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Abstract: We have demonstrated efficiency of employing the ABCD matrix approach to transform
higher-order structured Laguerre–Gaussian (sLG) beams into structurally stable astigmatic sLG
(asLG) beams, highlighting their dynamics at propagating. Radical transformations of the beam
structure by a cylindrical lens form not only orbital angular momentum (OAM) fast oscillations and
bursts, but also make the asLG beams structurally unstable in propagation through cylindrical and
spherical lenses when focusing paraxially. But, if the spherical lens performs a Fourier transform of
the asLG beam after a cylindrical lens, the symmetric beam emerges at the lens focal plane with a
sharp OAM dip; then, the OAM restores its former astigmatism, becoming structurally stable at the
far diffraction domain. By investigating the beam structure at the focal area, we have showed that the
OAM sharp dip is associated with nothing less than the process of dividing the OAM into the vortex
and astigmatic constitutes predicted by Anan’ev and Bekshaev.

Keywords: vortex beams; ABCD matrix, structured light; orbital angular momentum

1. Introduction

Engineering of optical systems, based on the ABCD matrix approach developed
back in the early 70s [1] of the last century (see also chapt. 20 in Ref. [2]), is the most
optimal and convenient technique even now, when we have access to powerful digi-
tal software. The undoubted advantage of this approach is the ability to describe in a
simple way the first-order optical system containing a cascade of conventional optical

elements presented as a product of 2× 2 ABCD matrices M=
(

A B
C D

)
. However, this ap-

proach works reliably only for the complex q-parameter of the fundamental Gaussian beam
1/q(z) = 1/R(z)− i2/kw(z) containing the wavefront curvature radius R(z) and the waist
radius w(z) of the Gaussian beam along the beam length z, where k is the wavenumber.
When working with single Hermite–Gaussian (HG), Laguerre–Gaussian (LG), and other
types of higher-order beams, it is already necessary to employ the Collins integral [3],
written in the 2D-Kirchhoff–Fresnel approximation as [4]

Ψ(r, z) =
k

2πiB(z)

∫
R2

Ψ(ρ) exp

{
−i

k
2B(z)

[
A(z)|ρ|2 − 2(ρ r) + D(z)|r|2

]}
d2ρ, (1)

where Ψ(ρ) stands for a complex amplitude of the paraxial beam at the ABCD system
input, ρ = (ξ, η), r = (x, y), A(z), B(z), C(z), D(z) are the elements of the unitary ABCD
matrix with the property AD− BC = 1.

Using this integral, Siegman [3] and later Belanger [4] gave a general outline for
calculating single HG beams in a simple optical system with spherical lenses. A similar
calculation for a single LG beam was carried out by Taché [5]. Alieva and Bastiaans [6,7]
considered HG and HLG (Hermite–Laguerre–Gaussian) beams in first-order optical systems
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with a cascade of a lens, a magnifier, and an orthosymplectic system (a system that is both
simplistic and orthogonal) and employed a 4× 4 ABCD matrix approach. Abramochkin
et al. in Ref. [8] highlight key features of the ABCD approach for a general astigmatism
and implemented it for HLG; Beijersbergen [9] as well as Padgett and Courtial [10] did the
same for vortex mode convertors. However, if there are astigmatic elements in the optical
system (i.e., cylindrical lenses), its analysis becomes significantly more complicated. Now,
any cylindrical beam has to be represented in the HG mode basis whose horizontal and
vertical axes are aligned with the axes of the astigmatic axes of the cylindrical lens with
corresponding coordinate scaling [8,11–13].

The situation becomes much more complicated when using the ABCD approach for
structured beams [14–18], which are now widely used in various fields of science and
technology and which require convenient mathematical approaches for engineering optical
systems. First of all, this is due to the fact that in the simplest case, it is required to represent
a single LG beam in terms of HG modes in the eigen coordinate system of a cylindrical lens.
It looks like this [11]

LGn,±`(r) =
(−1)n

22n+3`/2n!

2n+`

∑
k=0

(±2i)kP(n+`−k,n−k)
k (0)HG2n+`−k,k(r), (2)

here, r = (x, y) is a 2D vector, P(n+`−k,n−k)
k (.) is a Jacobi polynomial, and n and ±` are

radial and azimuthal numbers of the LG beam. If the HG beam axes are rotated by an angel
π/4 to the axis of the lens astigmatism, then you have to use the decomposition of the form

HGn,n+`

(
x + y√

2
,

x− y√
2

)
=

(−1)n

22n+3`/2n!

2n+`

∑
k=0

2kP(n+`−k,n−k)
k (0)HG2n+`−k,k(r). (3)

In the more complex case of arbitrary orientation of the HG beam axes relative to
the lens axes, it is necessary to use the cumbersome basis transformations obtained by
Alieva and Bastiaans [19]. The development of an optical system with a single astigmatic
transformation of structured beams requires applications of such basic transforms to each
mode of the beam, and at the same time, it is necessary to closely monitor the amplitudes
and phases of the modes resulting from the transformations. When referring to the optical
system that contains a sequence of astigmatic elements with different axes orientations,
the basic transforms should be used for each element. As a result, the main approach to
the astigmatic transformations of structured beams was focused on analyzing trajectories
on the 2D sphere using the unitarity of astigmatic integral transforms [8,20,21]. On the
other hand, astigmatic structured LG (sLG) beams acquire such unique properties as
fast oscillations of the orbital angular momentum (OAM) when changing their control
parameters [20] or shaping super-bursts of the OAM exceeding the sum of the radial
and azimuthal numbers [22]. However, these properties manifest themselves only in the
vicinity of the double focus of a cylindrical lens, while displacement from this plane leads
to smoothing of these effects. At the same time, it is known that the OAM in the astigmatic
singular beam arises due to a combination of vortex and astigmatic constitutes, the ratio of
which can be controlled [13,23,24]. But this requires employing a complex optical system
for which calculation of the astigmatic beam states on a 2D sphere turns out to be very
cumbersome and not optimal even for computer simulation. Thus, for the instrumental
implementation of the devices that transform the unstable astigmatic structured beams
into structurally stable ones without losing their unique properties, engineering based on
ABCD matrix technique is required.

One cannot help but remark that astigmatic processes accompany almost all optical
measurements, unexpectedly manifesting themselves in light reflections and refractions on
surfaces [25] or inaccurate alignment of spherical lenses [26] or cylindrical lense [26], which
at once leads to distortion of the OAM laser beam. The variety of measuring techniques
of these distortions is striking, ranging from standard approaches [27] and tomographic
methods with mapping the distortion process onto the Poincare sphere [28] up to involving
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the machine learning [29]. But, on the other hand, the resulting distortions provide a
unique opportunity for a simple OAM control [30], measuring the topological charge of a
structured beam [31,32], as well as shaping super OAM bursts [21].

Here, we will discuss one astigmatic system that is most important for practical
engineering. The system contains a cylindrical lens that forms OAM bursts and a cor-
recting spherical lens that allows separating the astigmatic and vortex components of the
OAM; it also converts a structurally unstable beam into a stable one without losing its
unique properties.

2. ABCD Rule for Structured LG Beams (a Simple Astigmatism)

The main purpose of this section is to retrieve the optimal conditions for preserving
the shape of the super OAM bursts and fast oscillations, highlighting the contribution
of the beam radial number n when propagating a structured LG (sLG) beam through a
cylindrical lens and separating the vortex and astigmatic OAM constitutes with a correcting
spherical lens. A sketch of the optical system is shown in Figure 1a. We assume that a
structured sLGn,` beam [33] with radial n, azimuthal ` numbers, and a complex parameter
q(z) = z− iz0 (where z0 = kw0/2 is a Rayleigh length) falls onto the cylindrical lens with
the focal length fx located at z = 0 so that the initial complex parameter is q0 = −iz and
has a Gaussian beam waist radius of w0. The spherical lens performs a Fourier transform
and allows for not only separation of the vortex and astigmatic OAM constitutes, but also
for transforming a structurally unstable beam into a structurally stable one without losing
the OAM super-burst due to variations in the optical system parameters. In general, it is
convenient to represent a complex optical system as a product of the matrices of each optical
element [2]. However, since the transformation of sLG beams by astigmatic elements has
not been considered before, we will first consider in detail the transformation of the sLG
beam by a single cylindrical lens, determining its complex parameters qx and qy. Then, we
will employ them when propagating the beam through the remaining optical elements.

y

x

Z1

Z2

2w0

(Z )2wx 1

(Z )2wx2 2

CL

SL
Scr

q0

qx,y
qx2,y2

y x

,y

,x

2w
x2w

y

¯

a b

Figure 1. (a) Sketch of the astigmatic optical system with a cylindrical (CL) and spherical (SL) lenses
at distance (Scr) Z2. (b) Mutual orientation of the astigmatic beam cross-section in the coordinates
of the cylindrical lens (x, y) and laboratory system (x′, y′) on the angle β. Callouts: theoretical
intensity patterns.

In fact, our inherent task is to simplify the calculation of complex optical systems of the
first kind, including astigmatic elements, to make mathematics visual in comparison with
the integral transformations technique (see Refs. [20,21]) and to allow for relatively simple
for engineering. The best approach here, in our opinion, is a standard matrix formalism,
presented below.

2.1. The Beam Structure after a Single Cylindrical Lens

We emphasize that a cylindrical lens introduces a different scale along its eigen co-
ordinates (x, y) (see Figure 1b). We assume that the axes of the cylindrical lens (x, y) and
the laboratory coordinates (x′, y′) coincide, which corresponds to the so-called case of a
simple astigmatism [8,11]. Since the HG beams are eigenmodes of an astigmatic element,
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we represent a sLG beam in terms of HG modes in Equation (2) but with a different scale
along the coordinates (x, y)

sLGn,±`(r, z1) =
(−1)n

22n+3`/2n! ∑2n+`
j=0 (±2i)jQj(1 + εeijθ)P(n+`−j,n−j)

j (0)×

×H2n+`−j

(
√

2x
wx(z1)

)
Hj

( √
2y

wy(z1)

)
exp

[
ik
2

(
x2

qx(z1)
+ y2

qy(z1)

)]
,

(4)

where Hn(
√

2x) is a Hermite polynomial; Qj stands for an amplitude factor, HG modes,
that is written in terms of the ABCD rule as [2]:

Qx,y =

(√
q0,x,y

Ax,y · q0,x,y + Bx,y

)n

. (5)

Obviously, in the general case, we will have to use two groups of the ABCD matrices
for the x and y directions, as it is written in (5)

qx =
Axq0(z1 = 0) + Bx

Cxq0(z1 = 0) + Dx
, qy =

Ayq0(z1 = 0) + By

Cyq0(z1 = 0) + Dy
. (6)

However, the cylindrical lens does not change the scale in the y direction, so in the
range (0, z1), we can write

qy(z1) = z1 − iz0. (7)

In the x direction, the matrix of the cylindrical lens and the displacement by the length
z act as

Mx =

(
1 z1
− 1

fx
1

)
. (8)

Then, from Equation (7), we obtain the complex parameter

qx(z) = z0

[
Z1(κ

2
x + 1)− κx

]
− i

κ2
x + 1

, (9)

where
Z1 =

z1

z0
, κx =

z0

fx
. (10)

The results obtained allow us to find beam radii for the x and y directions as follows

Re
(

ik
2qx(z1)

)
= − 1

w2
x(z1)

⇒

w2
x(Z1) = w2

0

[
(1− Z1κx)

2 + Z2
1

]
= w2

0w2
x, (11)

w2
y(Z1) = w2

0(1 + Z2
1) = w2

0w2
y, (12)

as well as the mode phases

Γx(Z1) = arg
√

qx

A · qx + B
=

1
2

arg(1− κxZ1 + iZ1), (13)

Γy(Z1) =
1
2

arg(1 + iZ1). (14)

Thus, the complex amplitude of the astigmatic sLG (asLG) beam after the cylindrical
lens is obtained in the form
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asLGn,`(x, y, Z1|ε, θ) = 1√
wx(Z1)wy(Z1)

exp
{
−i
[(

2n + `+ 1/2
)
Γx(Z1) + Γy(Z1)

]}
×

× (−1)n

22n+3`/2n! ∑2n+`
j=0 (2i)jP(n+`−j,n−`)

j (0)
(

1 + εeijθ
)

H2n+`−j

(
√

2x
wx(Z1)

)
Hj

( √
2y

wy(Z1)

)
×

× exp(ijΓxy(Z1)) exp

(
i

[
x2

qx(Z1)
+ y2

qy(Z1)

])
,

(15)

where Γxy(Z1) = Γy(Z1)− Γx(Z1), w0 =
√

2z0/k, x → x/w0, y→ y/w0 and

qx =

[
Z1
(
κ2

x + 1
)
− κx

]
− i

κ2
x + 1

, qy = Z1 − i. (16)

Note that the complex amplitude (15) coincides with that obtained by Baksheev et al.
in Ref. [23] for the simplest case when n = 0, ε = 0, θ = 0. Computer simulation (a, d)
and experimental results (c, f) of the intensity and phase pattern (b, e) evolution of a single
LG and structured LG beam along the propagation direction Z are illustrated in Figure 2.
As expected, a single LG beam (Figure 2a–c) experiences conversion into a HG beam at
length z1 = 2 fx (Z1 = 1), and the number of intensity zeros along the x and y axes allows
for determining the topological charge (TC) of the LG beam [34]. The intensity pattern
evolution of the structured LG beam illustrates at least one interesting effect (Figure 2d–f).
In the vicinity of Z1 = 1, the intensity pattern of the asLG beam turns into an almost
typical pattern of the HG mode. However, as we will show below, the beam’s OAM
experiences a sharp burst. It should also be noted that the results obtained are in good
agreement with the intensity patterns obtained by the method of integral transformations
in Ref. [20]. However, the method of integral transformations allows us to obtain reliable
results only in the far diffraction zone or in the plane of the double focus of a cylindrical
lens. The expansion of the diffraction domain significantly complicates the calculation and
makes the final representations of the complex amplitude very cumbersome. At the same
time, the presented results based on the ABCD matrix approach significantly simplify the
calculations leading to the optimal form of the complex amplitude.

1

0

I

¼

−¼

Á

a

b

c

LG

1

0

I

¼

−¼

Á

Z=0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d

e

f

sLG

Figure 2. Theoretical (a,d) and experimental (c,f) intensity and phase pattern (b,e) evolution of the
LG and structured LG beam for different Z values; (a–c) corresponds to the LG beam with n = 2,
` = 3 and (d–f) corresponds to the sLG beam with n = 10, ` = 1 and ε = 1, θ = 0.99π; z0 = 1 m,
fx = 0.5 m.
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2.2. The OAM Transforms

The orbital angular momentum of a structured beam, specified in the HG mode basis,
is conveniently set as

Lz = Im
∫
R2

Ψ∗(r)(x∂y − y∂x)Ψ(r)dxdy. (17)

Obviously, the main contribution to the OAM is made by the mode amplitudes, which
we find from expression (15) in the form

cj = (2i)jP(n+`−j,n−`)
j (0)(1 + εeijθ) exp(ijΓxy(z1)). (18)

Thus, employing Equation (15) in Equarion (17) we obtain

Lz = 22n+`π
2n+`−1

∑
j=0

(j + 1)!(2n + `− j)! Im(cj+1c∗j ). (19)

To find the OAM per photon, we calculate the energy flow along the beam z-propagation direction

Sz =
∫
R2

Ψ(r)Ψ∗(r)dxdy, (20)

where, using Equation (18), we obtain

Sz = 22n+`−1π
2n+`

∑
j=0

j!(2n + `− j)!cjc∗j . (21)

Thus, the OAM per photon is specified as

`z = Lz/Sz. (22)

Our calculation showed that the expressions obtained can be reduced to the expres-
sion (9) obtained by Kotlyar et al. in Ref. [35], despite the fact that in their calculations, the
scaling of a complex amplitude is the same along the x- and y-axes. The obtained results
for the OAM `z(θ) in Equation (22) are presented in Figure 3 in the form of fast oscillations
of the OAM with variation of the control parameter θ in different cross sections Z1 of the
asLG beam. We see the emergence and suppression of the fast OAM oscillations as Z1 shifts
along the beam, while a super OAM burst is nucleating and growing near θ ≈ 0.98π. The
second OAM burst with the opposite sign `z < 0 is brought to light at θ ≈ 1.02π. Note
that the OAM at Z1 = 1 is in good agreement with the results of our paper [20] using the
method of integral transformations, but the ABCD matrix technique allows us to trace the
origin and evolution of fast oscillations and OAM bursts along the entire length Z1 of the
beam. We also see that the OAM bursts change slightly in the further diffraction zone. This
keeping of the OAM burst maximum is vividly illustrated in Figure 4a. The OAM reaches
its maximum value `z ≈ 11 at Z1 = 1, despite the fact that the beam intensity pattern is
significantly deformed (see Figure 4b–d), while the OAM tends to a half radial number
`z → n/2 at the far diffraction domain.

2.3. Cylindrical and Correcting Spherical Lens

Back in the early 1990s, Anan’ev and Bekshaev showed in Ref. [36] that a singular
beam OAM has astigmatic and vortex constitutes, which can be separated by means of a
conventional spherical lens at the plane where the beam radii along the x and y directions
become the same: wx(z) = wy(z). Their analysis was based on the intensity moments
technique of the second order. In the future, this approach was implemented for the analysis
of both simple [13,23] and structured singular beams [24]. In this section, we will not delve
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into the math of intensity moments, but simply analyze the conditions for separating the
vortex and astigmatic constitutes based on the ABCD matrix approach.
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Figure 3. Model of the OAM `z(θ) oscillations vs the control parameter θ of the asLG beam with
n = 20, ` = 1, ε = 1 at the different beam length Z1. Callouts: theoretical intensity patterns for the
first OAM burst.
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Figure 4. (a)—The OAM `z(Z) alon the asLG beam length Z with n = 20, ` = 1, z0 = 1 m, ε = 1,
θ = 0.98π, (b–e) experimental intensity patterns at the different beam cross-sections, X = x/w0,
Y = y/w0. Red circles correspond to experimental OAM points.

First of all, in order for a spherical lens to be a phase corrector of the asLG beam after
a cylindrical lens, it must perform a Fourier transform, i.e., the transformed beam field
must be located in the plane of the rear focus fsh of the lens, as shown in Figure 1. For
the calculation, we employ the matrix (8), where the replacement is carried out fx −→ fsh,
z −→ z2. Then, the complex parameter of the beam is determined by the recurrent formula
for the x direction

qx2 =
z0qx

− z0
fsh

qx + 1
+ z0Z2 = z0qx2, (23)

where

qx =
1 + i

[
Z1 + κx

(
− 1 + Z1κx

)]
1 + κ2

x
, qx2 =

qx + Z2
[
− κshqx + 1

]
1− κshqx

, (24)

and κsh = z0
fsh

, Z2 = z2
z0

. We will find the x-waist radius wx of the asLG beam as

1
w2

x2
= −Re

(
ik

2qx2

)
= − 1

w2
0

Re

(
i

qx2

)
. (25)
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The beam x-phase is determined by analogy with Equation (13)

Γx2 = arg

√
1

qx2
. (26)

The transformation of the beam x-direction by a spherical lens gives a complex param-
eter in the form

qy2 = z0

(
1− Z2κsh

)(
Z1 − i

)
+ Z2

1 + iκsh
(
iZ1 + 1

) = z0qy2, (27)

from where the y-waist radius and y-phase of the beam are

1
w2

y2
= −Re

(
ik

2qy2

)
= − 1

w2
0

Re

(
i

qy2

)
, (28)

Γy2 = arg

(
1
√qy2

)
. (29)

Now, the complex amplitude of the beam takes the form

asLGn,`
(
x, y, z|ε, θ

)
= 1√

wx2

(
z
)

wy2

(
z
) exp

{
−i
[(

2n + `+ 1/2
)

Γx

(
z
)

/2 + Γ
(

z
)

/2
]}
×

× (−1)n

22n+3`/2n! ∑2n+`
j=0 (2i)jP(n+`−j,n−j)

j (0)
(

1 + εeijθ
)

exp
(

ijΓk2(z)
)
×

×H2n+`−j

(
√

2x
wx2(z)

)
Hj

( √
2y

wy2(z)

)
exp

(
i

[
x2

qx2(z)
+ y2

qy2(z)

])
,

(30)

where Γk2 = Γx2 − Γy2.
The curves in Figure 5 define the conditions under which the separation of the vortex

and astigmatic OAM constitutes occur, as well as the transformation of a structurally unstable
asLG beam into a stable one. The curves (a, d) set the conditions wx(Z1, Z2) = wy(Z1, Z2)
when the astigmatic OAM component disappears and only the vortex component makes
the main contribution to the OAM [36]. It can be shown that these conditions hold for
any ratio between the focal lengths of cylindrical fx and spherical fsh lenses. However,
this does not mean that the asLG beam becomes structurally stable after the spheri-
cal lens. Two additional conditions still need to be met. The first of them requires
that the difference between the radii along the x- and y-directions remain unchanged
wx
(
Z1, Z2

)
− wy

(
Z1, Z2

)
= const, as shown in Figure 5b,e. This requirement imposes a

restriction on the immutability of the astigmatic component during propagation after a
spherical lens (see Figure 5c,f). For example, the structural stability conditions are met for
all beams with parameters in Figure 5a–c at Z2 � 1. However, structurally stable handles
with the parameters specified in Figure 5d–f do not tolerate OAM super-burst (see also
Figures 6 and 7). The second additional condition is the requirement for the spherical
lens position:

Z1 = 2 fx + fsh, (31)

which is fulfilled for the curves in Figure 5f. Now let us look at how the OAM burst
transforms after the corrective lens.
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Z1 = 2 fx + fsh) m. Callouts: experimental intensity patterns corresponding to the experimentally
measured values (red rings) of the OAM curve.
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2.4. OAM after a Correcting Spherical Lens

In order to calculate the OAM, we make use of the above approach. To do this, it is
sufficient to write out the amplitudes of the HG modes from Equation (30) in the form

cj = (2i)j p(n+`−j,n−j)
j (0)

(
1 + εeijθ

)
exp

(
ijΓk2(z)

)
. (32)

After substituting Equation (30) into Equations (17)–(22), we obtain the OAM per
photon as a multiparametric function `z = `z

(
Z1, Z2, fx, fsh, ε, θ, n, `

)
. The spherical lens

is located at the plane (31) to perform a Fourier transform of the asLG beam after the
cylindrical lens. We will peer into special points in the dependence of the OAM `z(Z2)
on the displacement Z2 along the asLG beam in a state with a small n = 4 and large
n = 20 radial number and a minimum azimuthal number ` = 1. The control phase
parameter θ corresponds to the OAM `z(Z2, θ) burst at the double focus of the cylindrical
lens and unit amplitude parameter ε = 1, shown in Figures 6 and 7. The OAM curve
`z(Z2) in Figure 6, surrounded by intensity patterns, has a sharp dip at the points wx = wy:
(a) Z2 = 0.75, n = 4, ` = 1 and (b) Z2 = 0.75, n = 20, ` = 1 corresponding to the astigmatic
beam correction condition. With a spherical lens, performing a Fourier transform of a
beam with the OAM burst, which corresponds to the asLG beam at the plane of the double
focus of the cylindrical lens, turns the asLG beam into a non-astigmatic sLG beam; it
features the beam at the cylindrical lens input. As is known [33], the OAM maximum in
a structured sLG beam cannot exceed the azimuthal number ` = 1, while the maximum
OAM of an astigmatic asLG beam exceeds half of the radial number `max > n/2. The width
of the OAM dip depends on the length fsh of the spherical lens focus and quickly shrinks
as the focal length decreases. Then, the OAM grows sharply to its initial value, and its
magnitude does not change as the observation plane shifts along the beam. Then, the OAM
increases sharply to its initial value, and its magnitude does not change as the observation
plane shifts along the beam, while the intensity structure also does not change. The beam
becomes structurally stable up to scale and rotation. Structural stability extends to both
fast oscillations and OAM bursts. Figure 7 illustrates variations in the shape of the OAM
oscillations along the beam after the spherical lens. If immediately behind the spherical
lens, the shape of the OAM oscillations exactly correspond to the oscillations at the plane
of the double focus of the cylindrical lens; then, in the plane of matching the x- and y-radii
of the beams, the nature of the oscillations changes dramatically. The oscillations take
the form of the OAM oscillations before astigmatic transformations [33]. A slight offset
from this plane along the beam returns the shape of the oscillations to the original form
containing the featured OAM super-burst.

It is important to note that each computer simulation of intensity patterns and the
OAM were accompanied by our experiment. The experimental setup and measurement
techniques are described in detail in our recent article [23]. A good agreement of the
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experimental results with the theory based on integral transformations and the matrix
ABCD approach indicate the mutual supplementation of these approaches, which can be
relatively easily implemented in the engineering of modern photonics devices.

3. Conclusions

Employing the ABCD matrix approach considered in the article has significantly
simplified and expanded the mathematical description of astigmatic transformations of
structured beams compared to transformations on the surface of a unit sphere [20,33]. We
have demonstrated the efficiency of using ABCD matrices to transform higher-order HG
modes in sLG beams. It has been shown that the astigmatic transformation leads to the
occurrence of the OAM super-bursts, the amplitude of which exceeds half of the radial
number of the sLG beam with a minimum azimuthal number. Moreover, in contrast to
transformations on the sphere, we have demonstrated the evolution of the fine intensity
structure and OAM along the entire beam length. It was shown that OAM changes slightly
in the far diffraction domain of the cylindrical lens, despite the fact that the sLG beam loses
its structural stability.

By investigating the transformation of the sLG beam in a system of cylindrical and
spherical lenses, we not only confirmed the prediction of Anan’ev and Bekshaev about the
separation of the OAM vortex and astigmatic constitutes after a spherical lens [36], but
also showed that a spherical lens is able to turn a structurally unstable asLG beam into a
stable one in the far diffraction domain, provided that the spherical lens performs a Fourier
transform of the asLG beam in the double focus of the cylindrical lens. We found that there
is a sharp OAM dip in the asLG beam, where the radii of the beams are matched along
the x- and y-directions wx(Z2) = wy(Z2); this corresponds to suppressing the astigmatic
component of the OAM, so that the main contribution to the OAM is made by the optical
vortices of the beam. The asLG beam is transformed to its original sLG beam shape before
the astigmatic transformation by the cylindrical lens. A slight shift of the observation plane
from this area leads to a sharp grows in the OAM. The beam becomes structurally stable
up to scale and rotation, while maintaining the shape of the oscillations and OAM bursts.
Experimental studies are in good agreement with our computer simulation.
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