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Abstract: Waveform engineering is an important topic in imaging and detection systems. Waveform
design for the optimal Signal-to-Noise Ratio (SNR) under energy and duration constraints can be
modelled as an eigenproblem of a Fredholm integral equation of the second kind. SNR gains can
be achieved using this approach. However, calculating the waveform for optimal SNR requires
precise knowledge of the functional form of the absorber, as well as solving a Fredholm integral
eigenproblem which can be difficult. In this paper, we address both those difficulties by proposing a
Fourier series expansion method to convert the integral eigenproblem to a small matrix eigenproblem
which is both easy to compute and gives a heuristic view of the effects of different absorber kernels
on the eigenproblem. Another important result of this paper is to provide an alternate waveform, the
Discrete Prolate Spheroidal Sequences (DPSS), as the input waveform to obtain near optimal SNR
that does not require the exact form of the absorber to be known apriori.

Keywords: PSWF; DPSS; optimal waveform design; Signal-to-Noise Ratio; Fourier series; photoa-
coustics

1. Introduction

Photoacoustic imaging systems for biomedical applications combine the advantages
of both optical and acoustical imaging methods and have thus been attracting researchers’
attention in recent decades [1–5]. Many attempts have been made to improve the Signal-
to-Noise Ratio (SNR) of a photoacoustic imaging system [6–14]. However, in the context
of the selection of the transmitted waveform, most recent studies are still based on either
chirps or square pulses, and occasionally Gaussian pulses [15,16] or pulse trains similar to
pulsed sinusoids with a high-carrier frequency [17]. In previous work, a method of finding
the input waveform for the optimal SNR under certain constraints was investigated [10].
The waveform found in this way (the optimal input waveform) can provide a high SNR
compared to other waveforms, especially when the waveform duration is comparable with
the absorber-characteristic duration. However, finding the optimal waveform requires
solving a Fredholm integral eigenproblem for each distinct photoacoustic absorber profile,
which requires prior knowledge of the absorber and is not easy to implement.

An important result of this paper is to present a Fourier series expansion approach
to solving the Fredholm integral with various photoacoustic absorbers. The traditional
methods of solving Fredholm’s integral equations require large amounts of calculation
and the computational efficiency is low [18]. Many other available approaches can also
be used, such as the B-spline wavelet method [19], Taylor’s expansion method [20], the
sampling theory method [21], and others [22–24]. However, these approaches either require
large amounts of computation or are inconvenient for solving the eigenvalue problem. The
proposed Fourier series approach in this paper converts the Fredholm integral eigenvalue
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problem to a finite dimensional matrix eigenvalue problem, which is straightforward to
compute. It also provides insight into the effect of the absorber in the eigenvalue problem.

This paper also proposes a method of directly using the Discrete Prolate Spheroidal Se-
quences (DPSSs), a discrete relative of the Prolate Spheroidal Wave Functions (PSWFs) [25],
as an input waveform for unknown absorbers with only limited prior information about
the absorber. PSWFs and DPSSs are reported to have many advantages in signal processing
applications, mainly due to their band-limited and time or index concentrated proper-
ties [25–27]. The use of the PSWF as an input waveform can be motivated from solving an
optimization problem for the SNR [28]. It has previously been shown that the photoacoustic
SNR optimization problem for band-limited absorbers can be modelled as an eigenvalue
problem of a Fredholm integral of the second kind with a sinc kernel, where the sinc kernel
represents the absorber that has a band-limited transfer function [10]. The PSWF is then
shown to be the optimal input waveform for band-limited absorbers.

The Discrete Prolate Spheroidal Sequences (DPSSs) are known to be a discrete relative
of PSWFs. In this paper, we use the term DPSSs to refer to a set of vectors that are index
limited to [0, 1, . . . , N − 1] and whose Discrete Time Fourier Transform (DTFT) is maximally
concentrated in a frequency band [27]. Other authors often use the term ‘Slepian Basis’. The
DPSS (Slepian basis) is convenient to use since it is easy to compute in comparison to the
PSWF. For example, the Matlab signal-processing toolbox provides a built-in function dpss
that returns the DPSS by solving the eigenproblem for the prolate matrix [29]. Simulation
results in Section 5 show that, by directly using the DPSSs as the input waveforms instead
of the exact optimal input waveforms, the same or similar SNR can be achieved. However,
using the DPSS is simple to compute and does not require prior knowledge of the exact
functional form of the absorber. Hence, the DPSS can provide near-optimal SNR with
limited prior information and computation. The remaining question to address is how
to choose appropriate DPSS parameters for near-optimal SNR. The proposed method of
choosing the parameters of the DPSSs is to choose the longest allowable duration and the
time-bandwidth product c to be equal to 1. Detailed explanations of this approach will be
discussed in the following sections.

2. Mathematical Modelling

Typical photoacoustic detection or imaging systems have similar mathematical struc-
tures and can be modelled as input and output problems from a signal-processing point of
view, as shown in Figure 1 [28,30–34].
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Figure 1. Block diagram of imaging system model.

In Figure 1, I(t) is the input waveform, G(t) is the absorber impulse response, p(t)
is the pressure signal output of the impulse response, n(t) represents the noise in the
system and is added to p(t) prior to being input to R(t), which is the receiver-filter impulse
response. Finally, y(t) is the output of the receiver filter that is the final output after the
signal processing of the received waveform. Here, t denotes time.

It was shown in [10] that the input waveform for optimal SNR (optimal waveform)
under constraints on the waveform energy (E) and duration (2T) given by

∞∫
−∞

∣∣∣ Ĩ( f )
∣∣∣2d f = E,

I(t) = 0, f or all t /∈ [−T, T]
(1)
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is given by the solution to the Fredholm integral eigenvalue problem as

λmax I(t) =
T∫
−T

I(τ)L(t− τ)dτ (2)

where L(t) is the auto-correlation of the absorber impulse response G(t). The waveform for
optimal SNR is the eigenfunction of Equation (2) associated with the maximum eigenvalue
λmax, and the maximum SNR is given by λmaxE.

3. Fourier Series Expansion Method for Optimal Waveform

We assume that the absorber is finite and compactly supported, which implies a time-
limited kernel in Equation (2). Fourier series allow us to express a kernel L(t) in Equation
(2) that is time limited in the interval [−TL, TL] as a series of sinusoidal functions given by

L(t) =
∞

∑
k=−∞

Lke(ikπ t
TL

) (3)

where i =
√
−1 and the Fourier coefficients are given by

Lk =
1

2TL

TL∫
−TL

L(t)e−ikπ t
TL dt (4)

However, the convolution in Equation (2) involves a time shift related with the input
waveform I(t) that is time limited in the interval [−T, T]. Hence, the kernel L(t− τ) may
be expanded on a larger interval as

L(t− τ) =
∞

∑
k=−∞

Lke(ikπ t
TS

)e(−ikπ τ
TS

) (5)

where TS = TL + T and

Lk =
1

2TS

TS∫
−TS

L(t)e−ikπ t
TS dt (6)

The interval TS = TL + T is chosen to ensure coverage of both intervals, and yields
a finer frequency resolution than using one interval or the other. Then, we also write the
input waveform I(t) as Fourier series in the time interval [−Ts, Ts] as

I(t) =
∞

∑
k=−∞

Ike(ikπ t
TS

) (7)

where

Ik =
1

2TS

TS∫
−TS

I(t)e−ikπ t
TS dt (8)

Substituting Equations (5) and (7) into Equation (2) and rearranging the order of
summation and integration gives

λ
∞

∑
k=−∞

Ike(ikπ t
TS

)
=

∞

∑
k=−∞

Lke(ikπ t
TS

)
∞

∑
m=−∞

Im

T∫
−T

e(imπ τ
TS

)e(−ikπ τ
TS

)dτ (9)
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We now define a matrix A with elements Ak,m given by

Ak,m =

T∫
−T

e(imπ τ
TS

)e(−ikπ τ
TS

)dτ =

 2TS sin
(

πT(k−m)
TS

)
π(k−m)

k 6= m
2T k = m

(10)

Substituting (10) into (9) gives

λ
∞

∑
k=−∞

Ike(ikπ t
TS

)
=

∞

∑
k=−∞

Lke(ikπ t
TS

)

(
∞

∑
m=−∞

Im Ak,m

)
(11)

which can be rewritten as

λIk = Lk

(
∞

∑
m=−∞

Im Ak,m

)
(12)

We define another matrix Q as

Qk,m = Lk Ak,m (13)

We note that Equation (13) demonstrates that matrix Q is the result of a convolution of
the kernel L along the row dimension of matrix A, since multiplication in the frequency
domain represents a convolution in the time domain. The above notation allows us to write
Equation (12) as an (infinite) eigenvalue problem given by

λIk =
∞

∑
m=−∞

ImQk,m (14)

Hence, the Fredholm integral eigenvalue problem in (2) is discretized and simplified to
the (infinite) matrix eigenvalue problem shown in Equation (14). For numerical simulations,
the problem in Equation (14) needs to be truncated to a finite dimension. The terms in Qk,m
eventually go to zero for sufficiently large indices. Hence, it is always possible to truncate
the matrix Q to a square matrix of dimension NQ, such that all the off-diagonal terms Qk,m
are as close to zero as required for m, k > NQ, m 6= k. Once the eigenvectors of (now finite
dimensional) Qk,m are found, the eigenvectors provide the Fourier coefficients for the input
waveform. The zeroth order eigenvector is selected since it has the largest eigenvalue, that
is, it maximizes SNR. This zeroth order eigenvector must then be put back into the Fourier
series in Equation (14) to give the optimal waveform function.

Equations (13) and (14) permit good insights into the problem. The classical sinc kernel
integral equation eigenproblem (with the result of the PSWF as the optimal waveform)
is obtained by replacing Qk,m with Ak,m in Equation (14). This is the ‘base’ problem that
results from assuming a purely band-limited absorber, which results in a sinc kernel integral
equation (with the result of the PSWF as the optimal waveform). Hence, Ak,m is our Fourier
series approximation to the PSWF and Equation (13) captures how the effect of the kernel
causes a deviation in the eigenvalue problem (Lk Ak,m) from the baseline (Ak,m) eigenvalue
problem. This process shows that the actual shape of the absorber-transfer function only
effects the eigenvalue problem via Equation (13), where the kth row of matrix Ak,m is
multiplied by the kth element in Lk to give Qk,m. Furthermore, the multiplication by the kth
element in Lk to give Qk,m indicates that the effect of Lk is row convolution, as previously
noted above. This is an important insight as the influence of the kernel Lk becomes clear,
and this influence (once understood) can be exploited.
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4. Near-Optimal Waveform via DPSS

From Equation (10), the matrix Ak,m is very similar to the matrix often referred to as
the prolate matrix [35], whose eigenvectors are the DPSSs. For 0 < σ < 1/2, the prolate
matrix is defined from

Pm,n =

{
sin[2πσ(m−n)]

π(m−n) m 6= n
2σ m = n

m, n = 0..N − 1 (15)

where N is the size of the matrix. Hence, the Ak,m matrix yields some set of DPSSs as its
eigenvectors. The DPSSs can be considered to be a discrete relative of the PSWFs. Classical
definitions of the DPSSs use σ and N as input values. The defining input parameters to
determine a DPSS using Matlab are the number of points N (index limit, also the size of the
prolate matrix), and a time-bandwidth product denoted by c. To find the DPSS, c and N are
chosen and then the dpss Matlab function code solves the prolate matrix (Equation (15))
eigenvalue problem for σ = c

N−1 to return the first 2c eigenvectors (of length N) to give the
DPSS. It is noted that N must satisfy 2c + 1 < N(to ensure σ < 1/2, as per the definition of
the prolate matrix). The variable N controls the size of the matrix and the ‘resolution’ in the
eigenvectors, i.e., the amount of detail in the eigenvectors. The time-bandwidth parameter
c controls the energy concentrating properties of the eigenvectors.

It was shown in [10] that the optimal waveform can give good gains in the SNR com-
pared to other waveforms when the waveform duration is comparable with the absorber-
characteristic duration. When the relative sizes of the input waveform and the absorber-
effective duration differ by orders of magnitude, then there is very little additional SNR
gain that can be achieved by optimizing the shape of the input waveform. Hence, we
can assume that if we are seeking optimal or near-optimal waveforms, then T and TL are
approximately the same order of magnitude. When comparing Equations (10) and (15),
the width of the ‘digital sinc’ function of matrix Ak,m in Equation (10) is controlled by a
prolate factor of σA = T/(2(TL + T)). The effect of the multiplication with Lk to obtain
Qk,m results from convolution, which will generally always ‘widen’ a signal. That is, we
expect the matrix Qk,m to have a similar shape and structure to Ak,m but to be slightly wider
in the areas where it is non-zero.

These observations allow us to directly propose the DPSS as a near-optimal solution.
That is, we hypothesize and propose that the optimal waveforms (eigenvectors of Qk,m
used as Fourier coefficients) may in fact be very similar to some DPSSs, which is what
leads to the proposal that the DPSSs can be used as near-optimal waveforms directly in
the place of the optimal waveforms (eigenvectors of Qk,m used as Fourier coefficients). We
consider the consequences of this proposed approach in what follows. We demonstrate that
the DPSS offers near-optimal SNR results compared to the true-optimal waveforms. The
remaining question then becomes how to choose the parameters of the DPSSs to achieve
near-optimal SNR results.

To find the DPSS, the DPSS parameters c (time-bandwidth) and N need to be chosen,
and then the dpss Matlab function code returns the DPSS vectors with the chosen c and N as
parameters. To obtain a near-optimal waveform, we construct a discrete time vector with
duration [−T, T] with the same number of points N, where the discrete time values of the
near-optimal waveform are directly given by the values of the zeroth order DPSS obtained
with the chosen N and c = 1. The zeroth order DPSS is chosen since it corresponds to the
largest eigenvalue that maximizes the SNR. The resulting concentration bandwidth of the
DPSS then corresponds to BDPSS = c

2T . That is, the selected DPSS has energy concentrated in
[−BDPSS, BDPSS]. The time-bandwidth product c is unitless if T has units of microseconds
(µs) and BDPSS has units of Megahertz (MHz). The DPSS with c = 1 is chosen since recent
work [10] demonstrated that this is the smallest value of c that allows the DPSS to meet the
minimum allowable compactness of the classical Fourier uncertainty principle using the
percentage energy definition of compactness. Hence, the DPSS is chosen with the smallest
possible c that gives minimum possible compactness. Then, this vector is ‘scaled’ to fit the
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[−T, T] required interval with N values. This gives a sampling interval in time of ∆t = 2T
N−1

and a sampling frequency of fs = N−1
2T Hz. The N − 1 factor arises so that there will be

exactly N points in the interval [−T, T].
In our proposed approach, we propose to use the values of the zeroth order DPSS

directly as the discrete time values of the near-optimal waveform, that is, we do not
interpolate with a cardinal sinc or construct a Fourier series from the given vector. Calling
the dpss function is the only computational requirement. In contrast, the eigenvectors
of Qk,m must be used in the Fourier series’ reconstruction to give the required optimal
waveform. That is, an eigenvalue problem and a Fourier reconstruction are required to
find the optimal waveform. For the DPSS approach, the theoretical (Nyquist sampling)
minimum that N must satisfy is 2c + 1 < N. However, this lower Nyquist bound assumes
sinc interpolation to give the remaining points in the function. Since we wish to use the
values of the DPSS, directly as sampled values of the near-optimal waveform to avoid
interpolation (and then resampling for plotting), N should be chosen much higher than
this lower limit to give enough sampled points so that the function can be visualized.
In our simulations, we chose N to be 201 to provide a smooth look to the curve and to
permit a point-wise comparison with the optimal waveforms without the need for DPSS
interpolation and resampling. We will demonstrate below that this simple selection of
the DPSS allows for near-optimal results and requires very little knowledge about the
absorber itself.

5. Numerical Simulations and Discussion

This section shows numerical simulation results obtained by the near-optimal method,
shown in Section 4, and compares those results with those obtained from optimal waveform
results of Section 3. All simulations were performed with Matlab. The DPSSs were obtained
through the MATLAB R2019b signal-processing toolbox function dpss, which calculates the
eigenvalues and eigenvectors of the prolate matrix using a fast auto-correlation technique.
The prolate matrix is known to be ill-conditioned and this fast auto-correlation approach
gives good numerical results compared with simpler approaches.

Several different kernels are simulated in this section. Typical real-world kernels (auto-
correlation of absorbers) may be neither exactly time-limited nor band-limited. Hence,
we include those in our simulations. For kernels that are not exactly time-limited and/or
band-limited, the effective duration and bandwidth of kernels are defined using a 98%
energy criterion, where the effective time and bandwidth parameters are determined by
finding the time interval [−TL, TL] and bandwidth [−B, B] where 98% of the energy is
concentrated inside.

The SNR in this section is calculated as [10]

SNR =

∞∫
−∞

∣∣∣ Ĩ( f )G̃( f )
∣∣∣2

Snn( f )
d f (16)

with the assumption that the noise Snn( f ) = 1. Here, ·̃ denotes the frequency domain and
f denotes the frequency variable.

Figure 2 shows the matrix Ak,m represented as a 3D plot which is shown from different
views. The matrices’ sizes are chosen as 51× 51 for calculation convenience. Appendix A
provides a table comparing eigenvalues associated with the zeroth order PSWFs from
tabulated values in [28] and eigenvalues from matrices Ak,m for different sizes of the
matrices. The table shows that by choosing a matrix size of 51× 51, the mean error of the
first 10 eigenvalues is only 2.8657%. The higher errors only occur when the order of the
eigenvalues is relatively large. The eigenvectors used in this paper correspond to the zeroth
order eigenvectors, which are associated with the largest eigenvalues. Hence, the error
will be small with the chosen matrix size. To provide a guide on how to choose the matrix
size, Figure A1 in Appendix A provides the plot of mean errors of the first 10 eigenvalues
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from the matrices sizes 11× 11 to 101× 101. As shown in Figure A1, as the matrix size
increases the error decreases, and the rate of the decrease in error also decreases. Hence,
when the matrix size becomes large, the computational cost increases for small decreases
in error. The plots of the Qk,m matrices shown in the following subsections demonstrate
that 51× 51 matrices are large enough to capture all the non-zero off-diagonal values of the
Qk,m matrices. As can be seen from Figure 2, the Ak,m matrix is approximately a diagonal
matrix with a sinc shape on its skew diagonal.
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As shown in Equation (13), the matrix Qk,m is given by the kth row of matrix Ak,m
multiplied by the kth element in Lk. Plots of Qk,m matrices in the following simulations
with different kernel profiles demonstrate that the Qk,m matrices have similar profiles to
Ak,m, as was previously hypothesized.

5.1. SNR Simulations with Different Kernel Profiles

We begin the simulations by considering a Gaussian kernel, which is neither time-
limited nor band-limited. Figure 3 shows a Gaussian kernel defined by L(t) = e−t2

.
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Figure 4a shows the Qk,m matrix for the Gaussian kernel. Figure 4b shows the cor-
responding optimal waveform reconstructed using the zeroth eigenvector of Qk,m and
the Fourier series, compared with a chosen DPSS. In this case, the Qk,m matrix is also
approximately a diagonal matrix with a sinc shape on its skew diagonal. The optimal
waveform (from Q matrix) and DPSS (from prolate matrix) are chosen to have the same
duration. In this case [−2 µs, 2 µs], we are restricting the duration of the input waveform
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to have a maximum duration of 4 microseconds. The DPSS is chosen to have a defining
time-bandwidth product c = 1. It has been shown that, as their defining time-bandwidth
products increase, the effective time-bandwidth properties of the DPSS (effective dura-
tion and bandwidth calculated by energy concentration and variance) approach known
minimum compactness limits allowed by uncertainty principles [36]. The minimum com-
pactness limit is first reached at the defining time-bandwidth product c = 1, which is why
this choice is made here. As can be seen from Figure 4, the chosen DPSS yields a similar
SNR with the optimal waveform.
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Now consider a system which allows a longer input waveform duration; hence, we
choose the time interval [−4 µs, 4 µs]. Then, the corresponding Q matrix, optimal waveform
and DPSS are shown in Figure 5.
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As can be seen in Figure 5, as the duration of input waveform increases, the SNRs also
increase. The DPSS is chosen to have the same duration as the optimal waveform (that is,
from the duration constraint given for the waveform) and to also have c = 1. The chosen
DPSS gives a similar SNR (i.e., near optimal) to the optimal waveform.
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Other kernel shapes are also simulated in this section. Similar trends also apply. The
square kernel is defined as

L(t) =
{

1, |t| ≤ 1
0, |t| > 1

(17)

The triangle kernel is defined as

L(t) =
{

1− |t|, |t| ≤ 1
0, |t| > 1

(18)

The sinc-squared kernel is defined as

L(t) = sinc2(t) (19)

The cosine kernel is defined as

L(t) =
{

cos(t), |t| ≤ 1
0, |t| > 1

(20)

The plots of the above kernels shown in Equations (17)–(20) are shown in Figure 6.
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The corresponding Q matrices, optimal waveforms and DPSS waveforms for the
square kernel are shown in Figure 7 with input waveform durations [−2 µs, 2 µs] and in
Figure 8 with input waveform durations [−4 µs, 4 µs].



Photonics 2023, 10, 1031 10 of 17

Photonics 2023, 10, x FOR PEER REVIEW 10 of 19 
 

 

The cosine kernel is defined as  

( ) ( )cos , 1

0, 1

t t
L t

t

 ≤= 
>

 (20)

The plots of the above kernels shown in Equations (17)–(20) are shown in Figure 6.  

 
Figure 6. (a) Square kernel in time domain. (b) Triangle kernel in time domain. (c) Sinc-squared 
kernel in time domain. (d) Cosine kernel in time domain. (e) Square kernel in frequency domain. (f) 
Triangle kernel in frequency domain. (g) Sinc-squared kernel in frequency domain. (h) Cosine kernel 
in frequency domain. 

The corresponding Q matrices, optimal waveforms and DPSS waveforms for the 
square kernel are shown in Figure 7 with input waveform durations [ ]2 ,2s sμ μ−  and in 

Figure 8 with input waveform durations [ ]4 ,4s sμ μ− . 

 
Figure 7. (a) Q matrix. (b) Comparison of optimal waveform and DPSS for the square kernel.

Photonics 2023, 10, x FOR PEER REVIEW 11 of 19 
 

 

Figure 7. (a) Q matrix. (b) Comparison of optimal waveform and DPSS for the square kernel. 

 
Figure 8. (a) Q matrix. (b) Comparison of optimal waveform and DPSS for the square kernel. 

The Q matrices, optimal waveforms and DPSS for the triangle kernel are shown in 
Figure 9 with input waveform durations [ ]2 ,2s sμ μ−  and in Figure 10 with input wave-

form durations [ ]4 ,4s sμ μ− . 

 
Figure 9. (a) Q matrix. (b) Comparison of optimal waveform and DPSS for the triangle kernel. 

The Q matrix, optimal waveform and DPSS for the sinc-squared kernel with 
[ ]2 ,2s sμ μ−  input waveform and [ ]4 ,4s sμ μ−  input waveform are shown in Figure 11 
and Figure 12, respectively. 

Figure 8. (a) Q matrix. (b) Comparison of optimal waveform and DPSS for the square kernel.

The Q matrices, optimal waveforms and DPSS for the triangle kernel are shown in
Figure 9 with input waveform durations [−2 µs, 2 µs] and in Figure 10 with input waveform
durations [−4 µs, 4 µs].
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The Q matrix, optimal waveform and DPSS for the sinc-squared kernel with [−2 µs, 2 µs]
input waveform and [−4 µs, 4 µs] input waveform are shown in Figures 11 and 12, respectively.
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The Q matrix, optimal waveform and DPSS for cosine kernel with [−2 µs, 2 µs] input
waveform and [−4 µs, 4 µs] input waveform are shown in Figures 13 and 14, respectively.
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5.2. SNR Simulations with Additional Kernel Profiles

In addition to the simple kernels shown above, some other kernels with distinct
profiles are also simulated. The frequency-shifted Gaussian kernel plotted in Figure 15 is
defined as

L(t) = e−t2 ·
(

e2πi f0t + e−2πi f0t
)

(21)

The frequency-shifted Gaussian kernel has a mirrored peak in negative frequency to
ensure a real function in the time domain. As can be seen from Figure 16, the obtained
optimal waveform is also shifted in frequency, the same amount as the kernel. The DPSS in
Figure 16 is obtained by having the same duration [−2 µs, 2 µs] with the optimal waveform
and is chosen to have a time-half bandwidth product c = 1. Then, the DPSS is shifted
to the centre frequency f0 = 1 MHz and mirrored to have a peak in negative frequency.
The resulting waveform is then normalized to have unit energy. From Figure 16, the SNR
obtained from the frequency-shifted DPSS is similar (near optimal) to the SNR obtained
from the optimal waveform.
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The combined kernel shown in Figure 17 is defined as

L(t) =

({
e2πi f1t + e−2πi f1t, |t| ≤ 1
0, |t| > 1

)
+ 2sin c(t)·

(
e2πi f2t + e−2πi f2t

)
(22)

where f1 = 0.5 MHz and f2 = 1.5 MHz. The peak value of the kernel appears at
fpeak = 1.73 MHz.

The corresponding Q matrix, optimal waveform and DPSS are shown in Figure 18.
Although the kernel in Figure 17 is complicated, the trends of the optimal waveform and
the DPSS are still the same as the trends found for other kernels. The optimal waveform
concentrates its energy near the kernel peak frequency. The chosen DPSS with c = 1 shifted,
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mirrored and normalized to have peaks where the kernel has the highest peak in frequency
and has a similar near optimal SNR as the optimal waveform.
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6. Conclusions

The photoacoustic SNR optimization problem with restrictions on input waveform
duration and energy leads to a Fredholm integral eigenproblem, where the functional form
of the target absorber needs to be known to be able to solve the problem.

This paper proposed a new approach for addressing the eigenvalue problem of the
Fredholm integral by using the Fourier series expansion. This approach simplifies the
integral eigenproblem to a matrix eigenproblem and, importantly, allows a heuristic view
of how a kernel profile (absorber) affects the eigenproblem. It was observed that the sinc
skew-diagonal profile of the resulting matrix makes the resulting eigenfunctions very close
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to a DPSS, which allowed us to propose that directly using a simple DPSS alone could
achieve near-optimal SNR results.

The true-optimal waveforms can achieve higher SNR than other commonly used
waveforms, especially when the duration of the input waveforms are limited to be of
similar orders of magnitudes with the absorber-characteristic duration. It has been shown
that a minimum 5–10% SNR increase can be achieved with this approach [10]. However,
achieving this requires the calculation of the integral eigenproblem for every distinct
absorber profile and requires exact prior knowledge of the absorber-impulse response. By
using the DPSS approach proposed in this paper, simulation results for different absorbers
show only less than 1% SNR drop compared to the optimal waveform and require either
no prior information or less prior information of the absorber.

This paper proposed using DPSSs with time-bandwidth product c = 1 to achieve a
near-optimal SNR. For simple absorbers with frequency spectrum peaks centred at the
origin, prior information about the absorber is not needed. The criterion of choosing a DPSS
is to choose the longest allowable duration imposed by the constraints on the problem, and
to choose a corresponding bandwidth to achieve c = 1 for the DPSS. For absorbers with
frequency shifts (i.e., where the spectrum is not centred at the origin), the only required
prior knowledge about the absorber is the location of the peak frequency. The DPSS with
longest allowable duration and with c = 1 must then be shifted to be centred at the same
location of the peak frequency of the absorber.

In conclusion, near-optimal SNR results can be obtained by using the DPSS with
c = 1 as the input waveform. The only further required prior information to find the
near-optimal DPSS are (i) the input-waveform restrictions on the duration and energy and
(ii) the location of the peak frequency of the absorber to determine where to centre the
DPSS in frequency.

Author Contributions: Conceptualization, N.B.; methodology, N.B.; software, Z.S.; validation, Z.S.;
formal analysis, N.B.; resources, N.B.; writing—original draft preparation, Z.S.; writing—review and
editing, N.B.; visualization, Z.S.; supervision, N.B.; project administration, N.B.; funding acquisition,
N.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Natural Sciences and Engineering Research Council (NSERC)
grant number RGPIN-2023-03392.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix provides a table and a figure comparing eigenvalues associated with
the zeroth order PSWF λS from tabulated values in Slepian’s paper [37] and eigenvalues
λA from matrices Ak,m with different sizes of matrices. The parameter c used here is 10.
Mean errors are calculated as

10

∑
i=1

|λA,i − λS,i|
λS,i

× 100% (A1)
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Table A1. Eigenvalues and errors between λS,i and λA,i with different matrix sizes.

Order of
the Eigenvalue i λA,i of Matrix Size 51 × 51 λA,i of Matrix Size 201

× 201
λA,i of Matrix Size 501

× 501 λS,i from [37]

0 0.999999955226292 0.999999955900054 0.999999955911151 0.999999960000000

1 0.999996406183506 0.999996657868424 0.999996723847057 0.999996770000000

2 0.999892185206378 0.999892723938503 0.999892732405319 0.999892730000000

3 0.997666094251012 0.997836777121321 0.997875008194211 0.979012400000000

4 0.974438882189111 0.974457475992984 0.974457762248568 0.974457780000000

5 0.811762028659407 0.821727125523082 0.823772084743932 0.825146350000000

6 0.440149801643431 0.440150103991585 0.440150108649440 0.440150110000000

7 0.101939754042644 0.109731529190734 0.111287335366030 0.112324820000000

8 0.0149027595317285 0.0149198930012666 0.0149201565188149 0.0149201750000000

9 0.00110733815771107 0.00126548935998713 0.00129519626327412 0.00131458900000000

Mean Error (%) 2.8657 0.8383 0.4492
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