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Abstract: Nonlinear devices and channel interference can significantly impact the received signal
in visible light communication (VLC). While recent research has explored receiver recovery using
deep learning, existing approaches often involve replacing traditional channel estimation and equal-
ization modules with neural network models. However, these models introduce additional data
processing steps after fast Fourier transform (FFT), leading to increased complexity. To address
these challenges, this study introduces a novel direct time-domain waveform equalization approach
using a bidirectional gated recurrent unit (BiGRU) neural network for indoor VLC employing direct
current (DC)-biased orthogonal frequency division multiplexing (DCO-OFDM). Unlike previous
methods, our proposed scheme utilizes time-domain waveform data from photodiode outputs for
direct balancing, harnessing the potent nonlinear processing capabilities of the BiGRU model. We
first analyze the nonlinear processing capacity of the BiGRU model and subsequently compare the
performance of different receiving methods on a constructed indoor visible-light communication
platform. Experimental results demonstrate that the BiGRU-based approach exhibits low complexity
and exceptional nonlinear channel learning capabilities. Notably, the proposed method outperforms
other strategies in terms of bit error rate without the need for pilot signals. These findings validate
the potential of the BiGRU-based DCO-OFDM receiving scheme as a promising solution for future
VLC systems.

Keywords: BiGRU; DCO-OFDM; deep learning; visible light communication; nonlinear equalization

1. Introduction

In the era of increasingly constrained spectrum resources, the utilization of visible
light as a sustainable energy source emerges as a potent solution, enabling the realization
of “lighting as communication” through the mechanism of direct vision communication,
characterized by its low power consumption. This innovation bears the potential to sub-
stantially alleviate the energy demand and spectrum requirements of 6G networks [1].
Visible Light Communication (VLC) harnesses Light Emitting Diodes (LEDs) as emissive
sources for light-based signal transmission, concurrently fulfilling roles in illumination
and high-speed wireless communication. Its attributes encompass resistance to electromag-
netic interference, robust security features, anti-eavesdropping capabilities, environmental
sustainability, minimal carbon footprint, cost-effectiveness, and unhindered access to spec-
trum resources. This renders VLC an auspicious contender for indoor coverage within
the realm of 6G networks [2–4]. Notably, Orthogonal Frequency Division Multiplexing
(OFDM), widely proven in radio-frequency (RF) systems due to its formidable resistance
against inter-code interference and its optimal utilization of ultra-high frequency bands,
has found its application extended to Optical Orthogonal Frequency Division Multiplex-
ing (O-OFDM). This extension garners growing attention due to its heightened spectral
efficiency and augmented system capacity in comparison to single-carrier modulation
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strategies. O-OFDM’s incorporation is especially conspicuous within VLC frameworks [5].
The distinctive characteristic of VLC systems is their reliance on intensity modulation (IM)
to impart modulation onto the instantaneous luminous intensity emitted by LEDs, coupled
with direct detection (DD) via photodiodes (PDs). This mandates that all signals within the
VLC channel exhibit strict non-negativity and real-value. For this purpose, Direct Current
(DC)-biased optical OFDM (DCO-OFDM) emerges, augmenting a DC bias and Hermitian
symmetry to guarantee non-negative real-valued signals. This integration of IM and DD
into a cost-effective architecture has gained wide adoption within VLC systems [6].

Despite the potential of DCO-OFDM-based indoor VLC systems to enable high-speed
data transfer and serve as conduits for both lighting and location data, their efficacy hinges
on the accuracy of light transmission, rendering them susceptible to environmental vari-
ables within indoor spaces, such as fluctuations in light intensity and signal attenuation.
The modulated signal invariably undergoes attenuation due to nonlinearities within LEDs
and the dispersion of light propagation. This attenuation impairs the orthogonality be-
tween subcarriers, collectively undermining system performance and challenging extant
paradigms of transceiver design [7]. Consequently, the accurate modeling of channel
state information and a comprehensive understanding of channel characteristics assume
paramount importance for optimizing transmission efficiency within VLC links. A mul-
titude of investigations have delved into VLC link performance under fading channels,
proffering diverse equalization techniques to mitigate fading and multipath interference [8].

Channel estimation (CE), a cornerstone of channel equalization at reception, tradi-
tionally hinges upon methods like Least Squares (LS) and Minimum Mean Square Error
(MMSE). However, LS exhibits susceptibility to noise amplification, and MMSE’s imple-
mentation complexity is a hurdle [9]. Recent endeavors have directed attention toward
leveraging deep learning (DL) to harness its robust data learning, recognition, and predic-
tion capabilities in channel state information acquisition. DL emerges as a potent tool for
addressing intricate communication challenges presented by novel or demanding chan-
nels [10,11]. In the realm of VLC, DL has been harnessed in OFDM-based VLC receivers
for the channel equalization of received data [12–17]. Deep Neural Networks (DNNs)
manifest an inherent capability to apprehend and analyze channel attributes, marking them
as plausible solutions for CE. Notably, DNNs have been employed to supplant traditional
channel estimation methodologies, reducing reliance on pilot symbols and preserving
spectrum resources [10]. Similar approaches, encompassing DNNs [13,14], Convolutional
Neural Networks (CNNs) [15], Recurrent Neural Networks (RNNs) [16,17], and diverse
neural networks (NNs), have demonstrated efficacy as nonlinear equalizers in diverse
scenarios to effectively counteract nonlinear impairments. However, extant studies have
predominantly necessitated converting input for NNs from complex vectors, after Discrete
Fourier Transform (DFT), or fast Fourier transform (FFT), into real vectors. Moreover, the
symbol classifier, integral to preprocessing labels, necessitates preemptive transformation
of M-ary quadrature amplitude modulation (M-QAM) constellation points into fixed labels.

The present research introduces an innovative receiver scheme centered on neural
network-based waveform equalization. This scheme exhibits the capacity to adeptly acquire
the requisite skills for processing received sample signals. It achieves this by adeptly
harnessing the channel state information, thereby markedly enhancing the reliability and
efficacy of signal transmission. It is worth noting that this approach significantly departs
from all preceding receiver methodologies. In this novel paradigm, the neural network
undertakes data processing prior to engaging in the FFT procedure. A pivotal aspect of
this paradigm is that the input and anticipated output configurations of the neural network
retain coherence with those of conventional receivers. This congruence in input–output
structure translates to a consequential advantage, allowing for the direct integration of
this scheme into orthogonal frequency division multiplexing (OFDM) systems, devoid of
supplementary superfluous processing steps. Consequently, the scope of this investigation
is distinctly focused on the channel model and the intricate channel state information
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germane to the visible light communication (VLC) link and explores how to leverage this
information to optimize the performance of the DCO-OFDM system.

In this paper, we introduce two existing reception methods and propose a DL-based
direct reception method superior to these schemes for application in the DCO-OFDM-VLC
system. (1) Traditional method: pilot-based LS and MMSE CE method. (2) DL-based
typical receive: nonlinear processing power of DL is used to replace the traditional CE
and equalization signal processing after FFT. (3) DL-based direct receive: this method
uses DL to process the received signal, can directly learn the interference of nonlinear
devices and channels on the signal, and reduces the complex data processing required in
existing scenarios, and thus is different from (2). To obtain a better performance receiver,
we compare the performances of two DL receivers: BiLSTM and BiGRU. The performance
was evaluated using the bit error rate (BER) [18]. The feasibility of the direct receiver in a
commercial LED-based single-light 4QAM DCO-OFDM-VLC system with a transmission
distance of 3 m was verified by changing the transmission data rate and receiving the
optical power of the experimental setup.

The rest of this article is structured as follows: Section 2 describes the VLC system
based on DCO-OFDM and the reception method. In Section 3, we propose a BiGRU-based
receiver, while experimental validation and result analyses are presented in Section 4.
Finally, we conclude the full article in Section 5.

2. VLC System

The architecture of the VLC system based on DCO-OFDM is shown in Figure 1.
Equalization in existing DL-based OFDM receivers mainly uses channel modeling methods,
where the trained model replaces the CE and equalization parts.
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Figure 1. System model of OFDM-VLC system. (a) Transmitter side of the visible system (b) Con-
ventional receiver side of the VLC. (c) Typical DL-based receiver DL-NN processing after FFT.
(d) BiGRU-based direct receiver.

In contrast, the proposed BiGRU NN-based direct receiver in this study can directly
process the oscilloscope-sampled signal to recover the outgoing OFDM-modulated signal.
The sampling frequency is set to twice the transmitting signal frequency by adjusting the
storage depth, and the channel features carried by the signals in the circular prefix and
Hermitian symmetric parts are also fully utilized. To focus on the receiver, forward error
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correction coding techniques were not used. It is worth noting that the sampling rate of
direct sampling of the oscilloscope is much greater than the data bit rate, so it needs to be
sampled again before FFT, that is, model 2 is directly trained from oversampled data.

The non-negative signal x(n) with DC bias was added, transmitted in the optical
path through the LED, captured directly by the PD at the receiver side, and received y(n)
after the analog-to-digital conversion. The received y(n) was directly recovered by BiGRU
processing to recover x(n) and get x(n), and the x(n) was taken for de-cp processing. Without
considering cp, the discrete-time domain OFDM signal x(n) can be expressed as

x(n) =
1
N

N−1

∑
k=0

X(k)ej2πkn/N0 ≤ t ≤ T, (1)

where X(k) represents the complex sign of the constellation diagram generated using the
fast Fourier transform operation to achieve multiplexing; j =

√
−1, N is the number of

points in the FFT; and k is the number of subcarriers. The received signal y(n) can be
expressed as

Y(k) = X(k)H(k) + W(k),
y(n) = x(n)⊗ h(n) + ω(n),

(2)

where ⊗ denotes the circular convolution, h(n) represents the channel impulse response,
and w(n) represents the additive Gaussian white noise (AWGN). The subcarrier division
multiplexing achieved with FFT can be defined as

Y(k) = FFT{y(n)} = X(k)H(k) + W(k), (3)

where H(k) represents the channel frequency response; W(k) represents the AWGN.
The unified reception was obtained using a CE method, such as LS or MMSE, which

correctly enables the channel equalization technique. The LS method is based on param-
eter estimation that minimizes the square of the difference between the observed data
Hp(k)Xp(k) and the expected value Yp(k) at the pilot position p and loss value J(
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where Y denotes the received signal vector, X is the transmit signal vector, and Ĥ is the
estimated value of the channel parameters. The final LS estimation is as follows:

Ĥ = X−1Y, (5)

The MMSE estimation is based on the LS estimation with the addition of the weighting
matrix W:

W = RHĤLS
R−1

ĤLS ĤLS
, (6)

where RĤLS ĤLS
is the autocorrelation matrix of the ĤLS matrix and is obtained from the LS

estimation. The final MMSE estimation is

Ĥ = WĤLS = RHĤLS
(RHH +

σ2
Z

σ2
X

I)
−1

ĤLS, (7)

where σ2
Z is the noise variance, σ2

X is the transmit signal vector variance, and I denotes the
unit matrix.

3. Principles of the BiGRU-Based Receiver
3.1. BiGRU

Unlike classification detection based on image processing, the present and past se-
quential data are interrelated [16]. An RNN retains data sequences with network-hidden
states. RNNs can efficiently process sequential data and learn information from previous
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data during processing [19]. Long short-term memory (LSTM) and GRU have improved
RNN models by alleviating the problem due to severe gradient disappearance and gradient
explosion; GRU is a simple variant of LSTM [20].

Figure 2 shows the detailed structures of GRU and LSTM units. Unlike in LSTM, GRU
combines the forget and input gates into a single update gate. A GRU unit comprises a
reset gate rt and an update gate Zt [21]. Under the control of these two gates, the output ht,
determined by the current input xt and the previous state ht−1, is calculated as (8)–(11):

rt = σ(Wrxt + Urht−1 + br), (8)

zt = σ(Wzxt + Uzht−1 + bz), (9)

ht = tanh[Whxt + Uh(rt � h̃t−1)] + bh, (10)

ht = (1− zt)� ht−1 + zt � h̃t, (11)

where W denotes the weight matrix; b denotes the bias term; σ is the sigmoid transform;
and � is the Hadamard product (obtained by the multiplication of corresponding elements
of vectors).
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Figure 2. (a) Detailed structure of an LSTM and (b) GRU units.

For the received OFDM signal, the current data are affected by the forward data and
the backward sequence. This study considered a model with a bidirectional structure to
learn information better from the preceding and following data. Figure 3 shows the BiGRU
model structure and the proposed architecture of the BiGRU network for implementing
the receiver. The BiGRU model was determined based on the state of the two GRUs in the
opposite direction [22].
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3.2. BiGRU-Based Receiver

Our proposed acceptance scheme was based on BiGRU. The received DCO-OFDM
signal sequence is denoted as r = [r1, r2, . . ., rT], where the vector ri(i = 1, 2, . . ., T) corre-
sponds to the i-th bit of the received symbol. The corresponding prediction sequence is
denoted as y = [y1, y2, . . ., yT], and the vector yi(i = 1, 2, . . ., T) corresponds to the i-th bit of
the received symbol.

The first layer was the input layer. Moreover, for each symbol ri(i = 1, 2, . . ., T),
the current symbol ri was wrapped with its k pre-symbols and k post-symbols to form
x(i) = [ri−k, . . ., ri,. . ., ri+k], which was used as the input sequence of the BiGRU network.
The second layer was the BiGRU model layer. This study set the BiGRU model cyclic time
step to 2k + 1. The hidden state ht contains the flow of symbolic information between the
cyclic time steps. The output of the BiGRU model layer was entirely connected to the fully
connected layer. To effectively solve the nonlinear problem, two fully connected layers were
used, where the latter contained the same number of nodes as the number of classes that
send signals. As this study focuses on the intensity of the de-DC signal, the tanh function
was selected for the output layer, and the output was the predicted value corresponding to
the current symbol ri. Thus, the predicted value ỹi(i = 1, 2, · · · , T) corresponding to the
i-th symbol of ri(I = 1, 2, . . ., T) was obtained.

3.3. Complexity Analysis

The complexity of the algorithm was analyzed and compared with a bidirectional
LSTM (BiLSTM) NN-based receiver. The number of parameters and multiplications re-
quired for each symbol was noted during the analysis.

The parameters of the proposed BiGRU network include the parameters of the BiGRU
and linear layers. Moreover, two fully connected layers were used in this study (Figure 3).
The parameters of the GRU unit (Figure 2) contained three weight matrices, three deviation
vectors for the input, and three deviation vectors for the previous state ht−1. The size of the
weight matrix of input xt was associated with the size of its input and output features and
that of the hidden state xt. If the size of the input features of input xt was assumed to be
1 × F and that of the hidden state ht was 1 × H, then the weight matrix of input xt was
F × H. Similarly, the size of the input and output of the previous state ht−1 was the size of
the hidden state; thus, the size of its weight matrix was H × H, and that of the bias vector
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was 1× H. Therefore, the number of parameters for a single-layer GRU can be calculated as

NGRU_p = 3× (FM + H2 + 2H), (12)

The number of parameters for a linear layer can be calculated as

NLinear_p = 2× (2HM + M), (13)

The number of parameters for the BiGRU network can be calculated as follows:

NBiGRUNET_p = 6× (FH + H2 + 2H) + 4HM + 2M, (14)

As the number of multiplications per symbol is dependent on the BiGRU and linear
layers and lets the length of the input sequence be L, then the number of multiplications for
the BiGRU layer can be calculated as [13]

NBiGRU_m = 6× (FH + H23H)× L, (15)

The linear layer was 2HM, so the number of multiplications for the BiGRU network
can be calculated as

NBiGRUNET_m = 6× (FH + H2 + H)× L + 4HM, (16)

In contrast, the parameters of the LSTM unit contain four weight matrices and
four deviation vectors for the input xt and four weight matrices and four deviation vectors
for the previous state ht−1 [23]. The number of parameters for the BiLSTM network can be
calculated as

NBiLSTMNET_p = 8× (FH + H2 + 2H) + 4HM + 2M, (17)

The number of multiplications for the BiLSTM network can be calculated as

NBiLSTMNET_m = 2× [4× (FH + H2) + 3H]× L + 4HM, (18)

4. Results and Discussion

Based on the theoretical study of the VLC system based on OFDM in Section 2, the
experimental platform, as shown in Figure 4, was built in this paper, and the transmission
performance of 4QAM-DCOOFDM on the VLC link of commercial LED was numerically
studied, and the feasibility of using the equalizer with deep learning structure for digital
compensation of the channel was verified. OFDM signals were generated in MATLAB and
transmitted through an arbitrary waveform generator (AWG). A set of X(K) lengths was
set to 64, corresponding to an FFT length N_fft of 2 × 64 + 2, a cyclic prefix N_cp of 1/4 of
the X(K) length, and a full OFDM symbol length of N_fft + N_cp. The bit rate of symbols
emitted by AWG was set to 100 mbps, the bias voltage of the LED was set to 6 V, and the
drive voltage of the signal was set to 1 V. At the receiving end, a commercial PD was used
at a distance of 3 m from the LED to receive the light signal and perform the photoelectric
conversion. The signal was then acquired by an oscilloscope and demodulated in MATLAB.
The BER of three different receiving methods in Section 2 under different signal-to-noise
ratios (SNR) were compared, and no forward error correction coding technique was used
in the experiment. In this paper, we only use the different number of pilots based on
traditional receiving methods. The BiGRU network was constructed, trained, and evaluated
in TensorFlow 2.6.2. The model used the cross-entropy loss as the loss function. The Adam
optimizer optimized the BiGRU network (learning rate set to 0.005). The dataset comprised
250 symbols and 36,500 data sets, divided into training data (80%) and test data (20%).
Other related parameters of the experimental platform are introduced in Table 1.
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Table 1. Related parameters of the experimental platform.

Parameter Values

TX

DAC Type DAC5672
Maximum sampling rate 275MSPS

Amplifier Type ZHL-6A-S+
Bandwidth 500 MHz

Gain 25 dB

Bias-Tee Type ZFBT-4R2GW+
Bandwidth 4200 MHz

LED CSLNM 1. TG
OSRAM 3030

Peak wavelength 650 nm

Fresnel Len Diameter 70 mm
Focal Length 60 mm

Channel Length 3 m

RX

Fresnel Len Diameter 70 mm
Focal Length 60 mm

Photodevice
Type Thorlabs PDA10A-EC

Bandwidth 150 MHz
PD responsivity 0.44 A/W(730 nm)

In order to verify the equalization ability of BiLSTM and BiGRU algorithms for visible
light channels, this paper compares the waveforms received at an SNR of 16 dB with the
waveforms equalized based on the two algorithms, as shown in Figure 5. Because of the
interference of the actual channel and nonlinear devices, the information characteristics
of the directly received waveform are seriously damaged. The waveform of the proposed
equalizing receiver scheme is used to correct the interference of the received signal, and its
waveform is similar to the original transmitting waveform. This shows that the proposed
algorithm has a certain equalization ability for visible-light channels. In order to better
evaluate the performance of the proposed method, the Kullback–Leibler (KL) divergence of
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signals before and after the proposed algorithm is equalized with the original transmission
signal and is also estimated [24]. It is often used to assess the similarity of two distribu-
tions. The smaller value indicates how close the two distributions are. KL divergence is
calculated as

D(P‖Q ) = ∑ P(x) log2
P(x)
Q(x)

, (19)

where P(x) is the actual transmitted signal and Q(x) is the different received signals. The Kl
divergence results are shown in Figure 5b, and the KL divergence value between the signal
recovered based on the BiLSTM and BiGRU algorithms and the originally transmitted
signal is close, which is about 1/5 of the KL divergence between the directly received signal
and the original signal. The proposed deep learning network can reduce the KL value,
that is, the signal distribution after the algorithm recovery is closer to the distribution of
the original transmitted signal, which further shows that both the BiLSTM and BiGRU
algorithms have a strong ability to equalize visible-light channel interference. In addition,
the KL values of the two algorithms are similar, indicating that BiGRU can achieve a similar
equilibrium effect to BiLSTM.
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the direct receiver and the ideal received waveform. (b) Comparison of KL divergence of the received
and transmitted signals by different receivers.

Figure 6 shows the recovery of the received OFDM signal by BiGRU and BiLSTM. With
an SNR of 16 dB, the waveform of the signals processed by the two receivers is compared to
the OFDM transmitted signal. Both algorithms can better recover the original transmitted
signal data. We calculated the mean squared error between the recovered signal and the
original transmitted signal based on these two algorithms, with a result of 0.000142 for
BiGRU and 0.000179 for BiLSTM. The results verify that both algorithms can learn the
feature pair of the channel and the received signal equalization by learning the long-term
dependent information.

Table 2 presents a comprehensive comparison of the practical intricacies involved in
processing OFDM signals using both the BiGRU and BiLSTM architectures. All compu-
tations were conducted on the same computing platform. A salient observation is that
the nonlinear equalizer is initially trained offline and, during the equalization process, the
parameters within the nonlinear equalizer remain fixed. This strategic reduction in the
parameter count contributes to a reduction in testing time and computational overhead.
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Based on the experimental findings, both algorithms exhibit comparable channel learning
and equilibrium capabilities. However, it is noteworthy that the parameter count of the
BiGRU model is 19.69% lower than that of the BiLSTM counterpart. BiGRU also necessitates
22.34% fewer multiplicative operations per symbol in comparison to BiLSTM. This discrep-
ancy in computational requirements can be attributed to the streamlined architecture of the
GRU within BiGRU when compared to the LSTM gate in BiLSTM. These empirical results
lend further credence to the structural analysis of the two algorithms, as expounded upon
in Section 3.
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Figure 6. Waveform comparison plots comparing the BiGRU-based receiver, BiLSTM-based receiver,
ideal reception, and transmit sequence. (a) shows the results of the training set and (b) shows the
results of the test set. Both methods can recover the original transmit signal better.

Table 2. Complexity comparison of different receiver algorithms.

Number of Parameters Number of Multiplications

BiGRU 4,967,232 81,323,520
BiLSTM 6,185,928 104,576,576

Furthermore, this study delves into a comparison of the BER across three distinct
reception methods, elucidated in Section 2, under varying SNRs. Of particular significance
is the fact that all DL-based reception methods employ pilots set to a value of 0. The
outcomes are visually depicted in Figure 7. Notably, Figure 7a highlights the elevated
BER exhibited by the conventional receiver relying on LS and MMSE channel estimations
due to the absence of pilot signals. The insufficiency of channel information and the
corresponding incapacity to discern channel characteristics account for this higher BER.
While Figure 7c displays a marginal enhancement in the BER of LS and MMSE when
compared to Figure 7b, the impact of augmenting the pilot count from 16 to 32 does not
manifest a significant improvement. This pattern implies a threshold beyond which the
inclusion of additional pilots ceases to appreciably enhance system performance. Strikingly,
Figure 7c underscores the exceptional performance of the MMSE estimator-based receiver
following the addition of 32 pilots. This outcome underscores the pivotal role of pilot
signals in enhancing the performance of this receiver type, which now exhibits parity with
conventional DL-based receivers.

In the overarching analysis, Figure 7 delineates the performance hierarchy: traditional
LS channel estimation-based receivers exhibit the poorest performance, while direct re-
ceivers surpass typical DL-based and traditional multi-pilot receivers. Especially within
the signal-to-noise ratio range of 0 dB to 20 dB, the direct receiver consistently outperforms
its counterparts, especially beyond an SNR of 8 dB. It is worth highlighting that the BER of
the MMSE receiver, with 32 pilots, closely approximates that of a conventional DL-based
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receiver devoid of pilots, yet it remains higher than the BER of the pilot-less direct receiver
presented in this study. Noteworthy is the observation that although contemporary research
predominantly centers on DL-based receivers, network models employed for post-FFT
data processing exhibit commendable error rate performance even without pilot signals,
even surpassing the performance of the MMSE estimator with 32 pilots. However, the
proposed receiver method attains the most favorable error rate performance. The deep
learning-based receiver, even without pilot signals, consistently demonstrates the optimal
error rate performance. This remarkable outcome can be attributed to the efficacy of both
the BiLSTM and BiGRU models in mitigating the effects of signal nonlinearity to a certain
extent. These deep learning models can be pre-trained offline and promptly fine-tuned
without inordinate computational demands. By contrast, the deployment of MMSE estima-
tors necessitates temporal and resource investments. The proposed approach of training
deep learning network models within the direct receiver configuration, pre-FFT, to glean
channel characteristics, surpasses the typical post-equalization strategies that encompass
deep learning models trained post-FFT in terms of BER performance. This superiority
emanates from the utilization of oversampled data, acquired through oscilloscope sampling,
directly in the pre-FFT trained model, leading to heightened learning efficacy and enhanced
channel feature comprehension.
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5. Conclusions

This study introduces a novel direct post-equalization approach based on BiGRU tech-
nology within the framework of the DCO-OFDM-VLC system. The goal is to achieve low
BER reception with minimal spectrum occupancy. The proposed BiGRU model operates by
utilizing the transmitted signal as the label and directly employing the received signal at the
receiver’s end as the sample. This approach eliminates the need for CE, interpolation, and
element division, as required by traditional receivers. Additionally, it streamlines the input
data and tag processing procedures. The performance evaluation of the BiGRU receiver
was conducted within a commercial LED-based single-light 4QAM DCO-OFDM-VLC
system, with a reception distance of 3 m. The experimental results revealed that the BiGRU
model yields comparable performance to BiLSTM under reduced computational demands.
Both algorithms exhibit similar KL values and BER. Moreover, the proposed BiGRU-based
approach demonstrates potential for significant BER performance enhancement, while also
offering a 20% reduction in computational costs compared to BiLSTM. BiGRU’s capacity to
learn and analyze channel characteristics contributes to signal recovery, despite contami-
nation. This approach presents a highly efficient method of spectrum utilization with low
complexity. By directly extracting information from the original received signal, this study
introduces a fresh perspective to receiver research within the realm of indoor VLC.
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