8)

where N = 2n + ℓ, εk = (1 + εeikθ). The scaling of the (x, y) directions and the HG beam
phase transformations are carried out in accordance with the ABCD matrix procedure in a
system with a simple astigmatism [37] with the complex parameters

qx(Z1) = z0

[
Z1(κ

2
x + 1)− κx

]
− i

κ2
x + 1

= z0qx(Z1), (9)

where κx = z0
fx

, qy(z1) = z1 − iz0 = z0qy, and Z1 = z1/z0, the beam radii wx,y(z) with a
wavenumber k′:

w2
x = w2

0

[
(1 − Z1κx)

2 + Z2
1

]
= w2

0w2
x(Z1), (10)

w2
y = w2

0(1 + Z2
1) = w2

0w2
y(Z1), w2

0 = 2z0/k′, (11)

while the Gouy phases are specified as

Γx =
1
2

arg
qx

Axqx + Bx
=

1
2

arg(1 − κxZ1 + iZ1), (12)

Γy =
1
2

arg(1 + iZ1), (13)

Γxy = Γx − Γy. (14)
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The theoretical and experimental intensity patterns of the asLG beams with typical
quantum numbers (n = ℓ = 12) depicted in Figure 2 illustrate the evolution of their
states along the z-propagation axis. The initial beam states in front of the astigmatic
element are featured by a control parameter θ corresponding to the first main OAM
burst (see Section 2.2). Against the background of each intensity pattern, an ellipse of
the sLG beam astigmatism is displayed, calculated via second-order intensity moments
(see Section 3). The ellipticity degree and the angle of the ellipse inclination indicate the
astigmatism of the beam structure is affected. The bottom line of Figure 2b represents the
experimental results (see Section 5). It is sufficient to visually compare theoretical and
experimental intensity patterns to understand that the ABCD matrix technique fairly
accurately maps the real processes of the structured beam transformations. After the
astigmatic element (Z1 = 0.1), a structured beam pattern with slightly broken axial
symmetry of the generatrix LG mode is reproduced, featuring small values of the phase
parameter θ. At the plane of the double focus (Z1 = 1) of the cylindrical lens, we observe
typical mode conversion LG → HG, which enables us to measure the topological charges
of vortex beams [41,42] with either n and ℓ numbers. Further, the beam propagation only
slightly distorts a rectangular symmetry. It is worth noting that the intensity moment
ellipses follow the shape of the intensity pattern and are not tied to the axis (ϕ = π/4) of
the cylindrical lens astigmatism.

n=12,`=12,µ=0.078

=0.1Z1 0.3 0.5 1 1.5 2 3

a

b

Figure 2. Evolution of the theoretical (a) and experimental (b) intensity patterns and the beam
astigmatism ellipses (solid curves against the background of intensity patterns) along the asLGn,ℓ

beam axis Z1 for radial and azimuthal numbers n = ℓ = 12 and control parameters θ = 0.078, ε = 1,
ϕ = π/4, z0 = 1 m, fx = 0.5 m.

2.2. The OAM Transforms

The specific OAM ℓz of stable structured beams in the non-vortex mode basis can be
written for the triple-parametrized OAM as [37] (see also Equation (90) in Ref. [43])

ℓz(Z1|ε, θ, ϕ) = 2
N−1

∑
j=0

(N − j)!(j + 1)! Im(C∗
j Cj+1)/J00, (15)

with a total intensity

J00 =
N

∑
j=0

(N − j)! j!|Cj|2. (16)

In order to highlight the featured OAM domains in a multiparametric asLG beam,
we have plotted the 3D OAM representation on the (θ − ϕ) parameters shown in Figure 3.
The key properties of the OAM, as we see, are best of all manifested for the asLGn,ℓ beams
with the same radial and azimuthal numbers n = ℓ. The pattern in Figure 3 indicates that
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the OAM maxima for any numbers (n, ℓ) and parameters θ fall on the ϕ = π/4 angle.
Moreover, the main OAM burst is located in the region of small phase θ-parameters (close
to zero), while the most pronounced OAM burst is observed at the focal area of a cylindrical
lens and, not as previously thought, in the double focus area.
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Figure 3. The OAM dependences (a) ℓz(θ, ϕ, Z1 = 1) and (b) ℓz(θ, Z1, ϕ = π/4) for n = ℓ = 10,
z0 = 1 m, fx = 0.5 m.

More detailed OAM features are illustrated in Figure 4. Figure 4a illustrates the
position of the OAM bursts depending on the parameter θ and indicates the main OAM
burst near the zero θ-parameter. So, for relatively small n = ℓ = 5 quantum numbers,
the phase parameter is θ = 0.236 (about 13◦), whereas for n = ℓ = 12, its value becomes
θ = 0.062 (about 3.5◦). This means that even a slight violation of the axial symmetry of the
generatrix LG mode, i.e., the destruction of its degenerate ring dislocations and appearance
of pairs of topological vortex dipoles, leads to a violation of the balance between positive
and negative vortex topological charges in dipoles due to general astigmatism, and as a
result, the OAM increases sharply, exceeding the sum of the radial and azimuthal numbers
ℓz > n + ℓ. Once we have rotated the astigmatic element axes by ∆ϕ = π/2, the OAM
sign converts to the opposite ℓz < −(n + ℓ) (see Figure 4c). The curves in Figure 4b
indicate in which plane it is worth observing the beam with a maximum possible OAM. It
turns out that the observation plane should be located at the focal plane of the cylindrical
lens Z1 = 0.5, where displacement from this plane leads to sharply decreasing the OAM;
what is more, this optimal position does not depend on the numbers n and ℓ. Further
displacement of the observation plane does not significantly change the OAM so that, at
large Z1 ≫ 1, we have ℓ → n + ℓ, despite a vivid structured transforming of the intensity
pattern (see Figure 2). One cannot help but notice one remarkable approximation of the
cumbersome expression Equation (15) for the OAM. Analyzing Equation (15), we have
obtained numerically an approximate relation for large numbers nℓ

ℓ
(appr)
z (Z1|ε, θ, ϕ) = ℓz(Z1|ε, θ, ϕ = π/4) sin 2ϕ. (17)

A comparison of these expressions is illustrated in Figure 5 for two asLG beam states:
(a) n = ℓ = 2 and (b) n = ℓ = 10. The blue curve 1 is plotted by the exact expression
(15), while the red curve 2 is displayed by the approximate Equation (17). If for small
numbers n = ℓ = 2, the colors of the curves can be distinguished, then for large
numbers n = ℓ = 10, the colors merge to the nearest thousandths. This indicates a good
approximation accuracy, which significantly reduces the time of computer simulation of
complex structured beams.
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Figure 4. The OAM ℓz with quantum numbers n = ℓ, via (a) the phase parameter θ and ϕ = π/4,
Z1 = 1, (b) the distance Z1 for the firm main OAM burst in (a), and (c) the OAM ℓz(ϕ); z0 = 1 m,
fx = 0.5 m.

Equation (15)–

– Equation (17)
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Figure 5. Comparison of the OAM calculated by the exact ℓz (blue) and the approximate ℓ
(appr)
z (red):

(a) n = ℓ = 2; (b) n = ℓ = 10; Z1 = 1, ϕ = π/4, z0 = 1 m, fx = 0.5 m.

3. Symplectic Intensity Moments Transforms

The astigmatic transforms are described in a unified way within the framework of sym-
plectic 4 × 4 matrices. The concept of symplectic transforms in optics was first introduced
by Hamilton, treating the propagation of light rays based on Lagrange formalism [20,21].
Generally speaking, symplectic geometry studies mappings that preserve the symplectic
structure, keeping area measurements constant. The word “symplectic” derives from the
Greek word “sumplektikós” (σνµπλεκτικς), which means “braided together”, evoking the
way the symplectic structure and the complex numbers are intertwined. The symplectic
intensity moments block matrix of the second-order in optics can be rewritten as [31]

P =

(
W M

MT U

)
=

1
J00

∫ 
x2 xy xpx xpy
yx y2 ypx ypy
pxx pxy p2

x px py
pyx pyy py px p2

y

I(r, p)d2r d2p, (18)
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where T indicates transposition, p = (px, py)T = −i∇⊥, I(r, p) is the Wigner distribution
function [36], and J00 stands for a total beam intensity. The evolution of the intensity matrix
along the optical system is conveniently described by the ratio Pout = S · Pin · ST .

Our main interest in this section is focused on the coordinate submatrix W and the
twistedness submatrix M to describe their degeneracy that promotes simplify significantly
measuring a total OAM technique but that dramatically reduces the number of degrees
of freedom. The diagonal elements Wxx and Wyy of the summatrix W characterize the
square beam radii wx and wy, while the off-diagonal element Wxy = Wyx points out
the beam asymmetry. The off-diagonal elements M12 =

〈
xpy
〉

and M21 = ⟨ypx⟩ of the
submatrix M specify the beam twistedness, while ℓz = M12 − M21 is responsible for the
specific OAM [28]. The problem of the intensity moment matrix invariants is considered
in detail in Refs. [28,31]. And, here, the main invariant of the astigmatic beams is the
normalized parameter

a = 2k2
[
Sp(WU − M2)− 2

√
det P

]
, (19)

with the symmetric part, W−1M specifies the beam curvature, whereas the antisymmetric
part is the submatrix M. In this case, the physical interpretation of the invariant a is that it
enables us to distinguish two non-intercrossed manifold of laser beams: a = 0 points out
the intrinsic stigmatic beams; a > 0 specifies intrinsic astigmatic beams [36].

In order to explain the unusual behavior of the sLG beams with broken symmetry in
the astigmatic system, let us peer into the geometry of these beams hidden in the symplectic
matrix transforms. To achieve this, one makes use of geometry of the submatrix W, namely,
its associated ellipse [31], written in the form

(r · W−1 · r) =
1

det W
(Wyyx2 + Wxxy2 − 2Wxyxy) = 1. (20)

The ratio of the ellipse axes is given as

χ =

√√√√√Wxx + Wyy +
√
(Wxx − Wyy)2 + 4Wxy

Wxx + Wyy −
√
(Wxx − Wyy)2 + 4Wxy

, (21)

while the slope of its major axis can be found as

ψ = arccot((Wxx − Wyy)/2Wxy)/2. (22)

Using Equation (7) in Equation (18), we come to the submatrix-W elements

Wxy = (wx(z)wy(z)/2J00)
N−1

∑
j=0

(N − j)!(j + 1)! Re(CjC∗
j+1), (23)

Wxx = (w2
x(z)/4J00)

N

∑
j=0

(2N − 2j + 1)(N − j)!j!|Cj|2, (24)

Wyy = (w2
y(z)/4J00)

N

∑
j=0

(2j + 1)(N − j)!j!|Cj|2, (25)

The associated ellipses in Figure 2, obtained from Equation (20), track the intensity pattern
deformations with a variation of the distance Z1. In Figure 6, we have depicted the
evolution of associated ellipses with variations of the θ-phase parameter for two groups of
beams: standard sLG beams with ε = 1 (Figure 6a) and hybrid HLG (Figure 6b) beams [4]
rotated by π/4 (i.e., the sLG beams with ε ≫ 1 [13]). Both in free space (Figure 6a,b) and the
astigmatic system (Figure 6c,d), the directions of the ellipse axes strictly follow the shape
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of the intensity pattern only for the HLG beam (i.e., asLG beam with ε ≫ 1), although
astigmatism tries to hold the axes of the ellipse and the intensity pattern (Figure 6c) for
the standard asLG beam. It should be noted that at the end of the XX century, the authors
of the articles [28,36] based the laser beam classification on the correspondence between
the direction of the associated ellipse axes for submatrices W, M, and U. Here, we will not
delve into the cobweb of the beam classification, but peer into the issue of losing degrees of
freedom in structured beams when matching the axes of submatrices W and M. Indeed,
the stigmatic beam has only three independent parameters, while their number in the
beam with general astigmatism increases to ten [28]. How will the number of independent
parameters change when matching the ellipse axes of the W and M submatrices?

a

b

c

d

sLG(n=2;`=2)

asLG(n=2;`=2)

µ=0 ¼/6 ¼/4 ¼/3 ¼/2 0.7¼
Figure 6. Intensity patterns of the sLG beams with n = ℓ = 2 in free space (a,b) and (c,d) in an optical
system with a simple astigmatism (ϕ = 0) for different amplitude ε = 1 (a,c), ε = 103 (b,d), and
different phase parameters θ accompanied by the corresponding associated ellipses of the intensity
moments matrix W.

Let us pay attention to the fact that the OAM in Equation (15) is described through
the imaginary part of the mode amplitudes product, while the cross-intensity moments
in Equation (23) are given by the real part of these mode amplitudes products. In fact,
this indicates an implicit relationship between the W and M matrices. If we follow the
recommendation of the authors in Ref. [29] , then this relationship should be sought in the
orientation of the corresponding ellipses of these matrices. But to simplify the mathematical
calculations, let us recall that the difference of the non-diagonal elements of the matrix M
sets the specific OAM ℓz = Mxy − Myx. Therefore, it is more appropriate to consider the
relation ℓz(θ)/4Wxy(θ) and write

Φ(θ) = arctan(ℓz(θ)/4Wxy(θ)). (26)

Since Φ(θ)/θ = 1 (see Figure 7a), we can rewrite Equation (26) as

ℓz(θ) = Wxy(θ)(4 tan θ). (27)
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Figure 7a–e shows the dependencies of two different groups of beams: sLG beams with ε =
1 and sLG beam with ε ≫ 1 (the hybrid HLG beams rotated by the π/4 angle). The straight
lines in Figure 7a,b for the beams in free space indicate upon a simple link (Equation (27))
between the matrices W and M. Moreover, Figure 7f,g show the dependencies of Wxy(θ)
and ℓz(θ), respectively, which are identical. This indicates the degeneracy of W and M
matrices for sLG beams in free space. In an optical system with a simple astigmatism
(ϕ = 0), the amplitudes of the HG modes are described by Equation (18) in our article [18],
which differs from Equation (6) by a multiplier exp(iπ/2) in the observation plane z = 2 fx.
This means that the real and imaginary parts in the product CjC∗

j+1 in Equations (8) and (15)
are reversed. For the observed values Wxy(θ) and ℓz(θ), this means a shift of π/2 along the
θ-axis, which is observed in Figure 7d,e for both ε = 1 and ε ≫ 1 (see Figure 7i,j). Thus, the
matrices W and M remain degenerate in the case of a simple astigmatism. But, on the other
hand, it also means the loss of three degrees of freedom, both for the sLG in free space
and for the asLG beam in a system with a simple astigmatism. But as can be seen from
Figure 7c,h, the simple dependence between Wxy(θ) and ℓz(θ) in a system with general
astigmatism disappears, and, consequently, the degeneration of the symplectic matrix P
is removed. Degeneracy is also removed when the amplitude parameter is not equal to
one ε ̸= 1 except for very large ε ≫ 1 amplitude parameters. To determine the relationship
Wxy(θ) and ℓz(θ), it is necessary to solve a system of 10 equations [28]. In the case ε ≫ 1,
the sLG beam turns into the HLG beam rotated by 3π/4 relative to the standard state of
the hybrid mode [4], and Equation (27) turns into

ℓz(θ) = Wxy(θ)(4 tan 2θ). (28)

Thus, for finding a total OAM of a complex structured beam, only one measurement
of the intensity moment Wxy is required instead of measuring the entire mode spectrum Cj
(see Section 5). It is worth noting that unlike the measurement technique based on the Wxy
element proposed in Ref. [44], where the main restriction is the availability of a reflective
symmetry of the intensity pattern relative to the main diagonals of a cylindrical lens, our
technique lacks such a constraint and is applicable to sLG beams with arbitrary symmetry.
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Figure 7. Angular parameter Φ for sLG22 (ε = 1) and hybrid HLG22 (ε = 103) beams in (a,b) free
space, (d,e) in a simple astigmatic (ϕ = 0), and in (c) general astigmatic (ϕ = π/4) systems via a
θ-phase parameter; (f,i)—the Wxy intensity moments in free space and (g,j)—the OAM in a simple
astigmatic system via q-phase parameter; (h)—the Wxy and ℓz for general astigmatism. The circles
near the straight lines in (a,b,d,e) indicate the experimental points.

4. Suppression of the Astigmatic OAM with a Spherical Lens

Considering laser beams in optical systems with astigmatic elements, one always
wonders what contribution general astigmatism makes to the OAM compared to the
optical vortices? The problem of separating vortex and astigmatic constituents in the beam
OAM is inextricably linked to the issue of converting astigmatic beams in a first-order



Photonics 2024, 11, 191 11 of 16

optical system. Standard beam transformations with suppression of one of the constituents
of astigmatic beams are based on the classification of astigmatic beams according to the
ratio between the invariants of the symplectic matrix of second-order intensity moments
and their symmetry [25,36]. For example, the correction problem was reduced to the
transformation of an astigmatic Gaussian beam into a cylindrically symmetrical form,
either with the help of a single cylindrical lens [24,45] or by means of a combination of four
cylindrical lenses [35] which has nothing to do with the OAM correction. Nevertheless, we
have not found any recommendations on standard transformations or original research on
this issue for structured astigmatic vortex beams in the literature. Therefore, we followed
the recommendations of the authors in Ref. [23] on using quadratic phase elements for
this purpose and our simple consideration that a spherical lens forms a beam in the focus
vicinity with the same waist radii along the x and y directions. Moreover, in order to
compensate for the additional Gouy phase difference between the x and y beam directions,
we proposed employing the Fourier transform. A sketch of such astigmatic transform
and phase correction is depicted in Figure 1. As we have said above, the ABCD matrix
formalism for a simple astigmatic system can be employed until we remain in the rotated
(x, y) coordinates. But once at the observation plane, we have to proceed to the laboratory
(x′, y′) coordinates to deal with general astigmatism. Thus, as well as before, we find the
complex parameters qx2 and qy2 through the complex parameters of a single cylindrical
lens qx and qy in Equation (6) in the form

qx2 =
qx + Z2(−κsphqx + 1)

1 − κsphqx
, qy2 =

(1 − Z2κsph)(Z1 − i) + Z2

1 + iκsph(iZ1 + 1)
, (29)

where κsph = z0/ fsph, Z2 = z2/z0.

Γx2,y2 =
1
2

arg
qxy2

Axyqxy2 + Bxy
, (30)

As a result, we reveal that sharp narrow OAM dips of the ℓz(Z2) curve surrounded by
two small bursts in Figure 8b denote correction of the OAM after a spherical lens with
the f = 0.5 m focal length. The depth of the OAM dip is restricted by the magnitude of
the sLG beam OAM before the astigmatic transform, while the intensity pattern coincides
with that of the sLG beam with non-orthogonal summitry before the transformation that
indicates the suppression of the astigmatic OAM component so the main contribution to
the OAM is made by optical vortices. As predicted in Ref. [31], the OAM correction occurs
when the beam radii wx = wy are equal. However, we found a number of additions to this
effect inherent in structured beams. First of all, the lens must perform a Fourier transform
of the asLG beam at a given observation plane after a cylindrical lens, while the narrow
OAM dip appears in the vicinity of the Fourier plane of a spherical lens, the width of which
reduces, rapidly with growing quantum numbers n and ℓ. We selected the beams with
the first maximal OAM burst at the angle ϕ = π/4 of the cylindrical lens, depicted at
the callouts in Figure 8a. Moving along the Z2 axis after the spherical lens, sharp OAM
dips were detected, while the OAM sharply decreased from ℓz > n + ℓ to ℓz = ℓ (see
Figure 8b,c), that is, the OAM decreased to that in the non-astigmatic sLG beam in front
of the cylindrical lens. Moreover, computer-simulated intensity patterns at these planes
practically coincide. (A comparison of the theory and experiment is discussed in the next
Section 5). Thus, the OAM suppression in the astigmatic beam leads to the restoration
of the initial state of the sLG beam at the cylindrical lens input with the OAM ℓsLG so
that the total OAM is ℓz = ℓasLG = ℓsLG + ℓastigm as was predicted in Ref. [31]. It is also
worth noting that the condition wx = wy is also fulfilled at the double focus plane after
the cylindrical lens. Therefore, an additional condition of phase correction for Gouy phase
equality Γx = Γy + 2πn should be taken into account.



Photonics 2024, 11, 191 12 of 16

0 ¼/2 3¼/2 2¼¼

0

1

2

3

4z̀

µ
0 ¼/2 3¼/2 2¼¼

0

2

4

6

8

–2

z̀

µ
0 ¼/2 3¼/2 2¼¼

µ0

2

4

6

8

10

12z̀

0 1 2 3 4 5
0

5

10

15

20

z̀

Z2

n=4;`=4

n=8;`=8

n=12;`=12

0

5

10

15

20

z̀

0 1 2 3
z0

a

Z =0.752 Z =12 Z =2.52

Z =0.752

Z =0.752 Z =12

Z =12 Z =2.52

Z =2.52

b c
z =0.50 z =10 z =2.50

z =0.50 z =10 z =2.50

z =0.50 z =10 z =2.50

Figure 8. Suppression of the astigmatic OAM in the asLG beam: (a) the OAM ℓz for different numbers
n and ℓ at the suppression plane. Callouts: experimental intensity patterns before the cylindrical lens
and at the suppression plane: Z1 = 0, at the left; Z2 = 0.75, at the right. (b,c) The OAM ℓz(Z2): (blue)
n = ℓ = 4, (red) n = ℓ = 8, (green) n = ℓ = 12; experimental intensity patterns at different distances
Z2. Circlets in (b,c) point out the experimental.

The corrected asLG beam has a number of unique properties. First of all, the corrected
asLG beam becomes invariant to any angular position of the cylindrical lens, i.e., its shape
and OAM do not change when the cylindrical lens rotates at any angle ϕ. The asLG beam
after a spherical lens in Figure 8b,c becomes a space-invariant one in a far diffraction
domain, i.e., its structure does not change up to scale along the beam at Z2 > 2 whereas the
OAM maximum is kept.

5. The Experiment

Our experiment is aimed at the exposure characteristic features in the asLG beam mode
spectra (squared amplitudes and phases) accompanying the degeneration of submatrices W
and M in the symplectic P matrix, as well as suppressing the astigmatic OAM component by
a spherical lens. The experiment is based on both the techniques of measuring second-order
intensity moments of the W submatrix and higher-order intensity moments on the basis of
HG modes [42,46]. An important feature of these techniques asserts that for measuring the
intensity moments, only a single shot of the intensity pattern is required at the observation
plane. For measuring the intensity moments of the second order, it was sufficient to restrict
ourselves to computer processing of the intensity patterns employing Expressions (7),
(29), and (30) for calculating the matrix elements Wij, i, j = 1, 2 in Equations (23)–(25).
Previously in Refs. [42,46,47], we developed techniques based on standard LG and HG
mode bases. But in our case, the optical system contains an astigmatic element that does not
allow employing standard LG modes to find the OAM in an optimal way, while computer
processing based on elliptical LG mode basis [48] optimal for representing astigmatic
beams has not yet been developed by us. Therefore, we chose the basis of the standard HG
modes, a computer processing technique, which is discussed in detail in Ref. [42] where it
is required to measure not only the squared amplitudes, but also the initial mode phases.

A sketch of the experimental setup is illustrated in Figure 9. The critical requirements
for elements of the experimental setup are a high resolving power of the structured beam
shaping and detection system, which affects the measurement error. Qualitative restoration
of structured beams was achieved by using an SLM modulator Thorlabs EXULUS-4K1/M,
Thorlabs, USA which allows shaping beams containing more than 150 modes and two
complementary metal–oxide–semiconductor detectors CMOS1,2 (Michrome 20). Moreover,
a high adjustment accuracy of photodetector and lenses required more precise movements,
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which were achieved using 6D optical stages with 3D displacements and 3D rotations
(Thorlabs, USA “MAX603D”). The accuracy of the longitudinal displacements reached
50 µm, and the angular rotations were up to 50◦.

To measure the matrix elements Wij and the HG mode spectra, it is sufficient to
computer-process the intensity pattern located either in the double focus of the cylindrical
lens in Figure 9 (when studying the degeneracy of the W and M submatrices) or for
studying the astigmatic OAM suppression with a spherical lens. The measured values
of the matrix elements Mij were directly used in Equation (20) for plotting ellipses of the
intensity moments in Figures 2 and 6. A more complex measurement procedure had to
be used in plotting linear dependencies between the intensity moment Mxy and a total
OAM ℓz in Figure 7a,b,d,e. If matrix elements Mxy for various phase parameters θ can be
found by only one measurement of the intensity pattern, then to determine the total OAM
it was necessary to measure the entire mode spectrum (amplitudes and phases) for each θ
and then calculate the OAM with Equation (15). The measurement results are shown in
Figure 7 in the form of experimental points. The mean squared deviation from straight lines
does not exceed 5%, which indicates a good agreement between theory and experiment.
In addition, the result obtained allows us to use simple relations ℓz = 4Mxy for ε = 1 and
ℓz = 2Mxy for ε ≫ 1 to find a total OAM in the next series of measurements.

A
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Figure 9. Sketch of experimental setup. Ls—He-Ne laser with λ = 633 nm, S1–5 —spherical
lenses, D1–2—iris diaphragms, M—mirror, SLM—spatial light modulator, Bs—beam splitter,
CL—cylindrical lense, CMOS1–2—cameras.

To study the astigmatic OAM suppression after a spherical lens, it was necessary to
compare the mode spectra at the correction plane with those of the sLG beam before the
cylindrical lens, as well as to compare the theory and experiment for the OAM ℓz(Z2)
after a spherical lens. Typical mode spectra for the asLG beam with n = ℓ = 5 are shown
in Figure 10. The upper line in the figure shows that the squared amplitude spectrum
does not change along the beam length, whereas the phase spectrum (the bottom line)
undergoes significant transformations in the vicinity of the beam correction plane caused
by fast changes of the Gouy phase for x and y directions. At the Fourier plane, the Gouy
phases are consistent, suppression of astigmatic OAM occurs, and the phase spectra for
these planes (see callout at Z2 = 0.75) become identical. It is important to note that the
intensity patterns of the sLG beam before the astigmatic transform and at the plane of
beam correction coincide with the correlation degree equal to 0.96 that (along with the
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coincidence of the phase spectra) experimentally confirms the suppression of astigmatic
OAM by a spherical lens.
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Figure 10. The HG2n+ℓ−k,k experimental mode spectra for squared amplitudes |Ck(Z2)|2 and phases
βk of the astigmatic structured asLG beam with n = ℓ = 5, where Z2 — distance between correcting
spherical lens and the observation plane; f = 0.5 m. fx = 0.5 m, z0 = 1 m, ε = 1, θ = 0.256, ϕ = π/4.

6. Discussion and Conclusions

The degenerate ring dislocations inherent in standard LG beams are destroyed in
structured sLG beams, begetting a pair of topological vortex dipoles and causing fast OAM
oscillations when the sLG beam phase parameter θ is varied, while the OAM does not
exceed the azimuth number ℓ of the initial LG beam. The beam structure becomes more
complicated when light passes through astigmatic elements, creating intricate traceries
in the beam intensity patterns, and, in such a way, stimulating sharp OAM bursts, which
may exceed the sum ℓ+ n of the azimuthal and radial numbers. In order to analyze such
a fine deep structure of such multi-parametric vortex beams, we proposed to employ a
combination of techniques of symplectic ABCD matrices and symplectic intensity moment
matrices appropriate for optical engineering. We have shown that the astigmatic structured
beam model obtained by the ABCD matrix technique turns out to be simpler and more
demonstrable compared to one via integral transformations [15] and takes significantly less
time when computer simulating the asLG beams evolution with large quantum numbers.
We have studied in detail the physical mechanisms of shaping the OAM super-bursts after
a cylindrical lens at general astigmatic transforms and suppressing the astigmatic OAM
constituted after a spherical lens. Thus, the measurement and analysis of the beam mode
spectra showed that both amplitudes and phases of HG modes take part in shaping the
OAM super-bursts after a cylindrical lens, whereas suppressing the OAM of the astig-
matic constitute occurs only due to the phase redistribution, while the mode amplitudes
remain unchanged.

On the other hand, employing the intensity moment techniques makes it possible
to measure a diversity of the asLG beam optical features at different lengths of the beam
passing through optical elements. We have combined techniques of the second-order and
higher-order intensity moments. Symplectic transforms of the second-order moments make
it possible to measure both the beam radii along the main directions of astigmatism, but
also to reveal the geometric properties of the associated ellipses of intensity moments,
while the higher-order intensity moments are key in the measuring technique of the mode
spectra (amplitudes and phases) in complex structured beams. The combination of these
techniques revealed a deep connection between the geometric properties of astigmatic
structured beams and their OAM. We also revealed that with simple astigmatism, de-
generation of the W and M submatrices of the symplectic matrix P occurs, which leads
to a decrease in the number of degrees of freedom of the structured beam. But, on the
other hand, degeneracy entails a directly proportional relationship between the coordinate
element Wxy and the twistedness elements Mxy and Myx of the submatrix M, which greatly
simplifies the measurement of the total OAM, reducing the full cycle of measurements of
the HG mode spectrum (amplitudes and phases) of the structured beam to the only mea-
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surement of the intensity moment. Moreover, we have shown that the Fourier transform
by a spherical lens enables us to suppress the astigmatic OAM component and restore
the original free-astigmatic sLG beam structure. However, with further propagation, the
sLG beam restores its astigmatic structure while maintaining the maximum OAM. The
simplified version of symplectic transformations considered by us can be widely used
for engineering complex optical systems of the first order in devices and systems of mod-
ern photonics. In particular, it can be extended for analyzing structured Ince-Gaussian
beams [19], for mapping various types of structured beams onto the orbital Poincare sphere,
etc. In addition, a detailed study has not yet been carried out to classify stable structured
vortex beams [36]. This can be achieved relatively simply by defining the main invariants
of symplectic matrices of the second-order intensity moments and comparing the trajectory
shapes on the orbital Poincare sphere. Moreover, the symplectic transform approach makes
it possible to generalize the classical properties of structured beams for the purposes of
quantum optics [22].
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