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Abstract: The study of photonic crystals has emerged as an attractive area of research in nanoscience
in the last years. In this work, we study the properties of a two-dimensional photonic crystal
composed of dielectric rods. The unit cell of the system is composed of six rods organized on the
sites of a C6 triangular lattice. We induce a topological phase by introducing an angular perturbation
φ in the pristine system. The topology of the system is then determined by using the so-called
k.p perturbed model. Our results show that the system presents a topological and a trivial phase,
depending on the sign of the angular perturbation φ. The topological character of the system is probed
by evaluating the electromagnetic energy density and analyzing its distribution in the real space, in
particular on the maximal Wyckoff points. We also find two edge modes at the interface between
the trivial and topological photonic crystals, which present a pseudospin topological behavior. By
applying the bulk-edge correspondence, we study the pseudospin edge modes and conclude that
they are robust against defects, disorder and reflection. Moreover, the localization of the edge modes
leads to the confinement of light and the interface behaves as a waveguide for the propagation of
electromagnetic waves. Finally, we show that the two edge modes present energy flux propagating in
opposite directions, which is the photonic analogue of the quantum spin Hall effect.

Keywords: topological photonic crystal; edge states; C6 symmetry group; electromagnetic density
energy

1. Introduction

Photonic crystals (PCs) are systems whose electromagnetic features periodically mod-
ulate in the real space [1]. In particular, two-dimensional (2D) photonic crystals can present
topological behavior by introducing a perturbation in the Hamiltonian of the system in
order to obtain a non-zero Chern number [2,3]. Two-dimensional topological photonic crys-
tals are currently in the scientific limelight not only for possessing tremendous technological
potential but also for having opened several avenues of basic science exploration [4–11]. It
is known that when the photonic crystal is in a nontrivial topological phase, interesting
phenomena and properties can emerge. For example, we can highlight photonic analogies
of the quantum Hall effect [12,13], higher-order topological photonic crystals [14–16], the
quantum valley Hall effect [17–20], Huygens–Fresnel electromagnetic transportation [21],
fano resonance [22,23], antichiral states [24], and anisotropic topological phases [25]. Those
unique physical properties make photonic crystals excellent candidates for potential tech-
nological applications, such as topological lasers [26,27], topological waveguides [28–30],
filters, and resonators [31–33].

Furthermore, all these topological properties can be engineered in PCs. Changes in
the structural configuration, such as extrinsic defects and imperfections, can modify the
topological properties of the crystal, leading to topological phase transitions, and create
localized states. As a matter of fact, controlled perturbations can significantly impact the
formation of topology in PCs. For example, one can tune physical parameters such as
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lattice spacing, refraction index, spacial orientation of the “artificial atoms”, etc., inducing
reconfiguration of topological edge states which may be potential for reconfigurable topo-
logical waveguides [34]. In particular, it is known from the literature that photonic crystals
in a triangular lattice, with C6 point symmetry group, present a doubly degenerate Dirac
cone at the Γ point of the Brillouin zone. Moreover, the degenerate bands present p− and
d− wave orbitals in the band structure of the transverse magnetic (TM) polarization [35,36].
However, if a perturbation is introduced in the crystal, the double degenerescence is broken
and a complete topological bandgap is opened in the band structure [37]. In addition, the
bulk-edge correspondence guarantees that edge states will emerge inside the bandgap and
they will be protected by the topology [38,39]. Then, the topological protection ensures
that the edge states are localized and that they are robust against defects, disorder, and
reflection [40,41].

In this work, we investigate the propagation of electromagnetic waves, band structure,
and topological features of a two-dimensional topological photonic crystal composed of
six dielectric cusped-oval-shaped (COS) rods. We induce a bandgap in the system by
introducing a perturbation in the rods’ orientation angle, lifting the double degeneracy
at the Γ point of the Brillouin zone. In the following, we will show that two edge modes
emerge in the induced bandgap. This paper is organized as follows. In Section 2, we
introduce our system and explore its features. In Section 3, we introduce the perturbation
and study the topological behavior associated with positive and negative perturbations.
In Section 4, we study the emergence of edge states around the interface between the
topological and trivial photonic crystals. The robustness of the edge states is addressed in
Section 5. Finally, in Section 6 we give concluding remarks about this work.

2. The Photonic System

In order to obtain the band structure of the 2D PC considered here, we must study the
light dynamics in the system. It is well known from the literature that light dynamics in
photonic crystals comes from the Maxwell equations [1], with the time-dependent fields
given by ~E(~r, t) = ~E(~r)eiωt and ~H(~r, t) = ~H(~r)eiωt. For non-magnetic materials µ(~r) = 1
and with no free charge and current density, the equation for the electric field, the Master
Equation, may be written as

1
ε(~r)
∇× [∇× ~E(~r)] =

ω2

c2
~E(~r). (1)

Once the electric field’s dynamics is found, we can obtain the magnetic field’s dynamics by
using Faraday’s relation ~H(~r) = −[i/µ0ω]∇× ~E(~r).

Consider now a triangular lattice with six dielectric rods (ε = 13) per site surrounded
by air. The unit cell is composed of dielectric COS rods, with a = 1 µm, as we can see
in Figure 1. The COS rods are built taking into account two cylindrical rods of radius
r = 0.17a, which are shifted by a distance d = ±a/15. Then, we consider the intersection
area between the shifted cylindrical rods. Finally, the COS rods are placed in their locations
which are distant R = a/3 from the unit cell’s center (see Figure 1), in order to obtain a 2D
system with C6 symmetry point group.

Each individual COS rod in the unit cell can be rotated around its respective center
by the orientation angle Φi, as illustrated in Figure 1. The rods present an anisotropic
angular orientation which can vary spatially. Therefore, we may expect that an angular
perturbation will lead the system to undergo topological phase transitions from trivial to
nontrivial domain [42]. A perturbation φ is introduced in the orientation angle Φi, so that
we can write the orientation angle of the i-th COS rod as

Φi = (2i− 1)
π

6
+ φ0 + φ. (2)

Here, i = 1, 2, ..., 6 is the rod index, φ0 is the initial unperturbed angle and φ is the
angular perturbation introduced in our system. We remark that, because of the symmetry,



Photonics 2023, 10, 961 3 of 18

the perturbation φ has a period π, which means that the φ and φ + π induce the same
topological behavior in the system. Here, we assume φ0 = π/4 (see Figure 2a).

It is well known from the literature that triangular lattices with six “artificial atoms”
have two 2D irreducible representations in the C6 point symmetry group, which are as-
sociated with the symmetry of the triangular lattice [43]. As a consequence, a doubly
degenerate Dirac cone appears at the Brillouin zone center because of the Kramers’ degen-
eracy theorem as discussed below [44]. The degenerate bands are pseudospin states which
are related to px (py) and dxy (dx2−y2 ) orbitals, corresponding to odd and even parity in the
real space, respectively [35]. The pseudospin states can be written as [42]

p± =
1√
2
(px ± ipy), d± =

1√
2
(dx2−y2 ± idxy). (3)

The two irreducible representations D′(C6) and D′′(C6), with basis (px, py) and
(dxy, dx2−y2), respectively, allow us to write the pseudo-time-reversal operator T = UK in
an invariant form. K is the complex conjugate operator and U can be defined by [35]

U =
1√
3
[D′(C6) + D′(C2

6)] =
1√
3
[D′′(C6)− D′′(C2

6)]. (4)

Here, D′(C6) is equivalent to a rotation of π/3, while D′′(C6) is equivalent to a rotation
of 2π/3, i.e.,

D′(C6)

(
px
py

)
=

(
1/2 −

√
3/2√

3/2 1/2

)(
px
py

)
(5)

and

D′′(C6)

(
dx2−y2

dxy

)
=

(
−1/2 −

√
3/2√

3/2 −1/2

)(
dx2−y2

dxy

)
. (6)

We should comment that once the system presents time-reversal-symmetry and be-
haves like a half-integer spin system [45,46], according to Kramers’ degeneracy theo-
rem, degenerescence spontaneously emerges in a similar way as it occurs in electronic
systems [47,48].

r

0a
R

iF
d
d e1

2

3

4

5

6

Figure 1. Schematic illustration of the unit cell of the unperturbed PC composed of six COS Si rods
surrounded by air. Here, a0 = a/

√
3, R = a/3 is the distance from the center of the unit cell to the

center of the rods, r = 0.17a is the radius of the original cylindrical rods, and d = a/15 is the shift of
the original rods.

Considering the unperturbed photonic crystal (φ = 0), we calculate the band structure
for the TM modes (Ez, Hx, Hy 6= 0) using the COMSOL Multiphysics software [49] which is
based on the finite element method (FEM). The band structure is shown in Figure 2a. We
can observe a doubly degenerate Dirac cone, at the Γ point, between the second and fifth
bands, which is a consequence of the C6 symmetry group of the system.
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In Figure 2b, we plot the electric field along the z direction (Ez), at the Dirac point, with
ωa/(2πc) = 0.437. We found four states that are related to dipole and quadrupole modes.
More specifically, px and py orbitals are dipole modes, while dxy and dx2−y2 orbitals are
quadrupole modes. In the next section, we introduce a nonzero perturbation in order to lift
the double degenerescence and induce a complete photonic bandgap in the band structure.

M K M0.0

0.1

0.2

0.3

0.4

0.5

0.6
a/

(2
c)

M

K

୮

(a)

xp yp

xyd 22 yx
d

-

Max

0

Min

(b)

Figure 2. Results for the unperturbed photonic crystal. (a) Band structure for the TM modes with
ε = 13, a = 1 µm, r = 0.17a, d = a/15, φ0 = π/4, and φ = 0. A doubly degenerate Dirac point is
located at the Γ point with ωa/(2πc) = 0.437. (b) Profile of Ez at the Dirac point. We can see that the
orbitals are dipole modes (px and py), and quadrupole modes (dxy and dx2−y2 ).

3. Topological Phase Transition

In Section 2, we have found a doubly degenerate Dirac cone at the Γ point, as well as
orbitals p-like and d-like which are associated to the degenerate bands. Let us now study
the consequences of considering a nonzero perturbation φ in the rods’ orientation angle.
In order to illustrate the effects of the angular perturbation, we evaluate ωa/(2πc) vs φ
for the second, third, fourth, and fifth bands, as we can see in Figure 3. We can observe
that as | φ | increases from 0, the bandgap width monotonically increases, reaching its
maximum at φ = −π/4 and φ = π/4. On the contrary, as | φ | increases from φ = −π/4
and φ = π/4, the bandgap width monotonically decreases until the doubly degenerate
Dirac cone is recovered at φ = −π/2 and φ = π/2. This is a consequence, as mentioned
before, of the angular perturbation φ having a period π.

We next illustrate the opening of the bandgap in the band structure for two values
of φ, one positive and other negative. Figure 4 shows the band structure corresponding
to φ = −π/4 and φ = π/4. The perturbation opens a gap between ωa/(2πc) = 0.432
and ωa/(2πc) = 0.4408, for the positive case, and between ω, a/(2π, c) = 0.431, and
ωa/(2πc) = 0.4415, for the negative case, corresponding to a gap–midgap ratio [1] of
∆ω/ωm = 0.0202 and ∆ω/ωm = 0.0241, respectively. One can observe that a complete
bandgap is opened for both cases. Note that once the bandgap is opened, edge states can
appear inside the gap, as we will see later in this paper. It is also interesting to observe
in Figure 3 that the bandgap width is not symmetric in relation to φ. Photonic systems
can be mapped in tight-binding models [34,50]. Bearing this information in mind, observe
in Figure 4 the unit cell configuration for φ = −π/4 and φ = π/4. The configuration for
φ = −π/4 corresponds to a tight-binding model with t0 > t1, where t0, t1 > 0, represent
the nearest-neighbor (NN) hopping integrals inside and between the hexagonal unit cells.
On the other hand, the configuration for φ = π/4 corresponds to a tight-binding model
with t0 > t1 > 0 and t2 6= 0. Here, t2 6= 0 represents the next-nearest-neighbor (NNN)
hopping integral inside the diagonal unit cell. Once both configurations correspond to
different tight-binding Hamiltonians, the gap width is different [34,50].



Photonics 2023, 10, 961 5 of 18

/2 /4 0 /4 /20.430

0.432

0.434

0.436

0.438

0.440

0.442

a/
(2

c)
C ± = ± 1 C ± = 0

d- modes
p- modes

Figure 3. Effect of the angular perturbation φ on the TM band structure at the Γ point. It is possible
to observe that the double degeneracy is lifted when we introduce a nonzero perturbation φ (see the
main text).
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Figure 4. Results for the perturbed photonic crystal. Band structure of the TM modes with ε = 13, a = 1
µm, R = a/3, r = 0.17a, and d = a/15, for (a) the negative case illustrated by the red rods (φ = −π/4)
and (b) the positive case illustrated by the green rods (φ = π/4), respectively. The bandgap is
highlighted by the yellow area.

In order to study the topological behavior close to the Γ point, we can write an
effective Hamiltonian by using the k.p perturbed model from which we can obtain the
Chern number [51–53]

C± = ±1
2
[sign(B) + sign(M)]. (7)

Here, B is the diagonal term of the effective Hamiltonian close to the Γ point which is
essentially negative. In addition, M = (ωd −ωp)/2, where ωd and ωp are the eigenmodes
of orbit d and orbit p, respectively [54]. The eigenmode ωp is related to the double degener-
ate dipole states of p±, while ωd is related to the double degenerate quadrupole states of
d± [51]. If ωp < ωd then M > 0, hence C± = 0 and the photonic crystal is topologically
trivial. However, if ωp > ωd then M < 0, hence C± = ±1 and the photonic crystal is in a
topological phase. Therefore, the inversion of the bands between the degenerate modes at
the Γ point leads to the topological phase transition [55].

For this work, we consider the inversion of the bands that occurs between φ = −π/4
and φ = π/4 for the degenerate modes, as shown in Figure 5. We can observe that for
the positive case the frequency of the dipole modes is lower than the frequency of the
quadrupole modes, while for the negative case the frequency of the dipole modes is higher
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than the frequency of the quadrupole modes. Therefore, for φ = π/4 we obtain C± = 0,
which corresponds to a trivial photonic crystal, and for the case φ = −π/4 we obtain
C± = ±1, which corresponds to a topological photonic crystal.

4

p
f -=

4

p
f +=0=f

Topological Phase Transition

Max

0

Min

c

a

p

w

2

Figure 5. Topological phase transition diagram. Profile of the electric field Ez of the degenerate
bands. There is an inversion of the bands between φ = −π/4 and φ = π/4. The left side represents
the topological case, and the right side represents the trivial case. The topological phase transition
occurs when φ = 0. The red and blue lines are a guide to the eyes.

We can obtain important information about the topological behavior of the photonic
bands from the electromagnetic (EM) energy density distribution in the real space. The
general idea is that the EM energy density has peaks that are shifted towards the maximal
localized Wyckoff points (WP) at which the Wannier functions (WF) of the system are
centered. This is a consequence of the relationship between the Wilson-loop (WL) operator
and the maximally-localized WF. The spectrum of the WL operator is a useful method for
characterizing the topological phases of physical systems. First, we write the WL operator
as a path-ordered exponential of the Berry phase which is defined by [56]

Wmn(l) = Pe−i
∫

l Amn(k).dl. (8)

Here, P is the path ordering operator, and Amn is the Berry connection for m = n.
Second, it is known from the literature that there is a connection between the WL operator
and the WF. The WF, which is defined as a Fourier transformation of the Bloch states, can
be written as [57]

wiR(r) ∝
∫

BZ
e−ik.R ∑

j
Uk

ij ψjk(r). (9)

Here, Uk
ij denotes the mixing matrix, which represents the mixing of the Bloch modes

in the reciprocal space.
When we take into account the maximally localized WF, the mixing matrix takes

values to minimize the delocalization of the wave function according to the eigenvalue
of the WL operator [58]. The sum of the phases of the operator’s eigenvalues provides a
straight line in the Brillouin zone that corresponds to the expectation value of the projected
position operator calculated over the maximally localized WF [59]. For trivial systems,
the WL spectrum does not present winds and the Chern number is zero. Moreover, the
maximally localized Wannier functions are exponentially localized in specific points of the
real space. On the other hand, for topological systems the WL eigenvalues present winds
and the maximally localized WFs are not exponentially localized, but polynomially localized
in the real space between consecutive unit cells [57]. Therefore, we can identify different
topological phases by looking for the positions of the maxima of the WF in the real space.

As mentioned before, the peaks of the EM energy density are shifted towards the
maximal localized WP at which the WF are centered. Therefore, the EM density energy
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can be a useful tool to probe the topological features of the system. We can obtain the
EM energy density from the local density of states for a set of connected bands Λ and
considering the TM polarization as [57]

nΛ(r) =
6

πS ∑
n∈Λ

∫
BZ

dkε(r) | Ekn(r) |2 . (10)

Here, S is the area of the unit cell in the real space and Ekn(r) is the electric field of
the n-th band. It is possible to find the total EM energy density by summing all sets of
bands, i.e., n(r) = ∑Λ nΛ(r). Moreover, the total energy density is written in terms of the
electromagnetic field WF, i.e., Ew

kn(r) [60]:

n(r) =
6

πS ∑
Λ

∑
n∈Λ

∑
R

ε(r) | Ew
kn(r) |

2 . (11)

Since the WFs are linked to the WL, Equation (11) allows us to indirectly identify the
topological behavior by calculating the EM density and study its maximal localization in
the real space without directly evaluating the WL [57].

For the photonic crystal considered in this work, we evaluate the EM energy density
distribution for the positive and negative perturbation cases (φ = π/4 and φ = −π/4,
respectively), as we can see in Figure 6. From Equation (10), we can notice that the energy
density depends on the permeability parameter ε(r), which assumes the values ε(r) = 1
and ε(r) = ε for the background and rods, respectively. The difference between these two
values of permeability makes the intensity of the EM density in the rods much higher than
in the background. Thus, evaluating this quantity in the entire unit cell does not result in
trustworthy data for the EM density energy localization in the background. In order to
circumvent this problem, we separately evaluate the energy density for the rods and for
the background. For the latter case, we consider ε→ 1 for the rods.

Since the topological behavior of a bandgap can be defined as the sum of the topo-
logical behavior of the bands below that bandgap [8], we can focus on the set of bands
below the bandgap at the Γ point (see Figure 4). Figure 6 shows the EM energy density
distribution in the unit cell and the maximal WP. In particular, results in the literature show
that topological phases tend to present the associated EM energy density around the 3c WP
in the edge of the unit cell [57]. From Figure 6a, we conclude that the first band does not
contribute to the topological features of the bandgap since it has a homogeneous energy
distribution. Therefore, we can focus on the other bands below the bandgap, i.e., the second
and third bands (see Figure 4a). As expected, we see that the maximal EM energy density
in the rods is located in the regions around the 3c WP at the edge of the unit cell. The
same behavior is observed for the background, but with the maximum EM energy density
located right on the 3c WP. Therefore, we can infer that the negative perturbation leads
our system to a nontrivial topological phase. On the other hand, in Figure 6b all the bands
below the bandgap, i.e., the first, second, and third bands (see Figure 4b) contribute to the
topological features. We can observe that the maximum EM energy density is localized
inside the rods but far from the maximal WP. Focusing on the background, we notice that
the maximum is located between the rods, in the middle of the distance between the 1a WP
and the edge of the unit cell. Thus, for the positive case, the perturbation leads the system
to a trivial topological phase.

Let us quantify the localization illustrated in Figure 6. In order to do so, we set two
lines: (i) one along the direction (a1 + a2) and (ii) another along the direction (a1− a2). Next,
we evaluate the EM energy density along those lines as shown in Figure 7. Figure 7a,c show
the energy density nΛ/ max[nΛ] along the (a1 − a2) and (a1 + a2) directions, respectively,
for φ = −π/4. On the other hand, Figure 7b,d show the energy density nΛ/ max[nΛ] along
the (a1 − a2) and (a1 + a2) directions, respectively, for φ = π/4.

Analyzing Figure 7, we observe that bands 2 and 3, for the negative case, have the
maximal EM energy density at the 3c WPs (red-solid line in Figure 7a,c), corresponding
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to polynomially localized WF. On the other hand, for the positive case, bands 1–3 have the
maximal EM energy density located in the region either between 1a and 2b WPs or between
1a and 3c WPs (red-solid line in Figure 7b,d), corresponding to exponentially localized WF.
We can infer that the results about localization of the EM energy density reinforce our
conclusion about the topological behavior for the negative perturbation case and the trivial
behavior for the positive perturbation case. It is important to highlight that the results
illustrated in Figure 7 are in complete agreement with the previous results obtained from
the k.p perturbed model, which we used to evaluate the Chern number.

Max0

B
ac

kg
ro

un
d

R
o

ds

Band 1 Bands 2-3 Bands 4-6

1a 2b 3c

Maximal Wyckoff
        positions

1a 2a

(a)

(b)

Figure 6. Energy density distribution for TM modes with ε = 13, a = 1 µm, R = a/3, r = 0.17a, and
d = a/15 for the (a) negative case (φ = −π/4), and (b) positive case (φ = π/4). The positions of the
maximal WP 1a, 2b and 3c are also illustrated.
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Figure 7. nΛ/ max[nΛ] for TM modes with ε = 13, a = 1 µm, R = a/3, r = 0.17a, and
d = a/15 for (a) φ = −π/4 along the direction (a1 − a2), (b) φ = π/4 along the direction (a1 − a2),
(c) φ = −π/4 along the direction (a1 + a2), (d) φ = π/4 along the direction (a1 + a2). The gray areas
denote the rods.

4. Edge States

We have shown that the perturbation φ opens a complete bandgap at Γ point and we
can identify two different phases, the topological phase for φ < 0 and a trivial phase for
φ > 0. On the other hand, it is known from the literature that the bulk-edge correspondence
guarantees that if we build a slab composed of two photonic crystals, with different topo-
logical invariants, i.e., Chern numbers, robust edge modes localized around the interface
between the photonic crystals emerge inside the bandgap [53,61,62]. Those edge states are
topologically protected and are robust against defects and disorder, and allow transmission
without any reflection, with no significant energetic loss [40,63,64]. Thus, in order to study
the emergence of the edge states in our system, we built a supercell composed of 30 unit
cells: 15 topological unit cells (φ = −π/4) and 15 trivial unit cells (φ = π/4). Next, we
project the calculated band structure along the Γ→ M direction as we can see in Figure 8.
It is worthy to mention that, as usual in the literature, we consider simple harmonic elec-
tromagnetic waves, excited by a linearly polarized source, for calculating the propagating
edge modes (see for example Refs. [6,44]).

From Figure 8, it is easy to identify two edge modes inside the gap and we notice
that they emerge close to the Γ point of the Brillouin zone. Those modes travel in opposite
directions, and the traveling direction is reversed if we make k→ −k. In Figure 8b,c we
show the profile of Ez, the phase of Ez, and the Poynting vector for ωa/(2πc) = 0.4349
and ωa/(2πc) = 0.4383, respectively. We used k = kx x̂ = 0.015k0 x̂ with k0 = 4π/(

√
3a).

Both modes are well localized at the interface and, by comparing ωa/(2πc) = 0.4349 and
ωa/(2πc) = 0.4383, we see that the Poynting vectors have different directions, which is a
confirmation of the pseudospin behavior of the edge states [18,65]. Moreover, focusing on
the phase of the electric field Ez, we can identify that the mode with ωa/(2πc) = 0.4349
presents a clockwise polarization, while the mode with ωa/(2πc) = 0.4383 presents an
anticlockwise polarization, corresponding to a pseudospin-down and pseudospin-up,
respectively. Therefore, the pseudospin-up is associated with the interface state with group
velocity and energy flux from the left to the right, while the pseudospin-down is associated
with the interface state with group velocity and energy flux from the right to the left [65].
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In the next section, we study the robustness and localization of the edge modes in our
photonic system.

�̂�

�̂�

-M M

0.38

0.40

0.42
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0.46
a/

(2
c)

TopologicalTrivial

Pseudospin-up

Pseudospin-down

(a)

Phase
of Ez

Poynting
  Vector

pp- 0

(b)

Poynting
  Vector

Phase
of Ez

pp- 0

(c)

Figure 8. (a) Projected band structure along the Γ → M direction for TM modes (in blue) of a
supercell composed of 15 topological unit cells (φ = −π/4) and 15 expanded unit cells (φ = π/4)
making a horizontal interface. (b,c) Ez, the phase of Ez illustrated by the white arrows (the left panel),
and the Poynting vector illustrated by the red arrows (the right panel) for ωa/(2πc) = 0.4349 (b) and
for ωa/(2πc) = 0.4383 (c) at kx = 0.015k0.

5. Robustness of the Edge States

The topological protection guarantees that the propagating modes, associated with
the edge states, have good robustness against defects, disorder, and reflection at the
interfaces [66–68]. So, in order to verify the edge states’ robustness, we build a (35, 20)a
slab with a horizontal interface between topological (φ = −π/4) and trivial (φ = π/4)
photonic crystals, respectively. We set a source of light on the left and a detector on the
right, as shown in Figure 9a. Then, we calculate the normalized electric field defined as
EN =

√
| Ez |2, shown in Figure 9b, for ωa/(2πc) = 0.4353. Next, we introduce small

defects at the interface: (i) a small cavity removing a rod (Figure 9c), (ii) a bigger rod of
size d0 = 0.3d (Figure 9e), (iii) a Ag rod (the yellow one in Figure 9g), and (iv) a disorder
at the interface changing one negative perturbed unit cell for one positive perturbed unit
cell (Figure 9i). We also introduce extensive defects: (i) a Z interface (Figure 10a), and an
(ii) Omega (interface Figure 10c). The Normalized Electric Field EN , corresponding to the
defects mentioned above, is illustrated in Figures 9b,d,f,h,j and 10b,d, respectively. Besides
the normalized electric field, the figures also show the Poynting vector (red arrows) around
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the defects, and around two points of the Z and Omega interfaces, as we can see in the
zoom windows.

x̂

ŷ

(a) (b)

x̂

ŷ

(c) (d)

x̂

ŷ

(e) (f)

x̂

ŷ

(g) (h)

x̂

ŷ

(i) (j)

Figure 9. Left panels: schematic illustration of the interface between topological and trivial photonic
crystals, φ = −π/4 and φ = π/4, respectively. The source of light is on the left (pink arrow) and the
detector of light is on the right (blue arrow). We build an (a) interface with no defect, (c) interface
with a small cavity, (e) interface with a bigger rod (d0 = 0.3d), (g) interface with an Ag rod (the yellow
one), and (i) interface with a disorder. Right panels: distribution of the normalized electric field
EN and Poynting vector (red arrows in the zoom area around the defects) for ωa/(2πc) = 0.4353
for the (b) interface with no defect, (d) interface with a small cavity, (f) interface with a bigger rod,
(h) interface with an Ag, and (j) interface with a disorder.



Photonics 2023, 10, 961 12 of 18

x̂

ŷ

1 2

(a) (b)

x̂

ŷ

1 2

(c) (d)

Figure 10. Left panels: schematic illustration of the interface between topological and trivial photonic
crystals, φ = −π/4 and φ = φ/4 respectively. The source of light is on the left (purple arrow) and
the detector of light is on the right (blue arrow). We build a (a) Z interface and an (c) Omega interface.
Right panels: distribution of the normalized electric field EN and Poynting vector (red arrows in the
zoom area around the defects) to ωa/(2πc) = 0.4353 to the (b) Z interface, (d) Omega interface.

For the pristine interface case, as expected, the electric field and the Poynting vec-
tor are localized around the interface, while the energy flux is from the left to the right
(see Figure 9b). Furthermore, comparing Figure 9b,d, we realize that there is no significant
change in the electric field around the cavity’s position, and the Poynting vector is not
captured by the cavity but just travels around it. Therefore, we can see in Figure 9d that
the cavity created by removing a rod at the interface does not cause significant changes in
the electrical field distribution and Poynting vector. Figure 9f corresponds to the bigger
rod defect. Again, the presence of the defect does not cause changes in the edge mode, i.e.,
the electrical field distribution and Poynting vector are not affected. Despite the bigger
rod, reflection does not occur and the energy flux is not affected by this defect at all. The
electric field and the Poynting vector for the Ag rod defect are illustrated in Figure 9h. We
could expect major changes in this case because of the energy losses involved. However,
as in the previous cases, light does not experience significant changes. In fact, the energy
losses are much smaller than the transmittance, as we will see later. On the other hand,
we can observe local changes in Figure 9j. The disorder at the interface creates a different
path for light. In this case, the energy flux locally changes around the defect, but the
global behavior does not change, i.e., the energy flux keeps flowing close to the interface
and with no significant reflections. As the mode is localized around the interface, both
the Poynting vector’s direction and electric field’s distribution deform to follow the new
interface shape at the position of the defect. Thus, we realize that the electric field survives
and remains localized around the interface despite any defect introduced in the interface.
In addition, the Poynting vector just walks around the defect or ignores it, and the flux of
energy remains unchanged. Much more impressive are the results for the extensive defects:
the Z and Omega interfaces. For the Z interface case, the interface has two corners in which
light faces two changes of direction that could cause reflections, but the Poynting vector
and electric field just follow the interface’s contour and do not present any reflection in the
corners (see Figure 10b). The Omega interface case is a more complex extensive defect. In
fact, it has six corners which means that light faces six changes of direction! Despite the
six corners, once again the Poynting vector and electric field follow the Omega interface’s
contour and they do not present any reflection in the corners (see Figure 10d). Therefore,
we can conclude that the edge states are robust against defects, disorders, and reflection.
This is guaranteed by the topological protection due to the bulk-edge correspondence.
The results illustrated in Figures 9 and 10 are in agreement with previous works which
investigated edge modes in topological valley photonic crystals [69,70] and topological
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pseudospin photonic crystals [35,42,71–74]. It is worthwhile to remark that very recent
experimental works have validated theoretical results, similar to ours, from the literature
(see, for example, Refs. [75–78]).

In Figures 9 and 10 is provided a very good qualitative piece of information on the
topological protection and robustness of the edge modes. However, it is important to
quantify the robustness of the edge modes. The quantitative information is provided
by the calculation of the transmittance of light along the system. Thus, the calculated
transmittance through the slabs schematized in Figures 9 and 10 is plotted in Figure 11.
We can observe in Figure 11 that transmittance changes very little when we introduce
small defects such as a cavity, a bigger rod, an Ag rod, and a disorder. In fact, the effect
of the defects is indeed small, so that the transmittance remains around 1. It should be
remarked that for the Ag rod defect we would expect some losses because of the metallic
character of the defect. However, only minor changes occur in the transmittance which
remains around 1. Let us discuss now the extensive defects. For the Z interface case, we
can observe a peak around 0.9, which is a 10% reduction in the transmittance in relation
to the pristine interface. Despite this reduction in transmittance, the peak corresponding
to the edge mode survives. A similar behavior is observed for the case of the Omega
interface. Therefore, we can conclude that the transmittance peaks survive for the edge
mode despite the small or extensive defects introduced in the interface. In short, our results
show that the robustness of the interface mode is guaranteed against small and extensive
defects in the interface, which means that light travels along the interface without changes
in its energy flux, without reflection, and with minimal energy losses. Similar results were
found in the literature with interface somehow modified: the peak can be reduced but
the transmittance of light is at least ≥0.8, which means that most parts of light can travel
through the considered system without reflection or absorption [11,79].
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a/(2 c)
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Desorder
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Figure 11. Transmittance for the cases without defect, with a small cavity, with a bigger rod, with a
disorder in the interface, with an Ag rod, with a Z interface, and an Omega interface. We can observe
that the transmittance is around 1.0 even for the configurations with defects.

Before concluding, after studying the robustness of the edge modes, let us take a
look at the localization of the edge modes. In order to do so, we calculate EN/ max[EN ]
point-by-point on a line perpendicular to the interface (the blue line in Figures 12 and 13).
Therefore in Figure 12 is shown the intensity of EN/ max[EN ] point-by-point along the
line of the interface with no defect and with small defects: the interface with a cavity, the
interface with a bigger rod, the interface with a disorder, and the interface with an Ag
rod. The same is illustrated in Figure 13 for the extensive defects: the Z interface and the
Omega interface. We consider in all cases ωa/(2πc) = 0.4353. From Figure 12a–e, we can
infer that the electric field is localized around the interface, regardless of the small defect
considered, i.e., the electric field is near zero in rods far from the interface for both cases:
the topological and trivial photonic crystals. This corresponds to a topological insulator
behavior of our system because it does not present fields in the bulk and the electric field is
different from zero only around the interface [65,69,80]. For the special cases of extensive
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defects, i.e., the Z and Omega interfaces, we set two perpendicular lines: (i) one at the
interface before the first change of orientation, and (ii) another at the interface after the
second change of orientation (see Figure 13a,b). As for the small defect cases, the interface
modes are well localized. Notice that the normalized electric field rapidly goes to zero when
the profile moves away from the interface for both the Z and Omega interfaces. In short, in
all defect cases considered here, the localization of the modes allows the confinement of
the light, and the interface works as a waveguide for the propagation of electromagnetic
waves. Finally, all those features described here make this system a good candidate for
topological wave guides and open up an opportunity for phototransport applications.
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Figure 12. Intensity of EN/ max[EN ] vs y (ωa/(2πc) = 0.4353) for (a) interface with no defect,
(b) interface with a small cavity, (c) interface with a bigger rod, (d) interface with an Ag rod,
and (e) interface with a disorder.
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6. Conclusions

In this work, we have proposed a two-dimensional photonic crystal composed of di-
electric cusped-oval-shaped rods (COS rods), in a triangular lattice with C6 point symmetry
group, with the unit cell composed of six COS rods. The band structure of the system was
obtained through the software COMSOL Multiphysics, which is based on the finite element
method (FEM). Our results show that, as we introduced an angular perturbation φ in the
COS rods, a complete bandgap is opened in the band structure of the system. We have
studied the topological phases of the system. It was found that for negative perturbations
the photonic crystal is in a topological phase, while for positive perturbations the photonic
crystal is in a trivial phase. The topological phase transition occurs for φ = 0. We have also
shown that the electromagnetic (EM) density energy distribution in the system can be used
as a probe of the character of the band structure. This is because the EM density energy is
proportional to the modulus square of the Wannier functions (WF) which are centered at
the (maximal) localized Wyckoff positions (WP). Moreover, as a consequence of the pertur-
bation, two edge states emerge inside the bandgap, which are localized around the interface
and are topologically protected. Our results show that the edge modes are pseudospin
modes traveling around the interface between the topological (negative perturbation) and
trivial (positive perturbation) photonic crystals. They are topologically protected and robust
against disorder and defects at the interface. For all defect cases considered in this work, the
transmittance is mildly affected. Therefore, the system studied is an excellent candidate for
technological applications, once the flux of light can be controlled without any significant
energetic loss or reflection. These features make the photonic crystal here proposed a good
candidate to guide and confine light, with potential for phototransport applications.
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