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Abstract: Adaptive Optics (AO) systems have been developed throughout recent decades as a strategy
to compensate for the effects of atmospheric turbulence, primarily caused by poor astronomical seeing.
These systems reduce the wavefront distortions using deformable mirrors. Several AO simulation
tools have been developed, such as the Object-Oriented, MATLAB, and Adaptive Optics Toolbox
(OOMAO), to assist in the project of AO. However, the main AO simulators focus on AO models, not
prioritizing the different control techniques. Moreover, the commonly applied control strategies in
ground-based telescopes are based on Integral (I) or Proportional-Integral (PI) controllers. This work
proposes the integration of OOMAO models to Simulink to support the development of advanced
controllers and compares traditional controllers with intelligent systems based on fuzzy logic. The
controllers were compared in three scenarios of different turbulence and atmosphere conditions. The
simulations were performed using the characteristics/parameters of the Southern Astrophysical
Research (SOAR) telescope and assessed with the Full Width at Half Maximum (FWHM), Half Light
Radius (HLR), and Strehl ratio metrics to compare the performance of the controllers. The results
demonstrate that adaptive optics can be satisfactorily simulated in OOMAO adapted to Simulink
and thus further increase the number of control strategies available to OOMAO. The comparative
results between the MATLAB script and the Simulink blocks designed showed a maximum relative
error of 3% in the Strehl ratio and 1.59% in the FWHM measurement. In the assessment of the
control algorithms, the fuzzy PI controller reported a 25% increase in the FWHM metrics in the
critical scenario when compared with open-loop metrics. Furthermore, the fuzzy PI controller
outperformed the results when compared with the I and PI controllers. The findings underscore the
constraints of conventional control methods, whereas the implementation of fuzzy-based controllers
showcases the promise of intelligent approaches in enhancing control performance under challenging
atmospheric conditions.

Keywords: adaptive optics; intelligent controllers; instrumentation; simulation; wavefront sensors;
point-spread functions

1. Introduction

Telescopes are instruments designed to observe distant celestial bodies. Normally, a
few photons from these bodies reach the instrument, which requires the development of an
infrastructure for capturing and correcting noise and distortions [1–5].

Atmospheric turbulence is a key factor in the degradation of the image obtained by
ground-based optical telescopes. This phenomenon, called seeing, limits the resolution of
these instruments. Since the 1950s, AO techniques have been used to mitigate this effect [6].
Atmospheric turbulence can be compensated by geometric modifications of deformable
mirrors employing real-time systems and wavefront sensors [7–14].

Typically, the final technology employed to implement AO systems in telescopes
demands the use of numerical simulations before the direct integration of the control sys-
tems [15]. To support the design of AO systems, several models of atmospheric turbulence
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and astronomical instruments have been developed over the years. YAO, developed in
Yorick, is a classic implementation of AO simulation [16]. Currently, other simulators have
shown excellent results, such as Simulation ‘Optique Adaptative’ with Python (SOAPY) [17],
AOtools [18], both developed in Python, and the Object-Oriented, MATLAB and Adaptive
Optics Toolbox (OOMAO), which is developed in MATLAB® [19]. OOMAO is a toolbox
dedicated to AO systems that uses the object-oriented paradigm and features an atmo-
spheric turbulence generation model proposed by [20]. Since it is numerically more efficient
than traditional Monte Carlo models, it allows the simulation of atmospheric turbulence
effects on larger telescopes. The OOMAO framework also implements models of source,
atmosphere, telescope, wavefront sensor (Shack–Hartmann), and deformable mirror.

OOMAO mainly focuses on adaptive optics models, not prioritizing the different
control strategies. Although it is possible to implement alternative strategies, there is a
difficulty in adapting control techniques other than those already implemented in the
toolbox (i.e., integral controller using the reconstruction obtained from Singular Value
Decomposition (SVD), open-loop controller, and modal controller). One way to overcome
this limitation is integrating OOMAO with Simulink—MathWorks software focusing on
modeling, simulation, and analysis of dynamic systems—which enables the designer to
focus on the controller project at a high level of abstraction and maintaining AO models
encapsulated in blocks. By employing this approach, it becomes possible to assess the
performance enhancements of AO systems by evaluating various control strategies, such
as intelligent controllers [21]. It is worth emphasizing that this integration is not a straight-
forward task. First, it requires the reconfiguration of functions and operations carried out
during simulations. Second, despite Simulink being a specialized tool within MATLAB,
it can employ a different set of solvers and methods for dynamical simulation. To ensure
proper functionality, it is necessary to validate the integration of MATLAB functions in
Simulink. This verification confirms the seamless interaction between MATLAB func-
tions and Simulink, ensuring that the desired behavior of the control system is achieved
as intended.

This work proposes the integration of the models developed in OOMAO into Simulink
and compares classical and intelligent control techniques for adaptive optics. A compara-
tive analysis between the open-loop system and closed-loop systems implemented with
Integral (I), Proportional-Integral (PI), and Fuzzy-based controllers is presented. The main
contributions of the paper can be summarized as follows:

• The integration and evaluation of OOMAO models into Simulink.
• As proof of concept, intelligent controllers have been developed and compared with

traditional ones, illustrating how to assess controllers in scenarios with different tur-
bulence and atmospheric conditions using performance metrics commonly employed
in AO projects.

• We have demonstrated the potential of fuzzy logic controllers over conventional
controllers in the AO design, reporting some advantages of the intelligent approach
such as the wider range of operating conditions, the capacity to include the experience
in the controller rules, and the better performance when compared with conventional
controllers.

The remainder of the article is organized as follows: Section 2 briefly presents an
overview of classical and hybrid fuzzy logic controllers. Section 3 describes the simulation
parameters, the adaptive optics quality metrics, and the scenarios considered for the
simulations. Section 4 presents the results and discussions of the integration of OOMAO
with Simulink and the comparative evaluation of the controllers. Finally, Section 5 describes
the conclusion.
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2. Overview of Classical and Intelligent Controllers
2.1. PID Controllers

PID controllers are applied to most modern process control systems today [22]. The
parallel PID algorithm is described as

u(t) = Kp

[
e(t) +

1
Ti

∫ t

0
e(τ)dτ + Td

de(t)
dt

]
, (1)

where e(t) and u(t) are, respectively, the control error (e(t) = r(t) − y(t), reference set
point minus the measured process variable) and the control signal. Kp is the proportional
gain, Ti is the integral time, and Td is the derivative time. Another way to express the PID
is in terms of Kp, Ki = Kp/Ti, and Kd = KpTd, respectively, proportional, integral, and
derivative gains.

The digital implementation of the PID requires discretizing the integral and derivative
actions using approximations (e.g., forward, backward, or trapezoidal approximations). It
is possible to discretize the integral action separately from the derivative action. To avoid
sharp changes in integral action when sudden changes occur in setpoint or process variable
signals, the trapezoidal integration (also known as Tustin or Bilinear transformation) can
be applied to the integral action, obtaining

uI(k + 1) = uI(k) +
KpTs

Ti

[
e(k + 1) + e(k)

2

]
, (2)

where Ts is the sampling time and k is the discrete time [23]. The I-part can be precalculated
right after the PID calculation. The derivative action is usually discretized by the backward
approximation technique [23], which results in the expression

uD(k) =
Td

Td + NTs
uD(k − 1)− KpTdN

Td + NTs
[y(k)− y(k − 1)], (3)

considering the ideal derivative action filtered by a first-order system with the time constant
Td/N (often N is between 8 and 20), which acts as a low-pass filter, limiting the high-
frequency measurement noise. Alternatively, uD(k) =

KpTd
Ts

[e(k)− e(k − 1)] in its most
basic form.

The proportional term is implemented by replacing the continuous variables with
their sampled versions as uP(k) = Kpe(k) and the control signal is given by u(k) =
uP(k) + uI(k) + uD(k).

Normally, when designing a PID controller, the dynamics of the sensors and actuators
are taken into account to determine the response and accommodation times of the closed-
loop system. However, in some cases, such as the deformable mirror described by OOMAO,
considering the sampling rates normally used in AO systems, the dynamics are fast enough
for its accommodation to be considered instantaneous.

2.2. Fuzzy Based Controllers

The PID controller, due to its robustness and simplicity, is widely employed in the
industry; however, the algorithm has low performance when applied to non-linear systems.
An alternative to PID that introduces nonlinearities to the controller is the incorporation
of fuzzy logic strategies. Fuzzy controllers formalize human reasoning in control systems.
In general, they are composed of three blocks: fuzzification, fuzzy inference engine, and
defuzzification.

The fuzzification changes the input variables into a fuzzy value using different mem-
bership functions typically built with sine, trapezoid, and triangle functions. The expert-
defined fuzzy rules, commonly expressed as “if-then” statements, are integrated into the
fuzzy inference engine. The inference procedure utilizes this knowledge base to determine
a reasonable output based on linguistic terms. Finally, the defuzzification converts the
output into a crisp value, in the case of the hybrid fuzzy PID controller, the Kp, Ti, and Td
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parameters, for example. Various defuzzification methods, including the center of mass, the
center of area, minimum and maximum, and others, can be employed for this purpose [24].

We have proposed a hybrid fuzzy PI architecture, as presented in Figure 1, since it
incorporates the fuzzy inference system as a supervisor of the PI controller. The determina-
tion of the parameters of the controller (i.e., proportional gain and integral time) relies on
the fuzzy logic, employing linguistic parameters and the Mamdani fuzzy inference system.

PID Controller Process
u(t)

Measurements

Fuzzification
Inference
engine

Rule base

Defuzzification

r(t) + e(t) y(t)

− PID Controller

Figure 1. Hybrid Fuzzy PID control block diagram. In detail, the steps of fuzzy reasoning comprise
the fuzzification, inference engine, and defuzzification blocks.

2.3. Intelligent Adaptive Optics

There exist some innovative proposals that involve the integration of intelligent tech-
niques, including fuzzy logic, machine learning, and other intelligent algorithms in the
context of AO. These strategies aim to enhance the capabilities of AO systems by leveraging
intelligent approaches to address the challenges posed by atmospheric turbulence and
wavefront distortions.

Within the framework of fuzzy controllers, Ke and Zhang [25] employed a fuzzy
control algorithm to adjust the parameters of the PID controller within the deflection mirror
loop. Florez-Meza et al. [26] presented a study that focused on the application of fuzzy
control in the AO tip-tilt system. The authors demonstrated the effectiveness of the fuzzy
approach, showcasing high stability and robustness indices. Regarding machine learning
methods, Nousiainen et al. [21] put forth the concept of modeling a closed-loop AO system
as a Markov decision process (MDP). They conducted an evaluation of the performance
of conventional deep reinforcement learning algorithms on the AO system, considering
a telescope diameter equal to 8 m. A similar control strategy was implemented in [27].
Pou et al. [28] introduce a control algorithm based on multi-agent reinforcement learning
(MARL). This approach allows the controller to learn a non-linear policy without requiring
prior knowledge of atmospheric dynamics. The results obtained, conducted on an 8 m
telescope with a 40 × 40 WFS, demonstrate a performance improvement compared to the
integrator baseline. Furthermore, the performance achieved by the MARL-based approach
is comparable to a model-based predictive strategy that utilizes a linear quadratic Gaussian
controller and has prior knowledge of atmospheric conditions. Guo et al. [29] conducted
a comprehensive review of AO focusing on machine learning algorithms. The authors
examined the blocks that constitute the AO systems and explored the potential integration
of machine learning algorithms into each of these parts.

3. Materials and Methods

Figure 2 illustrates the flow diagram adopted for analyzing the controllers. The AO
control loop simulation requires configuring the various parameters of the models, such as
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the simulation scenarios, which describe general atmospheric conditions, the turbulence
intensity, the light source, the telescope characteristics, and the control metrics adopted.

Three distinct simulation scenarios were adopted: typical, worst, and critical cases.
They are based on nominal atmospheric conditions observed at the SOAR telescope site,
situated at an elevation of 2738 m in Cerro-Pachón, Chile. The SOAR telescope has been
designed to operate across a broad spectral range, from the atmospheric cut-off in the blue
wavelength (320 nm) to the near-infrared. Simulation scenarios and adaptive optics metrics
are described in Sections 3.2 and 3.3.

Simulation Parameters:
atmosphere, light

source, and telescope
characteristics

Scenarios: average,
worst, and critical cases

Control strategies
and algorithms

Adaptive optics
quality metrics

FWHM, Strehl ratio,
effective value of the
wavefront residues

Figure 2. Flow diagram for testing and validating AO controllers simulations.

As mentioned previously, we have applied I, PI, and fuzzy PI controllers instead of
PID and fuzzy PID controllers (i.e., disregarding the derivative action). In general, PI and
fuzzy PI controllers are more adequate to reduce the steady-state error than their PID
versions.

3.1. Simulation Parameters: Atmosphere, Light Source, and Telescope Characteristics

Prior to any simulation in OOMAO, it is essential to create and define certain simula-
tion classes such as light source, atmosphere, telescope, Shack–Hartmann wavefront sensor
(WFS), and deformable mirror. Those objects are instantiated by calling their constructors
and aggregated through overloaded operators [30].

Considering the atmospheric and instrumentation information extracted from the
SOAR telescope, an object from the telescope class was created with the diameter of the
primary mirror, D, equal to 4.1 m and field of view of 3 × 3 arcmin, according to the
SOAR adaptive optics module (SAM) and its upgraded counterpart, SAMplus. SAM was
developed to compensate for the effects of ground-layer atmospheric turbulence across
a wide range of wavelengths, including near-infrared (IR) and visible wavelengths [8].
It was initially developed utilizing the bimorph DM technology, featuring 60 actuators.
SAM incorporated a Shack–Hartmann WFS with a 10 × 10 configuration, utilizing an
80 × 80 pixel CCD-39. SAMplus represents an upgraded iteration of the SAM that features
an increased number of DM and WFS.

The laser guide star (LGS) was projected at an altitude of 7062 m in the U band. The
second source simulates, in the I band, the star to be corrected, positioned at infinity. The
Shack–Hartmann WFS was instantiated with 16 × 16 lenslets, with each lenslet consisting
of 8 × 8 pixels. A deformable mirror was created with 17 × 17 actuators. Both the WFS and
the deformable mirror actuators are arranged in square grids. Additionally, a camera with
dimensions of 128 × 128 pixels was utilized. Moreover, in the description of the telescope
class, the central obscuration ratio was established at 0.228 (22.8%). The influence of spider
structures has been disregarded.

The atmospheric data consists of different scenarios simulating atmospheric turbulence
ranging from a typical case to a critical case. The Fried parameter, r0, ranges from 10 to
14 cm while the wind speed goes from 9 to 40 m/s. The simulations were performed at the
I band (approximately 790 nm). The stellar magnitude was set to 3.3.
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3.2. Adaptive Optics Quality Metrics

In general, the goal of an AO control loop is to minimize the residual phase of the
measured wavefront. Several techniques measure the quality of an adaptive optics control
loop, depending on the type of astronomical observation one intends to perform. Among
the metrics, this report employs the following methods to analyze and compare the out-
comes of various AO control strategies put forth: FWHM of the point-spread function (PSF),
which is the diffraction pattern formed by the wavefront; the Strehl ratio, measuring the
effective value of the wavefront residues; and the HLR [31]. In the conducted simulations,
the Strehl ratio is represented in percentage form. Those metrics were chosen once they
represent a mix between metrics commonly used in AO (i.e., FHWM and Strehl ratio)
and control metrics that are more readily obtainable in real time (e.g., the effective value
from wavefront residues). Specifically, the FWHM was estimated by taking the average of
the FWHM values computed in the xz- and yz-plane, corresponding to the x- and y-axis,
respectively.

3.3. Simulation Scenarios

As shown in Figure 2, three simulation scenarios were established. In each scenario,
five atmospheric layers were created at altitudes ranging from 0 to 8 km. Each atmospheric
layer represents different partial contributions to the atmospheric turbulence and wind
velocity, following the same criterion established in simulations for the SAMplus [8]. The
way in which these parameters were grouped is described in Table 1. The wind speed in
each atmospheric turbulence layer was also grouped into typical, worst, and critical cases.
In the typical case, winds of at most 25 m/s were considered while the winds reach 40 m/s
in the critical case. Table 2 presents a description of the wind speeds simulated in each
scenario.

Table 1. Indication of r0 and total contribution of each atmospheric layer in the seeing phenomenon.
Considering the typical case (I), the worst case (II), and the critical case (III) [8].

Layer 1 2 3 4 5 R0 [cm]

Altitude [km] 0 1 2 4 8 -
Fractional r0—I 0.74 0.02 0.02 0.10 0.12 14
Fractional r0—II 0.70 0.03 0.07 0.10 0.10 11
Fractional r0—III 0.65 0.05 0.09 0.11 0.10 10

Table 2. Wind speed in each atmospheric layer, considering the typical case (I), the worst case (II),
and the critical case (III) [8].

Layer 1 2 3 4 5

Altitude [km] 0 1 2 4 8
Wind speed—I 9 m/s 10 m/s 15 m/s 25 m/s 25 m/s
Wind speed—II 15 m/s 25 m/s 25 m/s 30 m/s 35 m/s
Wind speed—III 25 m/s 25 m/s 30 m/s 35 m/s 40 m/s

4. Results and Discussion
4.1. Integration of OOMAO with Simulink

As above mentioned, OOMAO is focused on AO modeling strategies, while Simulink
has a standard library with many available controllers and is fully integrated with MATLAB.
To speed up the process of simulating non-native controllers (e.g., fuzzy-based controllers)
in OOMAO, an adaptation layer between OOMAO and Simulink was developed. Figure 3
presents an example of a block diagram implemented using the adapted OOMAO blocks
in Simulink. To showcase the capabilities of the integration, Figure 4a depicts the total
incident wavefront, while Figure 4b,c illustrate the residual wavefront and the accumulated
wavefront after the I controller action, respectively. Figure 4a exhibits a significant variation
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in phase ranging from −20 to 40 µm, which deviates from the ideal scenario as we desire
values closer to zero. This is demonstrated in Figure 4b, which represents the controlled
phase of the system. In addition to providing the capability to implement different control
strategies, the integration also enhances the visualization of the results.

Figure 3. Block diagram of OOMAO simulation integrated with Simulink. Gc indicates the controller
(in the example, a discrete-time Integral controller), Gp is the atmospheric turbulence process, H∗

indicates the reconstruction matrix, and WFS the model of the Shack-Hartman wavefront sensor.

(a) (b)

(c)

Figure 4. The total incident wavefront is represented in (a). The residual wavefront and the accumu-
lated wavefront after the Integral controller action are indicated, respectively, in (b,c). The axes x and
y represent the camera with 128 × 128 pixels and the z axis is the phase [µm].

Additionally, to validate this integration, the Integral controller was implemented,
and the tests were replicated in both OOMAO and OOMAO integrated with Simulink. The
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versions of the same controllers were compared under the conditions previously described
in Section 3. The stochastic method used to simulate the atmospheric turbulence was
fixed to the Mersenne twister using the seed identified as mt19937ar under the MathWorks
environment. Figure 5 presents comparative graphs of wavefront RMS values versus
time under the typical, worst, and critical cases, respectively. The results demonstrated
a higher concordance between the curves obtained with the controller implemented in
Simulink and with the native implementation of OOMAO in MATLAB, except for a short
and constant 4-sample delay between the signal acquired from MATLAB and the one from
Simulink. Simulink initiates from a starting point that is four steps ahead of the MATLAB
code, as it executes the functions enclosed within the “Interpreted MATLAB Function”
blocks multiple times. There is no need to include a delay block in Simulink, as the phase
turbulence simulation yields valid results.

Table 3 compares the MSE of some variable computed between the implementation
without (i.e., in the native code of OOMAO) and with the Simulink approach, here proposed.

(a) (b)

(c)

Figure 5. Wavefront RMS values over time for an open loop (black line), with the controller im-
plemented in Simulink using the adaptation layer (blue line), and with the controller directly im-
plemented in MATLAB without the adaptation layer (red line). Simulation scenarios: (a) typical
case, (b) worst case, and (c) critical case. The delay between the curves of “OOMAO Simulink” and
“OOMAO MATLAB” occurs due to internal processing aspects of the Simulink, not affecting the
calculation.
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Table 3. MSE of control variables calculated between implementation with and without the Simulink
adaptation layer.

Typical Scenario Worst Scenario Critical Scenario

MSE—Wavefront RMS values [µm2] 7.49 × 10−5 2.60 × 10−4 9.82 × 10−4

MSE—Slopes on first WFS lenslet [µm2] 1.44 × 10−1 7.17 × 10−1 1.26 × 100

MSE—Slopes on last WFS lenslet [µm2] 9.37 × 10−2 2.93 × 10−1 7.29 × 10−1

MSE—DM first actuator control action amplitudes 3.11 × 10−16 8.05 × 10−16 1.09 × 10−15

MSE—DM last actuator control action amplitudes 3.93 × 10−16 6.95 × 10−16 1.30 × 10−15

MSE—DM control action RMS value amplitudes 1.18 × 10−17 2.07 × 10−17 5.41 × 10−17

4.2. Numerical Simulation of Classical and Intelligent Controllers
4.2.1. Open-Loop Simulation

The open-loop simulations were carried out in each of the respective proposed sce-
narios. Figure 6a–c are the PSFs of the first open-loop turbulence profile in the typical,
worst, and critical cases, respectively. The metrics of FWHM, HLR, and Strehl ratio in three
turbulence profiles (T1, T2, and T3) are shown in Table 4.

(a) (b)

(c)

Figure 6. PSF of the first turbulence profile in an open loop for: (a) typical case, (b) worst case, and
(c) critical case.

Comparing the results of the PSFs presented in Figure 6 with the value of an ideal PSF,
it is possible to verify that the open-loop system is significantly noisier and less able to
concentrate light when compared to the ideal one. One of the consequences of this fact is
that the open-loop system does not have a PSF that is easily parameterized on a Gaussian
or Moffat surface, which are more conventional surfaces for the characterization of PSF
profiles [31]. Due to this difficulty, the proposed metrics may not be described effectively.
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Therefore, not all metrics necessarily worsen due to atmospheric conditions; this implies
that it is possible in some metrics of the open-loop system, the worst or the critical cases
may have better indexes than the same metrics in the typical case, as is the case of FWHM
and HLR. The Strehl ratio, which briefly indicates the ratio between the maximum points
of the experimental PSF with the maximum point of the ideal PSF, can capture that the
ability to concentrate energy worsens according to the atmospheric conditions.

Table 4. System performance in an open-loop for the cases analyzed in three turbulence profiles (T1,
T2, and T3) according to the metrics of FWHM [Pixel], HLR [Pixel], and Strehl ratio [%].

Metrics Typical Scenario Worst Scenario Critical Scenario
T1 T2 T3 T1 T2 T3 T1 T2 T3

FWHM 65.875 85 53.25 72.375 64.000 54.375 66.375 63.250 66.125
HLR 33.00 34.00 32.00 30.00 29.25 28.75 29.25 28.75 29.00
Strehl ratio 0.175% 0.184% 0.218% 0.124% 0.121% 0.157% 0.104% 0.110% 0.111%

4.2.2. Integral Controller

Figure 7a–c shows the PSFs of the first turbulence profile of the simulations of the
I controller for the typical, worst, and critical scenarios, respectively. Table 5 presents a
summary of the astronomical metrics evaluated. In the typical scenario, a reduction of the
FWHM of around 40 pixels can be observed while no meaningful reduction was perceived
either in the worst-case scenario or in the critical scenario. This conclusion can also be
drawn by checking the PSF for each scenario, in which only the PSF of the typical case has
a Gaussian-shaped surface with a high peak at the center and a symmetric bell-shaped
surface.

(a) (b)

(c)

Figure 7. PSF of the first turbulence profile using an Integral action controller for: (a) typical case,
(b) worst case, and (c) critical case.
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In comparison with the metrics presented in Table 4, the I controller, in the typical
case, performs significantly better than the open-loop system under the same conditions.
This, however, is not necessarily true in the worst and most critical cases. Therefore, the
I controller is sufficient to control the system only in good atmospheric conditions, since
low-quality correction metrics were obtained in the worst and critical scenarios. Therefore,
based on the results, conducting astronomical observations using AO (specifically, the
I controller) on days with unfavorable atmospheric conditions would yield comparable
results to systems without AO (i.e., open-loop).

Table 5. System performance with I controller for the cases analyzed in three turbulence profiles (T1,
T2, and T3) according to the metrics of FWHM [Pixel], HLR [Pixel], and Strehl ratio [%].

Metrics Typical Scenario Worst Scenario Critical Scenario
T1 T2 T3 T1 T2 T3 T1 T2 T3

FWHM 20.875 17.875 21.500 65.750 57.750 61.625 66.625 67.625 59.875
HLR 12.50 11.75 14.75 30.25 31.25 30.00 28.75 29.00 29.75
Strehl ratio 1.077% 1.303% 1.039% 0.162% 0.153% 0.129% 0.1097% 0.101% 0.113%

4.2.3. Proportional-Integral Controller

Figure 8a–c are the PSFs of the first turbulence profile controlled by the PI controller
in the typical, worst, and critical cases, respectively. When comparing these PSFs with the
ones obtained with the I controller, a greater concentration of energy is observed in all
scenarios; moreover, the performance of the controller deteriorates significantly with the
deterioration of the simulated atmospheric conditions.

(a) (b)

(c)

Figure 8. PSF of the first turbulence profile using PI action controller for: (a) typical case, (b) worst
case, and (c) critical case.
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The same conclusion can be reached by verifying the metrics in Table 6 with those
provided in Tables 4 and 5, in which the metrics of FHWM and Strehl ratio obtained with
the PI controller consistently performed better than the metrics of I controller and open-
loop. The HLR metric obtained with the PI controller also performed generally better (in
the typical and worst scenarios), however, had similar results to the HLR metric obtained
with the I controller in the critical scenario.

Table 6. System performance with PI controller for the cases analyzed in three turbulence profiles
(T1, T2, and T3) according to the metrics of FWHM [Pixel], HLR [Pixel], and Strehl ratio [%].

Metrics Typical Scenario Worst Scenario Critical Scenario
T1 T2 T3 T1 T2 T3 T1 T2 T3

FWHM 15.625 15.375 15.500 36.625 29.500 30.875 66.750 72.750 72.625
HLR 7.75 7.75 7.50 22.00 22.75 24.00 30.75 31.75 31.75
Strehl ratio 3.091% 3.552% 3.428% 0.494% 0.528% 0.396% 0.193% 0.182% 0.184%

4.2.4. Hybrid Fuzzy Proportional Integral Controller

The hybrid fuzzy PI controller was designed using the structure of Figure 1, a PI
controller with a gain scheduler based on fuzzy logic. As an input for the gain scheduler,
the RMS value of the residual and the total wavefront error were adopted. The primary
justification for selecting these metrics as inputs in the fuzzy logic system lies in their
facility to be computed in real-time systems.

For each scheduler input, three triangular membership functions were adopted,
categorizing the inputs into the linguistic terms high, medium, and low, as pointed out
in Figure 9a. The residual wavefront membership functions assume values within the
range of [0, +0.5], and for the total wavefront membership functions the interval was
designed within the range of [0.4, 1.2]. The gain scheduler has two outputs, referring to
the proportional gain and integral time, in which membership functions were also fitted in
triangular functions with the same linguistic terms.
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Figure 9. Triangular membership functions with the linguistic terms low, medium, and high for:
(a) input variables (RMS value of the residual and total wavefront error), and (b) output variables
(proportional gain and integral time).

Figure 9b depicts the membership functions for the proportional gain and integral
time, respectively. Considering that traditional PID control tuning methods are not readily
applicable to the proposed multi-input, multiple-output (MIMO), and non-linear system,
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the PI parameters were empirically tested, adjusted, and fine-tuned to enhance the perfor-
mance of the AO system, with a focus on improving the metrics of FWHM, HLR, and Strehl
ratio. During the tests, the integral time was systematically adjusted within the range of 0.1
to 1, while the proportional action was varied between 0.5 and 5. The optimal parameters
for the proportional-integral action controller are determined to be Kp = 1 and Ti = 0.4.
Moreover, it has been observed that when the proportional gain values are set within the
range of 0.7 to 1 and the integral time falls between 0.3 and 1, a stable condition is attained,
resulting in effective AO control performance.

Figure 10a,b shows the fuzzy control surface that maps the given inputs (RMS values
of the residual and total wavefront) to the outputs (i.e., the proportional and integral time).
Lookup tables can be utilized to approximate the nonlinear control surfaces, resulting in
simplified control code, and enhancing the execution speed. Furthermore, this approach fa-
cilitates the embedding of the designed fuzzy controller in real-time systems. In Figure 10a,
there is a noticeable proportional gain scheduler, which is divided into three plateaus
whereby the residual and total values remain in the middle ranges. The integral time
schedule, conversely, presents a greater variation compared with the proportional gain
schedule, with a minimum value being reached when the total effective values (i.e., RMS of
the total wavefront) are around 0.7 µm. Both outputs have their maximum values if the
dominant membership function reaches the linguistic variable “high”.

(a) (b)

Figure 10. Fuzzy output surface (control surface plot) for: (a) proportional gain and (b) integral time.

Figure 11a–c corresponds to the PSFs of the first turbulence profile controlled by the
fuzzy PI controller in the typical, worst, and critical scenarios, respectively. By comparing
the surface plots of the typical case depicted in Figures 6–8 and 11, one can observe peak
amplitudes (in counts) of about 5 × 107 (open loop), 4 × 108 (I controller), 10 × 108 (PI
controller), and 15× 108 (fuzzy PI controller), respectively. That is, in the fuzzy PI controller,
the peak amplitude is found to be 30 times larger than that of the open-loop case, 3 times
larger than the I controller, and 1.5 times larger than the PI controller. Comparing the
PSFs of this control strategy with those presented by the PI controller, Figure 8, the fuzzy
PI has a better overall performance. Additionally, it is noteworthy that the performance
of the controllers, in all cases assessed, is significantly limited by the deterioration of the
simulated atmospheric conditions. As can be seen in the performance of the critical case,
that does not replicate the improvement observed in the typical case, even with the fuzzy
PI controller.
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(a) (b)

(c)

Figure 11. PSF of the first turbulence profile using fuzzy Proportional-Integral action controller for:
(a) typical case, (b) worst case, and (c) critical case.

The metrics of FWHM, HLR, and Strehl ratio of this controller in all turbulence profiles
are presented in Table 7.

Table 7. System performance with fuzzy PI controller for the cases analyzed in three turbulence
profiles (T1, T2, and T3) according to the metrics of FWHM [Pixel], HLR [Pixel], and Strehl ratio [%].

Metrics Typical Scenario Worst Scenario Critical Scenario
T1 T2 T3 T1 T2 T3 T1 T2 T3

FWHM 14.500 14.375 14.625 18.250 19.375 19.750 50.000 52.750 45.125
HLR 6.50 6.50 6.50 9.50 12.50 13.50 29.25 29.50 29.25
Strehl ratio 4.869% 5.112% 5.090% 1.377% 1.028% 0.844% 0.251% 0.240% 0.249%

4.2.5. Discussions

Figure 12a–c represents the wavefront RMS versus time of the open-loop system and
closed-loop system under I, PI, and fuzzy PI controllers for all the turbulence profiles
adopted. The fuzzy-based controller has a smaller RMS value in every single simulation
and thus outperforms its peers. The open-loop simulations serve as a performance baseline
for comparison, presenting greater values of wavefront RMS in the simulations. Between
the classical controllers (I and PI algorithms), the results indicate that the PI version presents
better results than the I controller.
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(a) (b)

(c)

Figure 12. Wavefront RMS values over time for all the control strategies implemented: open loop, in
a closed loop with I (CL-I), PI (CL-PI), and fuzzy PI (CL-PI-Fuzzy) controllers. Simulation scenarios:
(a) typical case, (b) worst case, and (c) critical case.

Table 8 presents a summary of the mean and standard deviation values of the residual
wavefront for the open-loop and closed-loop systems. The PI controller presents values
consistently smaller than the I controller and open-loop system values. There is an improve-
ment of about 75% to 80% in the mean value of the residual wavefront in the mean case
while an improvement by about 70% occurs in the critical case. By analyzing the standard
deviations of effective values of the wavefront, it is concluded that the PI controller has
smaller deviations than the I action controller. However, it is observed that the standard
deviations significantly grow with the worsening of atmospheric conditions, going from
0.008 µm in the first turbulence profile in the typical case to 0.045 µm in the first turbulence
profile in the critical case. Based on the analysis conducted, it can be inferred that the I and
PI controllers are insufficient for effectively controlling the system during critical scenarios.

The hybrid fuzzy PI controller, in turn, presents better results than the ones reported
by the PI controller, with an improvement of about 80% when compared to the mean
effective values of the wavefronts in open-loop in the typical case and about 75% compared
to the critical case. In addition, the fuzzy PI strategy has a performance of about 10% better
than the PI algorithm in the typical case and about 15% better in the critical scenario. This
again reveals and reaffirms the potential of using intelligent controllers with dynamic gain
scaling in AO systems.
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Table 8. Performance of open loop systems (OL), in a closed loop with I controller (CL-I), with
PI controller (CL-PI), with fuzzy PI controller (CL-PI-Fuzzy), for the scenarios analyzed in three
turbulence profiles (T1, T2, and T3) as a function of the metrics of the mean (RMS Mean) [µm] and the
standard deviation of RMS values (RMS Std. Dev.) [µm].

Metrics Controller Typical Scenario Worst Scenario Critical Scenario
T1 T2 T3 T1 T2 T3 T1 T2 T3

RMS Mean OL 0.358 0.461 0.330 0.418 0.737 0.637 0.662 0.601 0.613
CL-I 0.115 0.115 0.115 0.187 0.203 0.203 0.305 0.276 0.282
CL-PI 0.090 0.088 0.087 0.134 0.151 0.148 0.212 0.190 0.195
CL-PI-Fuzzy 0.078 0.079 0.077 0.108 0.125 0.125 0.172 0.161 0.163

RMS Std. Dev. OL 0.049 0.104 0.075 0.076 0.232 0.197 0.213 0.123 0.101
CL-I 0.013 0.017 0.016 0.018 0.030 0.026 0.057 0.031 0.043
CL-PI 0.008 0.012 0.010 0.013 0.027 0.018 0.045 0.024 0.031
CL-PI-Fuzzy 0.006 0.009 0.007 0.009 0.019 0.018 0.030 0.018 0.024

5. Conclusions

This work demonstrates the results of the integration of the OOMAO toolbox with
Simulink. As proof of concept, we have evaluated AO control strategies based on I, PI,
and hybrid PI fuzzy controllers, analyzing them using realistic atmospheric data in the
context of the SOAR telescope. The hybrid fuzzy PI controller reported a 25% increase
in the FWHM metrics in the critical scenario if compared with open-loop metrics in the
critical case. The results highlight the limitations of classical control techniques when
applied to AO systems. Moreover, the results of the hybrid fuzzy PI controller demonstrate
the potential of intelligent control techniques to improve control performance in hostile
atmospheric conditions, thus expanding the viability of AO applications in regions of high
atmospheric turbulence. In that sense, fixed-gain controllers are limited in conditions of
fast-changing scenarios, as presented by atmospheric turbulence. In these cases, adaptive
strategies using gain scheduling and intelligent controllers might be more suitable as a
control technique. Moreover, it is expected that the fuzzy PI controller retains their superior
performance compared to classical approaches (I and PI controllers) in different scenarios
(e.g., modification of the telescope and site) since the fuzzy strategy itself allows greater
flexibility for tuning and control. Further tests to evaluate different scenarios will be
conducted in future works.
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