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Abstract: In this study, we have investigated the evolution process and dynamic characteristics of a
multi-pulse regime in an erbium-doped fiber ring laser based on a single-mode fiber–graded-index
multimode fiber–single-mode fiber (SMF-GIMF-SMF) structure as an optical modulator. By utilizing
the excellent nonlinear optical absorption of the SMF-GIMF-SMF (SMS) device with a modulation
depth of ~8.68%, stable single-pulse mode locking at the frequency of 9.84 MHz can be readily
observed at low pump power. In addition, the single-pulse operation can evolve into a multiple-pulse
regime on account of the peak-power-clamping effect via suitably raising the pump power and
carefully regulating the polarization state. Further, the single-shot temporal evolution of multiple
pulses is monitored, indicating that this state shows unique and interesting temporal characteristics
with variable pulse separations and inconsistent pulse intensities, which, as far as we know, is the
first such observation in ultrafast fiber lasers. Additionally, this study, based on the time-stretch
dispersive Fourier transformation method, suggests that these multiple pulses consist of chaotic wave
envelopes with erratic intensities and changeable pulse energy. We believe that these findings have
profound implications for revealing fascinating nonlinear pulse dynamics in ultrafast fiber optics.

Keywords: fiber laser; SMF-GIMF-SMF; mode locking; multiple pulses; dispersive Fourier transformation

1. Introduction

Lately, ultrafast fiber lasers have attracted much curiosity owing to their many poten-
tial applications in a variety of industries, including national defense [1], optical commu-
nication [2–4], precision machining [5], optical fiber sensors [6], microscopic imaging [7]
and biomedicine [8]. The passive mode-locking technique is one of the most common
ways to produce ultrafast pulses. When it comes to realizing the stable mode-locking
pulse regime in fiber lasers, saturable absorbers (SAs) are fundamental and critical compo-
nents. At present, various SAs are widely used in ultrafast fiber lasers, such as CNTs [9],
graphene [10], black phosphorus (BP) [11], nonlinear polarization rotation (NPR), WS2 [12],
topological insulators (TIs) [13], semiconductor saturable absorber mirrors (SESAM) [14],
transition metal dichalcogenides (TMDs) [15] and MXene [16], promoting the quick and
robust development of fiber lasers. However, the NPR technique is sensitive to environ-
mental vibration and polarization, which may lead to poor stability. In addition, these
material-based SAs (graphene or black phosphorus, for instance) can show lower damage
thresholds, which can ultimately result in a small power output and hinder their further ap-
plication. Thus, it is of great necessity to explore SAs based on new materials or structures
to overcome the deficiencies of the present SAs.

As a recent novel SA, SMS structures have the advantages of a simple process, conve-
nient construction, good resistance to environmental interference and excellent nonlinear
optical absorption at a wide band. Therefore, they have been a widespread concern both at
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home and abroad. In 2013, Nazemosadat et al. proposed to exploit SMS structures that can
be employed for an SA in all-fiber mode-locking fiber lasers and numerically conducted
an analysis of the nonlinear multimode interference (NL-MMI) effect in SMS devices [17],
verifying that GIMF possesses excellent saturable absorption properties. In addition, some
researchers excavated several novel SMS devices to achieve varied mode-locked pulses. For
instance, Teğin et al. proposed utilizing an SMF-SIMF-GIMF-SMF scheme in a ytterbium-
doped fiber laser and obtained dissipative soliton pulses [18]. Subsequently, stable optical
pulses were obtained in erbium-doped and thulium-doped fiber lasers with no core fiber
(NCF)-GIMF SAs [19,20]. Recently, a tapered GIMF-based modulator has been employed
to realize tunable mode-locked pulses in a thulium-doped fiber laser [21]. In 2021, an
innovative hybrid structure composed of GIMF and graphene for stable optical pulses was
reported by Li X et al. [22]. Moreover, some fascinating mode-locking phenomena in SMS-
based mode-locked fiber lasers were observed, such as noise-like pulses [23], Q-switched
mode-locking patterns [24], different bound solitons [20,25] and multi-wavelength mode-
locking patterns [26]. These experimental results profoundly facilitate the development
and application of GIMFs as SAs in ultrafast fiber lasers.

Apart from the generation of ultrashort pulses with broadband spectra, ultrafast fiber
lasers can be used as an excellent method for investigating pulse dynamics. In addition, the
fiber-like structured waveguide lasers can be used for exploring the pulse dynamics, includ-
ing the pulse transition from passive Q-switching to continuous-wave mode locking [27],
GHz-level mode locking [28], and single- and dual-channel Q-switching [29]. These diverse
pulse evolutions can provide a broad research field for studying the characteristics and
behaviors of ultrashort pulses. Further, fiber lasers with anomalous dispersion are prone
to generating multiple pulses at high pump powers when there are energy quantization
effects or an accumulation of excessive pulse chirps in the laser cavity. Different interac-
tions among these multiple soliton pulses can reorganize or bind the positions, which can
eventually form harmonic mode locking [30] or bound solitons [31]. The interaction forces
among soliton pulses with larger intervals are weaker, forming a more unstable regime,
which may contain complex pulse dynamic evolutions. In addition to their fundamental
physical significance, multiple soliton pulses can be used as an alternative optical source
for multilevel encoding [32], micromachining [33] and optical coherence tomography [34].
Consequently, it would be of great value to explore the dynamics and process of multiple
pulses, further optimizing the design and development of ultrafast fiber lasers.

2. Fabrication and Principle

Multimode fibers with a large core diameter allow multiple spatial modes to be
transmitted, and the phase velocities of the optical wave modes are not the same in
different transmission modes. Therefore, when light travels in a multimode fiber, higher-
order modes are excited, creating different interference fields at different locations in the
multimode fiber. When a standard single-mode laser beam is injected into the GIMF, its
transmission in the GIMF in a periodic interference mode can form a stable nonlinear
multimode interference (NL-MMI), sometimes referred to as the self-imaging effect [35,36].
The higher-order modes are periodically interfered with and superimposed at different
locations to produce different light energy distributions. The high-intensity light is gathered
together and re-entered into the single-mode fiber core, which oscillates periodically in the
laser cavity and finally produces a pulsed output [37].

As the degree of GIMF bending increases, the number of excited higher-order modes
changes correspondingly. Meanwhile, the output beam of the multimode fiber after contin-
uous bending undergoes periodic oscillatory coupling between the fundamental mode and
the initial excited guide mode along the length direction with an equal oscillation period
and interference length [38,39]. In the SMS structure, the interference length caused by the
GIMF is generally in the order of 100 µm [40–42]. In order to obtain good mode-locking
laser performance, it is necessary to adjust the length of the GIMF to the order of microns
to achieve the best saturable absorption, which is very inconvenient for practical operation.
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Theoretically, the saturable absorption mechanism in an SMS device is based on the
transmission characteristics and nonlinear optical effects of optical signals in the multimode
fiber [17,43]. When a low-power signal enters the multimode fiber, due to its larger
mode area and multiple transmission modes, the light signal propagates through multiple
paths and undergoes radiation in the cladding of the fiber. This radiation process quickly
attenuates and absorbs the energy of the low-power signal, achieving a saturable absorption
effect. On the contrary, high-power signals can take advantage of the larger mode area and
higher transmittance of the multimode fiber, enabling them to be transmitted over longer
distances with lower losses. Consequently, as the light signal passes through the SMS
device, it achieves the attenuation of low-power signals and the effective transmission of
high-power signals. As the light signal undergoes multiple cycles within the resonant cavity,
high-energy signals gradually accumulate and interfere, ultimately achieving pulse output.
The schematic diagram of the SMS-SA is shown in Figure 1a. We used a fiber fusion splicer
(Fujikura 80s) to splice two segments of standard SMFs to both ends of a GIMF with a core
diameter of 62.5 µm. Then, the length of the GIMF was measured to be 32.8 cm. During the
fiber fusion process, the fusion mode was set as multimode-to-multimode to ensure the
transmission mode matched between fibers, making fiber alignment easier and reducing
optical loss. Both the SMF and GIMF are relatively cheap and can be connected using a
fusion splicer, indicating that the production cost of this SA is low, and the manufacturing
process is simple.
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Figure 1. (a) Schematic diagram of the SMS-SA; (b) the nonlinear absorption curve of SA with
SMF-GIMF-SMF structure: the black dots correspond to the experimental data, and the red line is a
curve fitted by Equation (1).

To further investigate the nonlinear saturable absorption properties of the SMS-SA,
we employed the balanced two-arm test method [42] to attain its nonlinear transmission
curve. The curves can help evaluate the performance of the device and facilitate further
optimization. The ultrashort pulse source used in the balanced two-arm test method is a
home-made mode-locked fiber laser with a center wavelength of ~1561.5 nm, a spectral
width of ~5.6 nm, a pulse width of 456 fs and a rate of 15.3 MHz. The nonlinear transmission
curve of the fabricated SMS-SA is shown in Figure 1b, and its typical curve characteristics
can be fitted by the following equation:

T(I) = 1 − ∆T × exp
(
− I

Isat

)
− Tns (1)

where T(I) is the transmittance, ∆T is the modulation depth, I is the input light intensity, Isat
is the saturation fluence and Tns is the nonsaturable loss. Through fitting, we obtained the
saturation fluence and nonsaturable loss of the SMS device of 5.12 MW/cm2 (~2.33 µJ/cm2)
and 19.65%, respectively, and the measured modulation depth is ~8.68%. The experimental
results demonstrate that the SMS component exhibits excellent nonlinear absorption char-
acteristics, making it suitable for achieving ultrafast pulse output in passive mode-locked
fiber lasers.
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3. Experimental Configuration

To take advantage of the nonlinear absorption of the SMS structure device, a pas-
sively erbium-doped fiber (EDF) laser with an SMS-based modulator was designed. The
experimental apparatus is displayed in Figure 2. The pump light operating at 980 nm was
delivered into the laser cavity via a 980/1550 nm wavelength division multiplexer (WDM).
A highly erbium-doped fiber (LIEKKI Er 80-8/125) of 34 cm in length with the dispersion
coefficient of −20 ps2/km @1550 nm was applied as the gain medium. The laser output
was controlled by a 30% port of the optical coupler (OC). In addition, we changed the
intracavity polarization state and optimized the mode-locked operation via tuning a three-
paddle polarization controller (PC). The one-way laser signal transmission in the cavity
can be ensured by a polarization-insensitive optical isolator (PI-ISO). The 32.8 cm GIMF
(which keeps straight in the cavity) spliced with SMFs served as the mode-locked device,
which was placed between the WDM and PI-ISO. The total cavity length was about 20.34 m.
Except for EDF and GIMF, other fibers were standard SMFs with the dispersion coefficient
of −23 ps2/km @1550 nm. Therefore, the net cavity dispersion was anomalous. Then,
the output pulse performance was evaluated by utilizing an optical spectrum analyzer
(AQ6370D, Yokogawa, Tokyo, Japan), a 1 GHz oscilloscope (DSOS104A, Keysight, Santa
Rosa, CA, USA), a radio-frequency (RF) spectrum analyzer (N9322C, Keysight, Santa Rosa,
CA, USA) and an optical autocorrelator (FR-103XL, Femtochrome, Berkeley, CA, USA).
Simultaneously, a real-time oscilloscope (DPO72004C, Tektronix, Beaverton, CA, USA) with
a high-speed photodetector (New Focus Model 1444, Newport, Irvine, CA, USA) were
employed to observe the internal details of the output pulses.
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Figure 2. The schematic of the fiber laser. LD: laser diode; WDM: wavelength division multi-
plexer; EDF: erbium-doped fiber; OC: optical coupler; PC: polarization controller; ISO: polarization-
insensitive optical isolator; GIMF: graded-index multimode fiber.

4. Experiments and Results

In this experiment, by gradually increasing pump power, the fiber laser with SMS SA
can generate mode-locking pulses. When the pump power surpasses 50 mW, it is simple
to obtain a stable mode locking regime by properly rotating the PC paddles. Figure 3
presents the output pulse characteristics at 55.5 mW pump power. The optical spectrum
can be shown in Figure 3a with a center wavelength of ~1560.50 nm and spectral width
of ~4.98 nm. Additionally, the obvious Kelly sidebands are visible on both sides of the
spectrum, proving that the fiber laser is operating in the anomalous dispersion region.
The measured pulse trains based on the low-speed oscilloscope with 1 GHz bandwidth
are displayed in Figure 3b. The repetition frequency of ~9.84 MHz corresponding to the
temporal interval between neighboring pulses in the figure is approximately 101.6 ns,
which matches the cavity length. According to the RF spectrum shown in Figure 3c, the
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peak of the repetition rate is located around 9.84 MHz. With a resolution bandwidth of
100 Hz, the signal-to-noise ratio (SNR) is approximately 49 dB. This indicates a significant
difference between the peak of the mode-locked signal and the background noise, which
further proves that the fundamental mode-locked regime has relatively good reliability and
stability. Moreover, as shown in Figure 3d, the shot-to-shot spectrum over 3000 consecutive
roundtrips based on the DFT method is explored. It can be shown from the plot that the
optical spectra are nearly indistinguishable from one another. In addition, the intensities at
consecutive roundtrips are unchanged and no significant fluctuation is observed on the
spectra, further suggesting the stable operation of the mode-locking pulses.
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(a) Optical spectrum; (b) oscilloscope trace; (c) RF spectrum; (d) shot-to-shot spectra.

Further, by slowly raising the pump power and finely tuning the angle of the PC
blades, a notable mode-locked state can be achieved. Figure 4 displays the corresponding
pulse behaviors at 215 mW. The optical spectrum centers at 1558.6 nm and the measuring
spectral width is 3.31 nm, as depicted in Figure 4a. As the nonlinear absorption properties of
the SMS structure vary with pump powers, the spectral width of Figure 4a is narrower than
that of Figure 3a when pump power increases from 55.5 mW to 215 mW. Kelly sidebands
with low intensities are observed on the spectrum. Figure 4b shows the measured pulse
trains by using the low-speed oscilloscope with 1 GHz bandwidth, which demonstrates that
the temporal period (~101.6 ns) is unchanged. The RF spectrum in Figure 4c exhibits a SNR
of 58 dB, with a resolution bandwidth of 100 Hz. The corresponding autocorrelation curve
is present in Figure 4d. The pulse duration with the sech2 fitting is ~0.727 ps, matching the
full width at half maximum (FWHM) of 1.123 ps. The base intensity can result from the
high gain of the autocorrelator setting.

In addition, as shown in Figure 5a, two-dimensional temporal evolution with over
3000 roundtrips is investigated. Clearly, the mode-locking regime actually consists of
multiple pulses with unequal intervals. This is mainly due to the pulse energy quantization
effect at higher pump power [44], resulting in the single pulses easily splitting into a
lot of small pulses. In the meantime, the minimum pulse-to-pulse spacing is ~110 ps
and the maximum one is ~1.16 ns, showing that the temporal separation is randomly
assigned. This condition also indicates that there are relatively weak interactions existing
among these multiple pulses. Moreover, the mode-locking operation still exists even when
the pump power is raised. Figure 5b depicts the temporal evolution process at 415 mW
pump power. In comparison to Figure 5a, it can be observed from the figure that more
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multiple pulses were generated, and the locations and temporal intervals of these pulses
also changed. Multiple pulses on the left are tightly distributed and those on the right are
loosely distributed.

Photonics 2024, 11, x FOR PEER REVIEW 6 of 11 
 

 

 

Figure 4. Output pulse characteristics of special mode locking with a pump power of 215 mW. (a) 

Optical spectrum; (b) oscilloscope trace; (c) RF spectrum; (d) autocorrelation trace. 

In addition, as shown in Figure 5a, two-dimensional temporal evolution with over 

3000 roundtrips is investigated. Clearly, the mode-locking regime actually consists of mul-

tiple pulses with unequal intervals. This is mainly due to the pulse energy quantization 

effect at higher pump power [44], resulting in the single pulses easily splitting into a lot of 

small pulses. In the meantime, the minimum pulse-to-pulse spacing is ~110 ps and the 

maximum one is ~1.16 ns, showing that the temporal separation is randomly assigned. 

This condition also indicates that there are relatively weak interactions existing among 

these multiple pulses. Moreover, the mode-locking operation still exists even when the 

pump power is raised. Figure 5b depicts the temporal evolution process at 415 mW pump 

power. In comparison to Figure 5a, it can be observed from the figure that more multiple 

pulses were generated, and the locations and temporal intervals of these pulses also 

changed. Multiple pulses on the left are tightly distributed and those on the right are 

loosely distributed. 

To explore the real-time spectral evolution, the shot-to-shot spectra were measured 

for more than 3000 consecutive roundtrips using the DFT technique. The results at pump 

powers of 215 mW and 415 mW are shown in Figure 6a,b, where the blue curve represents 

the energy evolution at different roundtrips. The energy curve exhibits an unstable and 

non-periodic evolution. The spectral intensity and spectral width increase with increasing 

pumping power, and the energy curve at high power shows a more intense evolution 

process over the roundtrip cycles. The shot-to-shot spectrum shows that the intensity of 

multiple pulses is higher in the middle, and the lower spectral intensity on both sides 

corresponds to the Kelly sideband of the commercial spectrum. Compared with Figure 6a, 

Figure 6b exhibits higher spectral intensity, and the fluctuations of soliton pulses demon-

strate pronounced wave-like characteristics, generating irregular pulse shapes. This phe-

nomenon indicates that high-power soliton dynamics are more intense and disordered, 

likely involving complex interactions between nonlinear effects and dispersion. Investi-

gating the soliton dynamics process at high power levels will contribute to a deeper un-

derstanding of pulse behaviors in a nonlinear medium. As illustrated in Figure 7a, the 

spectra of these multiple pulses at various powers are recorded. With increased pump 

power, the spectral bandwidth and intensity vary, and there is a clear Kelly sideband on 

Figure 4. Output pulse characteristics of special mode locking with a pump power of 215 mW.
(a) Optical spectrum; (b) oscilloscope trace; (c) RF spectrum; (d) autocorrelation trace.

To explore the real-time spectral evolution, the shot-to-shot spectra were measured
for more than 3000 consecutive roundtrips using the DFT technique. The results at pump
powers of 215 mW and 415 mW are shown in Figure 6a,b, where the blue curve repre-
sents the energy evolution at different roundtrips. The energy curve exhibits an unstable
and non-periodic evolution. The spectral intensity and spectral width increase with in-
creasing pumping power, and the energy curve at high power shows a more intense
evolution process over the roundtrip cycles. The shot-to-shot spectrum shows that the
intensity of multiple pulses is higher in the middle, and the lower spectral intensity on
both sides corresponds to the Kelly sideband of the commercial spectrum. Compared
with Figure 6a, Figure 6b exhibits higher spectral intensity, and the fluctuations of soli-
ton pulses demonstrate pronounced wave-like characteristics, generating irregular pulse
shapes. This phenomenon indicates that high-power soliton dynamics are more intense and
disordered, likely involving complex interactions between nonlinear effects and dispersion.
Investigating the soliton dynamics process at high power levels will contribute to a deeper
understanding of pulse behaviors in a nonlinear medium. As illustrated in Figure 7a, the
spectra of these multiple pulses at various powers are recorded. With increased pump
power, the spectral bandwidth and intensity vary, and there is a clear Kelly sideband
on both sides of the spectrum, while there is no significant change in the spectral shape,
indicating that the cavity is in a negative dispersion state. As the pump power rises, there
is a mildly blue shift in the center wavelength, showing that the cavity loss increases at
high power. In this study, we observed different operating regimes by increasing the pump
power. Figure 7b illustrates the operating regime distribution of the laser, along with the
corresponding output power, and average pulse energy versus the pump power. The laser
requires a pump power of 25 mW to achieve continuous wave output. At a pump power of
55.5 mW, we observed a single pulse mode-locking state, as shown in Figure 3. By further
increasing the power and fine-tuning the PC, a stable multiple pulse mode-locking state
was observed at 165 mW pump power. Interestingly, though we gradually increased the
pump power to 665 mW without adjusting the PC, the special multi-pulse operation did
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not have significant changes. It can be seen from Figure 7b that the average output power
climbs from 6.01 mW to 32.4 mW as the pump power rises from 165 mW to 665 mW in
the multiple-pulse operation. It is difficult to precisely calculate the pulse energy of the
special multiple pulse operation state because there are multiple pulses with varying pulse
numbers, peak power and pulse width [45,46]. However, we can estimate the pulse energy
of multi-pulses by dividing the average output power by the repetition frequency [47,48].
Based on this calculation, the total pulse energy of multi-pulses increased from 0.61 nJ to
3.29 nJ versus the pump power increasing from 165 mW to 665 mW. These results are useful
for researchers looking deeper into the soliton dynamics of high-average-energy pulses.
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Figure 5. (a) 2D temporal evolution of the pulses with a pump power of 215 mW; (b) 2D temporal
evolution of the pulses with a pump power of 415 mW.

In passively mode-locked fiber lasers, the balance of optical dispersion, nonlinearity,
gain and loss leads to the generation of soliton pulses. Moreover, due to the peak-power-
clamping effect and soliton quantization effect in the anomalous dispersion regime, the
soliton pulse can be easily split into multiple pulses. Then, these pulses keep a fixed spacing
and constant phase during multiple round trips in the fiber lasers, eventually forming
bound solitons, harmonic mode-locked solitons or other special pulse regimes. In our
experiment, when the SMS structure was removed from the laser cavity, the mode locking
was not observed, indicating that this SMS structure is an indispensable device for the
generation of multiple pulses. Thus, a joint result of the nonlinear effect and multimode
interference effect of GIMF, peak-power-clamping effect and soliton quantization effect at
high pump power facilitates the formation of multiple soliton pulses. Additionally, the
varying separations in a single multiple-pulse bunch can be associated closely with slow
recovery and depletion processes in the fiber laser cavity [49]. Therefore, by appropriately
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increasing pump power and finely adjusting PC blades, the unique multiple-pulse operation
was achieved in the cavity with the all-fiber SMS device.
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5. Conclusions

In this study, we have reported an erbium-doped fiber laser based on SMS as an
excellent SA with a modulation depth of ~8.68%, which can generate a stable single pulse
and multiple pulses via reorienting the blades of PC and properly changing the pump
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power. The single pulse mode-locking state operates at 1558.6 nm with a fundamental
repetition rate of 9.84 MHz, and matching SNR up to 58 dB. Moreover, the regime with
multiple pulses has average pulse energy from 0.61 nJ to 3.29 nJ with the gradual increase
in pump power. Additionally, the dynamic characteristics of multiple pulses are studied
by utilizing the DFT technique, indicating that there are randomness and variability in
pulse intensities and pulse intervals. These research findings further validate the use of
NL-MMI-based SMS as an effective SA in ultrafast fiber lasers.
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