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Abstract: Twist sensors have emerged as crucial tools in the field of structural health monitoring,
playing a significant role in monitoring and ensuring the integrity of critical infrastructure such as
dams, tunnels, bridges, pipelines, and buildings. We proposed and demonstrated an all-fiber in-line
twist sensor which was based on a capillary fiber spliced between two single-mode fibers with a
transverse offset. Through a series of experiments, the sensor’s performance was evaluated and
quantified. The results showcased remarkable twist sensitivities in both clockwise and anticlockwise
directions. With a transverse offset of 8.0 µm, the sensor exhibited twist sensitivities of −0.077 dB/◦

and 0.043 dB/◦ in the clockwise and anticlockwise directions, respectively, in the measured twist range
from 0 to 90◦. Furthermore, it was also demonstrated that the sensor was temperature insensitive
at the chosen wavelength of 1520 nm, which can assist in increasing measurement accuracy. Our
sensor’s low cost, simplicity of manufacture, and improved performance will push forward its
adoption in future engineering applications such as structural health monitoring in dams, tunnels,
and buildings.

Keywords: all-fiber interferometer; twist sensor; capillary fiber; sensitivity

1. Introduction

All-fiber in-line interferometers have garnered significant attention from researchers
due to their numerous advantages, which include being low cost and easy to manufacture,
as well as providing performance enhancement [1–3]. These interferometers have been
extensively investigated for a wide range of applications, such as temperature sensing [4],
strain sensing [5], refractive index sensing [6], and twist sensing [7], among others. Twist,
being a crucial mechanical parameter, plays a vital role in structural health monitoring.
The utilization of all-fiber twist sensors has witnessed a surge in various engineering
applications. These sensors have proven invaluable in monitoring critical infrastructure
including dams, tunnels, bridges, pipelines, and buildings [8]. The primary objective is to
provide early warnings regarding potential abnormal conditions or impending accidents.
By detecting twists at an early stage, casualties can be avoided, and prompt maintenance
and repair advice can be provided.

The inherent advantages of all-fiber in-line interferometers make them an ideal choice
for twist sensing in structural health monitoring [9]. Firstly, the low-cost nature of these
devices ensures cost-effective deployment over a large-scale monitoring network. This
affordability enables their widespread usage, facilitating the comprehensive monitoring
of multiple structures simultaneously [10]. Additionally, the easy manufacturing process
allows for quick production, making them readily available for immediate deployment.
Furthermore, the performance improvement offered by all-fiber in-line interferometers
is noteworthy. These sensors exhibit high sensitivity, enabling an accurate detection and
measurement of twist in real time. The reliable and precise data obtained from these
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sensors aid in assessing the structural integrity of various infrastructure components. This
information is crucial for making informed decisions regarding maintenance and repairs,
thereby increasing the overall safety and longevity of the structures [11].

A wide range of all-fiber in-line twist sensors based on different types of fibers has
been reported, which includes multimode fibers (MMFs) [12], polarization-maintaining
fibers (PMFs) [10], photonic crystal fibers (PCFs) [13,14], special fibers [15,16], and fiber
gratings [17,18]. Each of these sensor types possesses its own set of advantages and
disadvantages, making them suitable for different applications. For instance, twist sensors
based on PCFs exhibit higher twist sensitivity compared to other fiber structures. However,
these sensors come with the trade-off of complex signal interrogation systems and high
manufacturing costs. The precise and accurate measurement capabilities of PCF-based
sensors make them particularly suitable for applications requiring high sensitivity. On the
other hand, twist sensors utilizing multimode fibers offer the advantages of straightforward
structures and ease of implementation. These sensors are relatively simple to manufacture
and can be readily integrated into existing systems, but they suffer from relatively lower
twist sensitivity compared to other sensor types.

The capillary fiber, being the simplest structure among hollow fibers (or microstructure
fibers), has received a lot of attention in recent years because of its benefits, such as its simple
structure, flexibility, low invasiveness, and low cost of manufacture [19]. Capillary fibers
are now being studied for different sensing domains, including the refractive index [20,21],
temperature [22], liquid level [23,24], strain [25], pressure [26], and curvature [27]. However,
the aforementioned capillary fiber applications necessitate that all fibers be aligned and
twist-insensitive. In this research, we propose and investigate the properties of a capillary-
fiber-based interferometer without fiber alignment for twist sensing. A capillary fiber
is spliced between two single-mode fibers (SMFs) with a particular transverse offset to
form the sensor. As a result of the transverse offset, several cladding modes, including
noncircular symmetrical modes that are sensitive to twist, are excited in the capillary
fiber wall, and they interfere with each other when they meet again in the lead-out SMF.
Our proposed sensor is inexpensive, easy to construct, and straightforward to interrogate,
making it suitable for future engineering applications such as structural health monitoring
in dams, bridges, tunnels, and buildings.

2. Structure and Working Principle

The structure of our proposed all-fiber in-line interferometer, which is designed as
a capillary fiber spliced between two SMFs with a specific transverse offset, can be seen
in Figure 1. With the transverse offset, many high-order, noncircular symmetrical modes
can be excited, leading to them propagating in the wall of the capillary fiber [28], and they
can interfere with each other when they meet again at the end of the capillary fiber and
are output through the lead-out SMF. According to the theory of the modal interference
and assuming that the transverse offset between the lead-in SMF and the capillary fiber is
d1, and that d2 is between the capillary fiber and the lead-out SMF, the coupling coefficient
based on the overlap integral method at the lead-in end (L = 0) and the lead-out end (L = l)
can be written as follows [12]:

c(0)nm =

∣∣∫ ∞
0 Elead−in(r− d1)ψ

∗
nm(r)rdr

∣∣2∫ ∞
0 |Elead−in(r)|2rdr

∫ ∞
0 |ψ∗nm(r)|

2rdr
(1)

c(l)nm =

∣∣∫ ∞
0 ψnm(r)E∗lead−out(r− d2)rdr

∣∣2∫ ∞
0 |Elead−out(r)|2rdr

∫ ∞
0 |ψnm(r)|2rdr

(2)

where Elead−in and Elead−out represent the electric field distribution of the lead-in and lead-
out SMF, respectively, and Ψnm represents the electric field distribution of excited modes
propagating in the capillary fiber.
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Figure 1. Structure of the proposed capillary-fiber-based all-fiber in-line interferometer. The red 
lines reflect the modes propagating in the fibers, whereas the dots represent other modes not de-
picted in this illustration. 

According to the theory of coherent superposition in the interference of light, the 
output power of the proposed structure can be expressed as follows: 
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According to Equation (4), the proposed structure is based on multi-beam interfer-
ence. Most of the power from the lead-in SMF can be coupled into high-order noncircular 
symmetrical modes in the capillary fiber with an appropriate transverse offset [12]. When 
this structure is twisted, the resulting refractive index disturbance along the capillary fiber 
causes a power exchange between these modes. As a result of this power exchange, the 
output power varies with the twist angle and orientation. Therefore, the proposed struc-
ture can be used for twist measurement. 

3. Experimental System 
Figure 2 depicts the experimental system for measuring twist. As the light source, we 

employed a broadband source (BBS) with a wavelength range from 1.5 to 1.6 m and a fiber 
interrogator (FS22DI, HBM FiberSensing, Darmstadt, Germany) with a resolution of 10 
pm to capture the spectra. The SMFs were commercial standard SMFs that met the ITU-T 
G.652 requirements. The capillary fiber (TSP002150, Zhengzhou INNOSEP Scientific Co., 

Figure 1. Structure of the proposed capillary-fiber-based all-fiber in-line interferometer. The red lines
reflect the modes propagating in the fibers, whereas the dots represent other modes not depicted in
this illustration.

According to the theory of coherent superposition in the interference of light, the
output power of the proposed structure can be expressed as follows:

Pout =
N

∑
n=0

M

∑
m=1

c(0)nmc(l)nm + 2
N

∑
n=0

M

∑
m = 1

nm 6= qp

Q

∑
q=0

P

∑
p=1

√
c(0)nk c(l)nk c(0)qp c(l)qp cos

(
ϕnm,qp

)
(3)

where ϕnm,qp represents the phase difference between the modes LPnm and LPqp, and it
can be written as ϕnm,qp = l∆βnm,qp, which depends on the length of the capillary fiber, l,
and the difference in the propagation constant, ∆βnm,qp. Assuming that both the lead-in
and lead-out SMFs have the same structure and parameters, namely d1 = d2 = d and
c(0)nm = c(l)nm = cnm, the output power of Equation (3) can be simplified as:

Pout =
N

∑
n=0

M

∑
m=1

c2
nm + 2

N

∑
n=0

M

∑
m = 1

nm 6= qp

Q

∑
q=0

P

∑
p=1

√
c2

nmc2
qp cos

(
ϕnm,qp

)
(4)

According to Equation (4), the proposed structure is based on multi-beam interference.
Most of the power from the lead-in SMF can be coupled into high-order noncircular
symmetrical modes in the capillary fiber with an appropriate transverse offset [12]. When
this structure is twisted, the resulting refractive index disturbance along the capillary fiber
causes a power exchange between these modes. As a result of this power exchange, the
output power varies with the twist angle and orientation. Therefore, the proposed structure
can be used for twist measurement.

3. Experimental System

Figure 2 depicts the experimental system for measuring twist. As the light source, we
employed a broadband source (BBS) with a wavelength range from 1.5 to 1.6 m and a fiber
interrogator (FS22DI, HBM FiberSensing, Darmstadt, Germany) with a resolution of 10 pm
to capture the spectra. The SMFs were commercial standard SMFs that met the ITU-T G.652
requirements. The capillary fiber (TSP002150, Zhengzhou INNOSEP Scientific Co., Ltd.,
Zhengzhou, China) used in the experiment possessed inner and outer diameters of 2 and
138 µm, respectively, and had a length of 2 cm. The capillary fiber was spliced between
two SMFs with a transverse offset of different values to analyze the spectral characteristics
and twist response. To test the twist sensing application, a rotator (as shown in the inset in
Figure 2) was positioned upstream of the proposed capillary-fiber-based interferometer,
while a fiber clamp was installed downstream to clamp the fiber.
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Figure 2. Experimental system for measuring twist.

4. Results and Discussion

We first investigated the twist response using our proposed sensor without a transverse
offset, and the results are shown in Figure 3. The fiber twist-induced spectral response is
small at the dip near 1570 nm. Although the measured range is 0–180, the linear range is
only from 0 to 140◦, with sensitivities of approximately 5.5× 10−3 dB/◦ for twist in both the
clockwise and anticlockwise directions. Moreover, the variation trends are the same under
both twist directions. We need to explain two things: the resonant number and the poor
linearity in the observed range. We think that the former is due to multi-beam interference
in the capillary, and that when the phase differences between all propagating modes fit a
particular condition, only one resonance is formed. For the latter, most of the power from
the lead-in SMF is coupled into the excited circular symmetrical modes [29], and just a
small amount of power is coupled into some low-order noncircular symmetrical modes that
are stimulated randomly and are passively reliant on the capillary fiber topology. During
the twist operation, the power exchange between the circular and noncircular modes is
relatively minimal, and this power exchange is independent of the twist direction. As a
result, when the sensor is twisted, the resonance strength fluctuates only a little with the
rotation angle but has poor linearity.
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Figure 3. Measured results using the proposed sensor without a transverse offset: (a) spectral
response; intensity variation at a wavelength of 1570 nm during the twist operated in (b) clockwise
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The experimental results for measuring twist using our sensor with a transverse
offset of 5.5 and 8.0 µm are shown in Figures 4 and 5, respectively. As can be seen from
Figure 4, only one dip appears in the measured wavelength range, and it shows opposite
trends in variation during the twist operation in the clockwise and anticlockwise directions.
The sensitivities are 0.035 and −0.031 dB/◦ in the clockwise and anticlockwise directions,
respectively, with linearities larger than 0.998 in the measured twist range from 0 to 90◦.
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a power meter are required for measurements, as compared to a broadband source and 
an optical spectrum analyzer which are required for conventional method, this interroga-
tion approach can minimize costs and make the system easier to implement. The findings 
are depicted in Figure 5c,f. The sensitivities for the wavelengths of 1520 and 1534 nm are 
0.039 and −0.077 dB/°, respectively, in the clockwise direction, while they are −0.053 and 
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Figure 5. Measured results using the proposed sensor with a transverse offset of 8.0 µm: (a) spectral
response; (b) intensity interrogation at wavelength of 1520 nm and the corresponding sensitivities
measured 1 time (c) and 5 times (d); (e) intensity interrogation at wavelength of 1534 nm and the
corresponding sensitivities measured 1 time (f) and 5 times (g).
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When the transverse offset is 8.0 µm in our sensor, its spectrum can be seen in the inset
in Figure 5a to have several peaks and valleys in the measured wavelength range. These
peaks and valleys vary with the twist, and among them, valley 1 and peak 2 show obvious
and regular variations, as presented in Figure 5a. In contrast to the traditional interrogation
method of monitoring the wavelength shift or power variation of the center of a selective
resonant dip or peak in the spectrum, we directly monitored the power variations at the
selected wavelengths of 1520 (Figure 5b) and 1534 nm (Figure 5e), as they can provide
the largest variations. Furthermore, because just a common laser source and a power
meter are required for measurements, as compared to a broadband source and an optical
spectrum analyzer which are required for conventional method, this interrogation approach
can minimize costs and make the system easier to implement. The findings are depicted
in Figure 5c,f. The sensitivities for the wavelengths of 1520 and 1534 nm are 0.039 and
−0.077 dB/◦, respectively, in the clockwise direction, while they are −0.053 and 0.043 dB/◦

in the anticlockwise direction. The linearities are higher, being 0.98 in the measured range
from 0 to 90◦. It should be noted that the measured range in Figures 4 and 5 is 0–90◦

rather than 0–180◦, since when the twist angle exceeds 90◦, the recorded spectra exhibit
irregular fluctuations, making it difficult to summarize the varied trends at the monitored
wavelengths using fitting lines. As a result, we may deduce that the measured range of our
sensor for twist is 0 to 90◦.

To investigate the sensor’s repeatability, we measured the twist five times, and the
results are displayed in Figures 4c and 5d,g, and a column graph of sensitivities is presented
in Figure 6. We can observe that the findings when measuring five times are identical to
the results when measuring one time. The standard deviations of sensitivity are less than
1% and 4% for the transverse offsets of 5.5 and 8.0 µm, respectively. These results show
that our sensor has high repeatability.

Photonics 2023, 10, 1052 7 of 10 
 

 

To investigate the sensor’s repeatability, we measured the twist five times, and the 
results are displayed in Figures 4c and 5d,g, and a column graph of sensitivities is pre-
sented in Figure 6. We can observe that the findings when measuring five times are iden-
tical to the results when measuring one time. The standard deviations of sensitivity are 
less than 1% and 4% for the transverse offsets of 5.5 and 8.0 µm, respectively. These results 
show that our sensor has high repeatability.  

 
Figure 6. Comparison of twist sensitivities using the proposed sensor with different values of trans-
verse offset. 

Figure 6 summarizes the experimental results from Figure 3 to Figure 5, and we can 
see that the responses of the selected wavelengths depend on the twist directions and 
show opposite trends for the clockwise and anticlockwise orientations when a transverse 
offset is applied in the sensor. Owing to the transverse offset, some of the power is coupled 
into the excited noncircular symmetrical modes, and a power exchange occurs between 
these modes during the twist operation, thus resulting in spectral variations in accordance 
with the twist angles and orientations. Additionally, Figure 6 further indicates that the 
sensitivity of the sensor with a transverse offset is significantly greater than that without 
a transverse offset. Although Figure 6 demonstrates that raising the transverse offset from 
5.5 to 8.0 m improves sensitivity, this does not imply that the sensitivity can be raised 
further with a significantly larger offset. We have also tested our sensor with offsets of 12 
and 20 µm, and found that not only can the sensitivity not be improved further, but the 
loss also increases and the mechanical strength diminishes.  

We also investigated the influence of temperature on our proposed sensor with a 
transverse offset of 8.0 µm, and the findings are presented in Figure 7. Although the power 
at the wavelength near 1553 nm clearly decreases as the temperature climbs from 25 to 65 
°C, the power variations at the selected wavelengths of 1520 and 1534 nm for twist sensing 
are fairly tiny, especially at 1520 nm which has a sensitivity of −3.6 × 10−5 dB/°C. Be-
cause the temperature sensitivity at 1520 nm is a thousandth of what the fiber twist causes, 
we may disregard the temperature-induced cross-sensitivity when using the 1520 nm 
wavelength for the twist measurement. However, if we utilize the wavelength of 1534 nm 
for the twist measurement, we must ensure that the sensor operates in a temperature-
controlled environment (the temperature sensitivity at 1534 nm is −0.03 dB/°C, which is 
comparable to the twist sensitivity) to ensure the validity of the measured data. 

Figure 6. Comparison of twist sensitivities using the proposed sensor with different values of
transverse offset.

Figure 6 summarizes the experimental results from Figure 3 to Figure 5, and we can
see that the responses of the selected wavelengths depend on the twist directions and show
opposite trends for the clockwise and anticlockwise orientations when a transverse offset
is applied in the sensor. Owing to the transverse offset, some of the power is coupled
into the excited noncircular symmetrical modes, and a power exchange occurs between
these modes during the twist operation, thus resulting in spectral variations in accordance
with the twist angles and orientations. Additionally, Figure 6 further indicates that the
sensitivity of the sensor with a transverse offset is significantly greater than that without a
transverse offset. Although Figure 6 demonstrates that raising the transverse offset from 5.5
to 8.0 m improves sensitivity, this does not imply that the sensitivity can be raised further
with a significantly larger offset. We have also tested our sensor with offsets of 12 and
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20 µm, and found that not only can the sensitivity not be improved further, but the loss
also increases and the mechanical strength diminishes.

We also investigated the influence of temperature on our proposed sensor with a
transverse offset of 8.0 µm, and the findings are presented in Figure 7. Although the power
at the wavelength near 1553 nm clearly decreases as the temperature climbs from 25 to 65 ◦C,
the power variations at the selected wavelengths of 1520 and 1534 nm for twist sensing are
fairly tiny, especially at 1520 nm which has a sensitivity of −3.6× 10−5 dB/◦C. Because the
temperature sensitivity at 1520 nm is a thousandth of what the fiber twist causes, we may
disregard the temperature-induced cross-sensitivity when using the 1520 nm wavelength
for the twist measurement. However, if we utilize the wavelength of 1534 nm for the
twist measurement, we must ensure that the sensor operates in a temperature-controlled
environment (the temperature sensitivity at 1534 nm is −0.03 dB/◦C, which is comparable
to the twist sensitivity) to ensure the validity of the measured data.

Photonics 2023, 10, 1052 8 of 10 
 

 

(b)(a)

 
Figure 7. Measured results for temperature using the proposed sensor with a transverse offset of 8.0 
µm: (a) spectral response; (b) sensitivities at the selected wavelengths of 1520, 1534, and 1553 nm. 

In addition, at an offset of 8.0 µm, we investigated the axial strain-induced effect on 
the sensor, and the findings are given in Figure 8. The observed power at the wavelengths 
of 1520 and 1534 nm clearly fluctuates with the axial strain, and the trends fit two parab-
olas. To increase the measured accuracy, we should protect the sensor from axial strain, 
which reduces the strain-induced cross-sensitivity during practical measurements. Fi-
nally, it should be noted that introducing an offset during the splice would weaken the 
mechanical strength of the sensor. When the capillary and the SMF were aligned, the axial 
strain tolerance at the fusion site was 500 ± 50 µε. When the transverse offset was adjusted 
to 5.5 and 8.0 µm, the tolerable value dropped to 380 ± 50 and 150 ± 20 µε, respectively. 
Obviously, as the transverse offset grows, the mechanical strength of the axial strain de-
creases. 

Table 1 compares our sensor to some other current twist sensors that have been re-
ported. Although our sensor’s performance (sensitivity and measured range) is not the 
finest among all of the sensors, it has the advantages of low cost, ease of manufacture, and 
simplicity of interrogation, making it a suitable alternative for practical measurement. 

(a) (b)

 
Figure 8. Measured results for axial strain using the proposed sensor with a transverse offset of 8.0 
µm: (a) spectral response; (b) sensitivities at the selected wavelengths of 1520 and 1534 nm. 

Table 1. Comparison with recently reported fiber-optic twist sensors. 

Method Sensitivity Measured Range Twist Direction Dis-
crimination 

Ref. 

Two-Core Fiber −0.04 dB/° −60–60° Yes [30] 
LPG + TFBG 1.074 dB/(rad/m) −30–30° No [7] 

PM-PCF 0.014 dB/° 30–70° No [31] 
Square-NCF 0.11863 dB/(rad/m) −360–360° No [32] 
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8.0 µm: (a) spectral response; (b) sensitivities at the selected wavelengths of 1520, 1534, and 1553 nm.

In addition, at an offset of 8.0 µm, we investigated the axial strain-induced effect on
the sensor, and the findings are given in Figure 8. The observed power at the wavelengths
of 1520 and 1534 nm clearly fluctuates with the axial strain, and the trends fit two parabolas.
To increase the measured accuracy, we should protect the sensor from axial strain, which re-
duces the strain-induced cross-sensitivity during practical measurements. Finally, it should
be noted that introducing an offset during the splice would weaken the mechanical strength
of the sensor. When the capillary and the SMF were aligned, the axial strain tolerance at
the fusion site was 500 ± 50 µε. When the transverse offset was adjusted to 5.5 and 8.0 µm,
the tolerable value dropped to 380 ± 50 and 150 ± 20 µε, respectively. Obviously, as the
transverse offset grows, the mechanical strength of the axial strain decreases.
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Table 1 compares our sensor to some other current twist sensors that have been
reported. Although our sensor’s performance (sensitivity and measured range) is not the
finest among all of the sensors, it has the advantages of low cost, ease of manufacture, and
simplicity of interrogation, making it a suitable alternative for practical measurement.

Table 1. Comparison with recently reported fiber-optic twist sensors.

Method Sensitivity Measured Range Twist Direction
Discrimination Ref.

Two-Core Fiber −0.04 dB/◦ −60–60◦ Yes [30]
LPG + TFBG 1.074 dB/(rad/m) −30–30◦ No [7]

PM-PCF 0.014 dB/◦ 30–70◦ No [31]
Square-NCF 0.11863 dB/(rad/m) −360–360◦ No [32]

Fiber-optic MZI 21.485 dB/(rad/cm) −40–40 rad/m Yes [33]
Fiber Sagnac 5.01 nm/◦ 370–400◦ No [34]

Dual-Core Fiber 45.2 pm/◦

12 pm/◦
−90–0◦

0–90◦ Yes [35]

Multimode fiber 0.077 nm/◦ −180–180◦ Yes [12]
Taper-PMF 2.392 nm/(rad/m) 0–8 rad/m Yes [36]

Seven-core fiber 0.4 nm/(rad/m) 4.758–40.439 rad/m Yes [37]
Capillary fiber 0.073 dB/◦ −180–180◦ Yes This work

5. Conclusions

We proposed and experimentally demonstrated a twist sensor based on a capillary
fiber. A 2-cm-long capillary fiber was spliced between two SMFs with a transverse offset to
create the sensor. Our sensor can give twist sensitivities of 0.035 and −0.031 dB/◦ in the
clockwise and anticlockwise directions, respectively, with a transverse offset of 5.5 µm, and
can give−0.077 and 0.043 dB/◦ with a transverse offset of 8.0 µm, in a measured twist range
from 0 to 90◦. Furthermore, it was proved that our sensor was temperature-insensitive
at the specified wavelength, which can aid in increasing the measurement accuracy. The
combination of being low cost, easy to fabricate, and able to enhance performance will
drive the use of our sensor in future engineering applications such as structural health
monitoring in dams and tunnels.
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