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Abstract: Silicon Carbide (SiC) is the predominant substrate material for optoelectronic-integrated
devices. However, it challenges the wafer-slicing process because of its high hardness, brittleness,
and other material characteristics. Laser processing has gained prominence as the primary method,
leveraging its merits of high efficiency, precision, and micro-destructiveness. In this study, a finite
element method is applied to calculate the temperature field distribution resulting from the electric
field of a Gaussian beam. The simulation considers laser propagation inside 4H-SiC, non-linear
absorption, and spherical aberration induced by the refractive index of the material. The influence
of laser pulse energy and focusing depth are considered. The results indicate that the modification
depths decrease with the increasing focusing depth. With the increase of laser pulse energy, the depth
of the modification layer increases continuously. Moreover, an experimental setup has been devised
to furnish valuable references in validating the proposed model.

Keywords: picosecond pulsed laser; laser modification; SiC material; numerical simulation; electric
field; temperature field

1. Introduction

Transparent hard materials such as Silicon Carbide (SiC), classified as third-generation
semiconductor materials, are distinguished by their wide band gap, superior thermal
conductivity, and rapid carrier packet mobility. Among the diverse isomers of SiC single
crystals, 4H-SiC emerges as a preferred variant owing to its heightened electron mobility,
high current density, and improved conduction characteristics. This crystal is well-suited
for developing optoelectronic integrated devices capable of withstanding extreme con-
ditions of elevated temperature, frequency, power, and resistance to radio waves [1–5].
Moreover, in recent years, the potential of photoelectric integration technology in quantum
communication with high security has been paid close attention and recognized. Therefore,
it is imperative to study and explore the processing means of SiC [6–8].

The inherent hardness and limited plasticity of SiC present challenges in achieving
precision during wafer slicing through the wire saw process of diamond wire slicing [9].
Recently, many new methods offered a viable alternative, such as the synergistic processing
of wet-oxidation-assisted chemical mechanical polishing and thermal annealing [10], laser
modification, and so on [11]. At sufficiently high laser energy density, the tunneling ioniza-
tion is initiated inside the SiC [12]. In this process, the electrons within the material undergo
excitation induced by the laser, transitioning from the valence band to the conduction band
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through the tunneling effect [13]. The intensified local energy concentration can manifest in
various outcomes, including alterations in color [14,15], modifications to the local refractive
index [16], and micro-explosions accompanied by thermal cracking [17]. Notably, 4H-SiC’s
transparency in the most common laser-excited wavelengths enables the theoretical focus
of laser energy within the material, facilitating laser modification. This aspect has spurred
considerable research interest and explorations in the field.

In 2016, the Siltectra company introduced a novel SiC wafer-slicing technology named
COLD SPLIT during the European Conference on Silicon Carbide and Related Materials [18].
Lin et al. used the focus of picosecond pulsed laser beams inside the material to achieve
a laser-modified layer characterized by a high fault density in 2022 [19]. The study also
delved into the influence of etching speed and etching interval, presenting optimized
laser parameters in the paper. In the same year, Zhang et al. investigated the impact of
pulse duration on the internal modification process [20]. Their findings demonstrated
a proportional relationship with both the height and width of the modified layers. The
subsequent year witnessed further advancements, as Wang et al. demonstrated that
maintaining a good surface quality could mitigate damage to the wafer surface during
femtosecond laser slicing [21].

Understanding the intricate factors influencing the quality and morphology of materi-
als due to laser-induced modification is a pivotal endeavor across numerous applications.
A wealth of research has been dedicated to unraveling these complexities, yielding note-
worthy findings with numerical simulation. In 2018, A.F. Mohammed et al. conducted
research by using finite element simulation, uncovering that the 193 nm ArF laser induced
temperature rise of 4H-SiC as a function of laser fluence. They observed two different sur-
face modification morphologies with a low or high laser fluence [22]. In 2023, Huang et al.
utilized femtosecond lasers to enhance the surface modification of 4H-SiC [23]. Employing
multi-physics finite element and molecular dynamics models, they established that a high
electronic temperature gradient is responsible for subsurface void generation. Furthermore,
Wang et al. explored the correlation between laser intensity and the internal nonlinear
refractive index of 4H-SiC in 2023 [24]. Utilizing finite element and two-temperature
models, they elucidated the energy deposition dynamics during internal processing, em-
phasizing the dynamic equilibrium of nonlinear self-focusing and plasma defocusing in
transparent materials.

Nevertheless, prevailing research models often overlook the intricate transmission
of laser energy inside the material. Instead, they simplify the laser as a heat input with a
specific energy density. It is typically represented as either a surface heat source applied on
the boundary, or a body heat source embedded within the material. The stretch focus zone,
induced by distinct refractive indices of the material and the external environment, is also
critical in laser wafer slicing. In this study, a picosecond pulsed laser with a wavelength of
1064 nm is employed to process 4H-SiC. Utilizing the finite element method, the model
effectively simulates the internal electric field, with the resultant electric field distribution
used to calculate the internal temperature field distribution. This comprehensive approach
considers the transfer mechanisms inside the 4H-SiC material, the non-linear absorption
process, and the phenomenon of spot stretching induced by refractive index differences.
The study systematically examines the laser pulse energy and focusing depth to analyze
the change in the electrical-induced temperature field. Furthermore, experiments involving
laser modification inside the 4H-SiC materials are conducted. These experimental obser-
vations enhance the analysis of the relationship between the established model and the
outcomes derived from practical experimentation.

2. Numerical Model Simulation

Laser pulse modification exhibits its efficacy on the surface and within the interior
of 4H-SiC. Focusing a high-energy pulse inside the 4H-SiC generates a modified layer
with an uneven temperature field and micro-explosion. Rapid local heat propagation
extends beyond the laser focus zone. The finite element method explains the formation of
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the modified layers by calculating electric and temperature fields inside the 4H-SiC. The
simulations adhere to the following assumptions:

(1) The incident laser’s light field distribution follows a Gaussian distribution.
(2) The property parameters of 4H-SiC in the model remain constant with temperature

variations.
(3) Considering a pulse width of 10 ps for the excitation laser and an electron-to-ion

transformation time scale of 10−12 to 10−10 s [25], the photoelectron interaction is
negligible. In contrast, lattice relaxation is considered so that the heat conduction
model is exclusively utilized.

(4) The laser acts as an electromagnetic wave; its electric field is entirely absorbed in the
focal zone, ignoring the absorption and ablation on the surface of 4H-SiC.

(5) SiC material modification is usually accompanied by Si vapor generation [19]. There-
fore, the modified threshold is set as 1687.15 K, which is the boiling point of silicon.

As illustrated in Figure 1a, the simulated region employs 4H-SiC with dimensions
a = 50 µm and b = 200 µm, situated in an air environment maintained at 293.15 K. The
simulation involves the application of a picosecond laser featuring an excitation wavelength
of 1064 nm and a pulse width of 10 ps. The excited beam, characterized by a spot radius of
ω0 = 1 µm, interacts within the interior of 4H-SiC. The mesh is set to a maximum value of
0.08 µm and a minimum value of 0.002 µm evenly distributed over the simulated area. Since
this process is a transient picosecond pulsed laser modification, the results are observed
after 10 ps of the thermal diffusion.
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of the laser propagation inside the 4H-SiC to form a stretch focus zone.

As depicted in Figure 1b, when an objective lens is used to focus a picosecond pulsed
laser, the inherent disparity in refractive indices between the material and environment
induces spherical aberration. This phenomenon leads to a distinct pupillary radius of
the laser reaching disparate positions along the optical axis, consequently leading to the
elongation of the focus zone. Under the condition of solely considering geometric optics
and employing paraxial approximations during the focusing period, this stretch length can
be expressed as [26]:

∆z =
d0

n

√n2 − NA2

1 − NA2 − n

, (1)
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where d0 represents the focusing depth, n denotes the refractive index of the 4H-SiC, and
NA signifies the numerical aperture of the objective.

It is noteworthy that Gaussian beams primarily serve as approximations of the
Helmholtz equation derived from Maxwell’s equations [27]:

E(x, z) =
√

ω0

ω(x)
exp

(
− (b − z)2

ω(x)2

)
exp

(
− ik0(b − z)2

2R(x)
+ iη(b − z)

)
, (2)

where ω, R, and η are the radius of the beam, Wavefront curvature, and Gouy phase shift,
respectively. The total electric field needs to be solved according to the Helmholtz equation:(
∇2 + k2

0
)
Etotal = 0; k0 = 2π

λ . Because the relationship between laser intensity and electric
field is [28]:

I(x, z) =
nε0c

2
|E(x, z)|2, (3)

where ε0 is the vacuum dielectric constant, c is the speed of light.
Hence, converting laser intensity into a thermal energy source inside the material is

achievable. Namely,

Q =
I(x, z)

d0
β =

nε0c
2d0

|E(x, z)|2. (4)

In the two-dimensional model, the volume is simplified as the incident laser intensity
depth within the material, denoted as d0, which also signifies the focusing depth. β is the
absorption coefficient equal to 1 at the focus zone in this model. The initial conditions are
Ex = Ey = Ez = 0, with the source import exclusively present in the z = b plane.

Within this model, the thermal conduction differential equation in the Cartesian
coordinate system is expressed as follows [29]:

k
(

∂2T
∂2x

+
∂2T
∂2z

)
+ Q = ρc0

∂T
∂t

, (5)

where k represents the heat conduction coefficient, T denotes temperature, ρ stands for
density, and c0 is the specific heat capacity of 4H-SiC.

Convection heat transfer inside the material is defined. The convection heat transfer
coefficient along the laser propagation direction is set at 10 W/(m2·K), while the convection
heat transfer coefficient perpendicular to the laser propagation direction is considered
infinite. Notably, whether it is a laser or a heat source, the incident direction is specified as
the -z-direction.

For the transient heat transfer problem, the initial conditions are outlined as follows:

t > 0, T = f1(t), (6)

Subsequently, the boundary conditions are established as T = f 1(t) across all boundaries
except the incident plane, where f 1(t) designates the environmental temperature. The
electric and temperature fields are then computed upon these considerations.

3. Materials and Methods

The experimental apparatus employed is illustrated in Figure 2. The test sample is
positioned on an electrically controlled translation platform, with the computer controlling
the platform’s movement along the x and y-directions to facilitate laser scanning. The
adjustment of the focusing depth is accomplished by displacing the objective lens.

The 1064 nm laser, sourced from Coherent’s HYPER RAPID laser system (with
M2 < 1.2), transits the reflector and enters the objective lens, which characterized by a
numerical aperture (NA) 0.4, is used to focus on the incident laser. After calculating, the
spot radius ω0 = λF

πD = 2.7 µm, F = 8 mm is the focal length, and D = 1 mm represents
the diameter of the laser. The calculated spot radius aligns closely with the radius of
the measured spot of approximately 3 µm in the experiment. Figure 2 also displays the
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enlarged laser processing inside the material. The test specimen employed is a 4H-SiC
with dimensions of 10 mm × 10 mm × 1.8 mm. Subsequently, the modification layer
morphology and cross-sectional damages of the samples were evaluated using an optical
microscope (OM, German ZEISS Axio Scope A1).
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Figure 2. Schematic diagram of the experimental device and the process of laser working inside the
4H-SiC 3D model.

This experimental investigation focuses primarily on altering the laser pulse energy,
focusing depth, as delineated in Table 1. According to the definition of NA in geometric
optics [30],

d0 = z0
tan (arcsin NA)

tan
[
arcsin

(
NA

n

)] . (7)

Table 1. Factor and level distribution of the orthogonal experiments for laser modification.

Factor Unit
Level

1 2 3 4 5 6

Laser pulse energy E µJ 10 20 30 40 50 60
Displacement of objective lens z0 µm 0 60 120 180 240 none

Calculated focusing depth d0 µm 0 166 333 500 667 none

The calculated focusing depth is also displayed in Table 1. Employing orthogonal
experiments, it systematically examines the impact of variations in the process parameters
of laser modification.

4. Results and Discussion
4.1. Electrical-Induced Temperature Field

The finite element method was employed to construct a model, and an investigation
into the influences of focusing depth and laser pulse energy on depths of modification layer
was conducted.

As the laser beam irradiates the material surface, some incident energy penetrates a
confined depth, transforming into heat energy. In Figure 3a, the computation of the electric
field is conducted by utilizing Maxwell’s and Helmholtz’s equations, treating it as the heat
source. Subsequently, in Figure 3b, the temperature field is calculated using a thermal
conduction model. The resulting distribution of the electrical-induced temperature field at
10 ps is visually depicted. Notably, the temperature field aligns relatively with the electric
field at the energy E = 60 µJ, focusing at d0 = 100 µm. Furthermore, the phenomenon of
focal zone elongation, attributed to the refractive index disparity, is easily observed.
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tribution with laser pulse energy of E = 60 µJ and focusing depth d0 = 100 µm inside the 4H-SiC at
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As depicted in Figure 4, at an energy of E = 10 µJ and 20 µJ, it is noteworthy that the
internal temperature of the material fails to attain the boiling temperature characteristic
of silicon after 10 ps of the thermal diffusion. As the laser pulse energy increases, a rise
in energy absorption occurs, resulting in an amplified heat transformation, leading to
its diffusion throughout the surrounding region. It can be explained that the increase of
energy corresponds to an increase in the electric field E(x, z), as dictated by Equation (3),
delineating the relationship between the electric field and laser intensity. It is discernible
that the variation in modification depth aligns consistently with the energy.
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In Figure 5, it is evident that the modification depth decreases with the increasing
focusing depth at 10 ps. While the stretch length of the laser spot is directly proportional
to the focusing depth, it is crucial to note that the significant losses. The energy of focus
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zone in the 4H-SiC can be influenced by numerous factors, such as the absorption of the
material and the uneven distribution of laser pulse energy. The numerical simulation
results detailing the change of modification depth at 1687.15 K are presented in Figure 6a.
As the laser pulse energy increase and the temperature reaches the damage threshold,
the modification depth exhibits an increase. The laser pulse energy density experiences a
gradual decrease, eventually losing its ability with a deeper focusing depth to modified
4H-SiC, which is consistent with the results in Figure 6b.
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4.2. Experimental Analysis

In the experiment, it is investigated that the impact of laser pulse energy and focusing
depth on modification layer morphology and size, specifically, the radius and depth of
modification layer, utilizing orthogonal experiment. The morphological characteristics
were observed using an optical microscope.
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The linear fitting of the objective lens displacement and the focusing depth within
4H-SiC along the z-direction is displayed in Figure 7. The laser pulse energy is E = 10 µJ,
and the repetition frequency is f = 100 kHz. In this part, z0 represents the distance of the
objective lens movements. The experimental results reveal that the moving distance of the
focus zone inside the 4H-SiC is 2.71 times that of the objective lens.
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Figure 7. The linear fitting relationship between the displacement of objective lens z0 and the focusing
depth d0.

This process involves a laser beam with a scanning speed of 200 mm/s and a repetition
frequency of 12.5 kHz. Illustrated in Figure 8a, the focusing depth is 126.5 µm with a
gradual increase in laser pulse energy ranging from 10 µJ to 60 µJ inside the 4H-SiC. With
the infusion of additional energy into the material, the temperature within the adjacent
4H-SiC environment experiences an increase through heat diffusion, ultimately culminating
in attaining the boiling temperature, characterized by an expanding modification radius. In
Figure 8b, the modification induced by laser energy at 40 µJ is depicted with a progressively
increasing focusing depth ranging from 0 µm to 667.8 µm. There is a noticeable decrease in
energy density, wherein, as the focus zone deepens, the modification radius diminishes,
resulting in a lighter color.
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Compared with the results of numerical simulation, the surface will be ablated in-
evitably, which is easily observed with the optical microscope. Despite the relatively low
laser pulse energies of 10 µJ and 20 µJ, it is noteworthy that the energy is still sufficient to
induce the formation of a modified radius on the surface.
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In Figure 9a, at low energy, such as 10 µJ, 20 µJ and 30 µJ, the ablation radius begins
to decrease when the focusing depth reaches 483.9 µm, whereas at high energy, its radius
increases. Throughout the propagation of the laser beam, the continuous absorption
of energy by 4H-SiC follows Lambert-Beer’s law, and part of the laser pulse energy is
distributed transversely, leading to a reduction in energy density. When the laser pulse
energy falls below the material’s damage threshold, no damage occurs. This reduction
tendency aligns with the results obtained through numerical simulation. Once the energy
is sufficiently increased, the modification radius enlarges as the laser penetrates deeper
into 4H-SiC. This can also be verified by Figure 9a at E = 50 µJ and 60 µJ.
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Another observation in the experiment is the widening of the radius of modification
layer as the focus zone deepens. This phenomenon is elucidated with the assistance of
Figure 9b. The laser pulse energy accumulates at the top of the spot, forming a cometary
shape inside the 4H-SiC. Because the incident laser is a Gaussian beam, which satisfies

the formula for the equation R = ω0

√
1 +

(
λz1
πω2

0

)2
, and ω0 is the waist radius, λ is the

laser wavelength, z1 is the distance on the optical axis from the waist. The energy density
absorbed by 4H-SiC surpasses the modification threshold before reaching the designated
focusing depth, the premature modification of 4H-SiC will occur. In such cases, the deeper
the focus zone, the further away from the waist, and the bigger the R.

Moreover, when the laser is precisely focused on the shallow inner layer, the mod-
ification radius is observed to be smaller than that on the surface. This discrepancy can
be attributed to the fact that, during surface modification, the reaction of 4H-SiC with O2
at elevated temperatures generates SiO2 and CO2 [31], with the diffusion of Si vapor. In
contrast, the absence of O2 inside hinders the oxidation reaction, resulting in the boiling of
only Si at elevated temperatures. The expansion of the Si vapor within the interior relies
solely on the solid’s limited region, which, due to its shorter diffusion distance compared
to air, leads to a smaller modification radius than that on the surface.

Figure 10 illustrates the depth of modification layer changes at a repetition frequency
of f = 12.5 kHz and an energy of E = 60 µJ. In Figure 10b, an enlarged figure of E = 60 µJ is
presented. At focusing depths of 126.5 µm and 263.9 µm, where the spherical aberration
is not substantial, and the energy loss is limited, the resulting modification zone is more
conspicuous and exhibits an elliptical shape. Contrastingly, at focusing depths of 483.9 µm
and 667.8 µm, the modification depth expands vertically, forming a conical shape with an
extended stretch length.
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Figure 10. 4H-SiC cross-section microscope topography and magnification at f = 12.5 kHz with
E = 60 µJ. And (b) is the enlarged morphology of (a).

The modification depth, described as L, increases with a rising focusing depth, as
depicted in Figure 11a. The modification depth spans from 0 µm to 87.5 µm, while the
focusing depth increases from 0 µm to 667.8 µm. As the focus zone deepens inside the
material, the modification depth’s growth rate diminishes, even decreasing. The increase of
modification depth is because the self-focusing and plasma defocusing inside the material,
which is inherent inside the 4H-SiC [24]. The incident laser spot, being focused on multiple
depths, results in uneven energy distribution. The reduction can be attributed to the
decline in energy density, which was just mentioned. With an increase in repetition
frequency, the overlap rate of the modification radius rises, which means the increase
of laser pulse energy, as shown in Figure 11b. Multi-pulse modification at the same
location continuously accumulates thermal influence within the material. Consequently,
the modification depth expands rapidly under a high repetition frequency. However,
at a frequency of f = 12.5 kHz and a focusing depth of 667.8 µm, the result suggests a
commencement of decline, indicating an inadequacy of laser pulse energy to facilitate the
deeper completion of the modification process.
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5. Conclusions

In summary, we used the finite element method employed in simulating the electrical-
induced temperature field inside the 4H-SiC and it has yielded reasonable results. The
model considers the spherical aberration caused by the refractive index of the material,
along with the non-linear absorption process occurring inside the 4H-SiC. The conclusions
are summarized as follows:
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(1) The simulation method employed here provides a reasonable calculation process
for the electrical-induced temperature field at 10 ps inside the 4H-SiC. It simulated
the change of electrical-induced temperature field with the increasing of laser pulse
energy and focusing depth. The simulation results indicate that the modification
depth increases with the rise in laser pulse energy. However, a counter trend is
observed as the increase of focusing depth. This means that to form a modified layer
deep in the material, more energy is needed.

(2) In experiment, the increase of the modification radius is observed to correlate with an
increase of laser pulse energy. Deeper layers of 4H-SiC exhibit a larger modification
radius compared to shallow layers. This phenomenon is attributed to the laser
beam being absorbed and fully heated by the material before reaching the designed
focusing depth, contributing to the spot radius expansion, further enhancing the
modification radius.

(3) In experiment, the depth of modification increases with the increase of laser pulse
energy. Besides, as the focusing depth increases, this leads to a concurrent increase
in the modification depth because of self-focusing within certain limits. However, it
is crucial to note that beyond a certain point, the decreased energy density becomes
a decisive factor. As the focusing depth further increases, the diminishing energy
density contributes to a subsequent reduction in the extent of the modification depth.
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