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Abstract: The connections between Laguerre–Gauss and Bessel–Gauss beams, and between Hermite–
Gauss and cosine-Gauss beams are investigated. We review different asymptotic expressions for
generalized Laguerre and Hermite polynomials of large radial/transverse order. The amplitude
variations of generalized Laguerre–Gauss beams, including standard and elegant Laguerre–Gauss
beams as special cases, are compared with Bessel–Gauss beams. Bessel–Gauss beams can be well-
approximated by elegant Laguerre–Gauss beams. For non-integral values of the Laguerre function
radial order, a generalized Laguerre–Gauss beam with integer order matches the width of the central
lobe well, even for low radial orders. Previous approximations are found to be inaccurate for
large azimuthal mode number (topolgical charge), and an improved approximation for this case is
also introduced.

Keywords: beam propagation; Bessel–Gauss beams; Laguerre–Gauss beams; cosine-Gauss beams;
Hermite–Gauss beams; vortex beams; orbital angular momentum; topological charge; helical modes;
phase singularity

1. Introduction

In three dimensions (3D), Laguerre–Gauss [1] (LG) and Bessel–Gauss [2,3] (BG) beam
modes are perhaps the most important analytically-expressed beams that propagate paraxi-
ally in free space. They are solutions of the paraxial, scalar wave equation (Schrödinger
equation). In these types of beam, the field in a cross-section is given by the product of
a Laguerre polynomial or a Bessel function, respectively, with a Gaussian. The BG beam
is an approximation to the (nonphysical) Bessel beam, which exhibits a propagational
invariance (often called a ‘non-diffracting’ or ‘diffraction-free’) property and reconstructs
(more correctly, is regenerated) upon propagation through a scattering medium [2,4]. For a
non-zero azimuthal mode number (topological charge), LG and BG beams result in helical
modes, and exhibit a vortex phase singularity that carries orbital angular momentum [5,6].
In 2D, there are analogous Hermite–Gauss [1] (HG) and cosine-Gauss (cG) beams [7]. The
2D forms can be used to represent field variations in the x and y directions in Cartesian
coordinates in 3D space. Relationships and transformations between LG and HG modes
were given by Abramochkin, and by Kimel and Elias [8,9].

Applications of these beams are extensive, and range from optical propagation, Fres-
nel reflection and transmission coefficients, laser resonators, beam waveguides, optical
waveguides, optical trapping and manipulation, optical angular momentum, high capacity
optical communications using mode multiplexing, imaging, depth of focus extension, opti-
cal alignment, optical metrology, nonlinear optics, laser material processing, through to
quantum optics, quantum cryptography and quantum computing. Here, we investigate the
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connection between LG and BG beams, or HG and cG beams, but concentrate specifically
on the cylindrical, LG/BG, case.

For the standard HG beam (sHG), the scaling between the two functions is of the
form Hn(

√
2z) exp(−z2), where n is the mode number, while for the standard LG beam

(sLG), it is of the form (2z)m/2L(m)
n (2z2) exp(−z2), where n, m are the radial and azimuthal

mode numbers, respectively. Siegman introduced the so-called elegant Hermite–Gauss
(eHG) beam, where the relevant scaling of the functions is different, Hn(z) exp(−z2),
from the standard sHG beams [10]. There are also elegant Laguerre–Gauss (eLG) beams,
zm/2L(m)

n (z2) exp(−z2) [11–13]. The elegant beams provide important connections with
multipole radiation and spherical harmonics, and with differential operators [11,14,15]. The
standard sHG, sLG beams propagate with a transverse amplitude given by a polynomial
that does not change in shape, but the amplitude of the elegant beams is described by a
polynomial that is a function of a complex parameter, and the shape does change with
propagation. Wünsche, and also Pratesi and Ronchi, showed that other, complex, scalings
produce a range of propagation effects [12,16,17]. We have called these generalized (gHG,
gLG) beams [18].

Turning now to the Bessel beam, an infinitely narrow annular pupil was known to
give a Bessel function J0 amplitude point spread function by Rayleigh [19]. (Actually, Airy
earlier derived the power series expansion for the Bessel beam, but before the terminology
of Bessel functions was universally recognized [20].) The increase in the depth of focus
attainable using a narrow annular exit pupil was perhaps first explicitly reported by
Steward in 1926 [21]:

{ ‘. . . it is evident that the distance between successive dark points upon the
axis . . . tends to infinity as [the normalized radius of the obscuration] tends to
unity, as, indeed, is obvious from the consideration that in the limiting case the
aperture reduces to a circular rim.’ }

The propagational invariance of such a Bessel beam was mentioned by Sheppard and
Wilson in 1978: ‘propagates without change’ [2]. Durnin gave a scalar theory of Bessel
beams in 1987 [4], although an electromagnetic theory had in fact been presented much
earlier [22], and the BG beam had also been introduced [2]. The BG beam was rederived
by Gori et al. [3], and has the important advantage over the sLG beam modes that the
scaling of the Bessel function is continuously variable, facilitating fitting to experimental or
simulated data. Durnin et al. showed that any circumferential modulation of the annulus
gives a propagationally invariant (‘diffraction-free’ or ‘non-diffracting’) beam [23], this
following directly from the fact that the phase of all components of an angular spectrum
of plane waves with constant inclination to the axis changes uniformly upon propagation.
In the electromagnetic case, a narrow annular pupil illuminated by a radially polarized
wave gives rise to a compact Bessel beam with longitudinal electric field on the axis [24,25].
The propagation invariance of Bessel beams has been exploited in imaging, trapping and
manipulation, nonlinear optics, and laser processing and machining. Apart from using a
narrow annular pupil, which is of course very light inefficient, Bessel-like beams can be
generated using a deformable mirror, spatial light modulator, micromirror array, binary
pupil mask [26], hologram [27], by using an axicon and a lens (or second axicon) to form a
bright ring [28–30], or using a toroidal resonator [2].

HG/LG and BG beams are solutions of the paraxial wave equation, of the same form
as the Schrödinger equation, and similar also to the diffusion equation, and has been
investigated in depth in relation to quantum mechanics [31]. Other solutions give rise
to a family of beams given by Kummer’s confluent hypergeometric function 1F1 [32–34].
Some special cases of the confluent hypergeometric function are tabulated in Table 13.6
of Ref. [35]. These solutions are given by members of a Lie group, which render visible
important symmetry and transformation properties [12,36,37]. While these symmetries are
expected to break down for approximations to the beams, propagation of a beam and a
good approximation will be similar. Fractional differential operators have been applied to
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give a continuous variation in mode number for eHG and eLG beams [38,39]. Alternative
forms for confluent hypergeometric functions called Whittaker’s functions (Mκ,µ, Wκ,µ) can
be used to express sHG and sLG beams [40–42]. Whittaker and Watson describe in their
book how these functions have ‘greater appearance of symmetry in the formulae, together
with a simplicity in the equations giving various functions of Applied Mathematics’.

Bagini et al. generalized the Bessel–Gauss beam to include its dual (dBG), where
the near-field and far-field are interchanged [43]. Karimi introduced what he called a
modified LG beam, which is just the dual of eLG (which we denote as deLG) [33]. In
fact, the whole family of confluent hypergeometric beams given by 1F1 can be regarded
in terms of gHG, gLG functions where Hn, L(m)

n in general for non-integer n are Hermite
or Laguerre functions rather than polynomials [18]. The dual dgHG, dgLG, of gHG, gLG
beams, respectively, have also been discussed [18].

In this paper, we concentrate on the 3D case. An eLG beam can be approximated by a
BG beam, and vice-versa [13,44–46]. Here, we compare BG beams with the more general
case of gLG beams. We include the case when the azimuthal mode number m is high, so
that the radial mode number n cannot be assumed�m. Large azimuthal mode numbers
are of particular interest for optical communications using modal multiplexing [47], for
enhanced rotation detection of objects [48], in high-harmonic generation experiments [49],
and to test fundamental issues in quantum mechanics, such as the classical limit with high
quantum numbers [50]. On the other hand, it has recently been shown that there is a limit
to how large the azimuthal mode number of an ultrashort pulse can be [51], which places a
limit to information capacity in communications using modal multiplexing.

2. Asymptotic Expressions for Laguerre Polynomials

The Laguerre polynomials are polynomials of radial order n, and are oscillatory for
small real positive arguments and monotonically varying for large positive arguments. If
multipled by a Gaussian, the monotonic regime can become weak, the oscillatory part be-
coming similar to a Bessel function. We therefore start by reviewing asymptotic expressions
for Laguerre polynomials, especially those expressed in terms of a Bessel function.

The similarity between BG and eLG beams was mentioned by Saghafi and Sheppard [13].
This similarity carries through to the value of the beam propagation factor M2, introduced
by Siegman [52–54]. Saghafi and Sheppard suggested using Equation 22.15.2 of Ref. [35],
connecting the generalized Laguerre polynomial L(m)

n with the Bessel function Jm, for
large n,

L(m)
n

(
v2
)
≈ nm/2

vm Jm(2
√

nv). (1)

However, Porras et al. showed that this expression is valid only for |v|2 � 2 [44], and
derived a more accurate expression, assuming n� m,

L(m)
n

(
v2
)
≈ nm/2

vm Jm(2
√

nv) exp
(

v2

2

)
. (2)

Porras et al. explored the approximation of a BG beam as an eLG beam, including the
corresponding values of M2 [44].

Later, Mendoza et al. used an expression they attributed to Lebedev, valid for
n� 1, [45,55],

L(m)
n

(
v2
)
≈ Γ(n + m + 1)

Γ(n + 1)Nm/2
1

vm Jm(2
√

Nv) exp
(

v2

2

)
, (3)

where N = n + m/2 + 1/2, and Γ is a Gamma function. This expression is valid even if n is
not large compared with m, which is important for applications in optical communications,
for example, when m can be large [56]. It was also derived without the use of Stirling’s
approximation. Actually, this expression seems to be due to Szegö [57] p. 199, where he
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calls it an asymptotic formula of Hilb’s type, in analogy to Hilb’s expression for Legendre
polynomials. We therefore call it the LSH model.

Putting y = 2
√

Nv, and inverting the equation, we obtain

Jm(y) ≈
Γ(n + 1)Nm/2

Γ(n + m + 1)

(
y2

4N

)m/2

L(m)
n

(
y2

4N

)
exp

(
− y2

8N

)
, (4)

It is seen that for any fixed value of m, the Bessel function can be approximated by Laguerre
polynomials of different radial orders n, as n does not appear on the left hand side of
Equation (4). To our knowledge, this property has not been described previously. We
illustrate the behavior in Figure 1 for the case m = 0. It is seen that the Laguerre polynomials
approximate to the Bessel function better over a larger domain as the value of n increases.
It is seen that the zero and second order terms of the power series expansions for both sides
of Equation (4) are the same for all positive values of n (this is true even for any positive
m), and more terms match as the value of n increases. This approximation is also valid
for complex arguments. In Figure 2, we show contour plots of the modulus of J0 and L(0)

5 ,
illustrating the similarity over the domain shown.
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J
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Figure 1. Approximations to a Bessel function J0(y) given by Equation (4), in terms of Laguerre

polynomials L(0)
n with different values of the parameter n.

If Stirling’s approximation is used on Equation (3), we obtain the simple form given
by Tricomi in 1949 [58],

L(m)
n

(
v2
)
≈ Nm/2

vm Jm(2
√

Nv) exp
(

v2

2

)
. (5)

Equation (5) agrees well with Equation (3) even for small values of n for m = 0 or 1, but the
agreement becomes worse as the value of m increases. Comparison of Equations (1) and (2)
with Equation (5) shows that the Stirling approximation has been effectively used in
deriving the former two equations.

Mendoza et al. explored approximation of a sLG beam as a Bessel beam using the LSH
expression [45]. This relationship can be seen immediately from Equation (4). Chabou and
Bencheikh explored the connection between eLG and BG beams [46]. However, the LSH
expression is still valid only for |v|2 � 4N, or equivalently, |y| � 4N.
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Figure 2. Contour plots of (a) J0(yr + iyi), and (b) the right hand side of Equation (4), in terms of

L(0)
5 (yr + iyi).

A more accurate expression for the generalized Laguerre polynomial was given by
Erdélyi [59], which in our terminology is

L(m)
n

(
v2
)
≈ Γ(n + m + 1)

Γ(n + 1)Nm/2
1

vm

[
p(1− p2)1/2 + arcsin p

2p(1− p2)1/2

]1/2

× Jm

{
2N
[

p(1− p2)1/2 + arcsin p
]}

exp
(

v2

2

)
, (6)
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where p = v/(2
√

N) = y/4N < 1. It is seen that both the amplitude and period of the
Bessel function vary with v. For small v, the first square bracket becomes equal to unity,
and the second square bracket reduces to 2p, so that the expression reduces to

L(m)
n

(
4Np2

)
≈ Γ(n + m + 1)

Γ(n + 1)
Jm(4Np)
(2Np)m exp

(
2Np2

)
, (7)

equivalent to Equation (3).
Erdélyi also gave asymptotic expressions, for large n, for the two cases v < (2

√
n) and

v > (2
√

n) [59]. Interestingly, these expressions were in terms of Airy functions, suggesting
that there may be a connection with Airy beams, another important type of propagationally
invariant beam.

Figure 3 compares the Laguerre polynomials, plotted against p, with the approxima-
tions in Equations (1)–(5) (labelled S, P, M, T, E, respectively). For the values shown (n = 10
and 2, m = 0 and 2), Equation (6) (E) agrees very well with the Laguerre polynomial,
but tends to break down as p approaches 1. M and T agree with each other, but show
some departure from the true values for p greater than about 0.4, especially for the case
n = 2, m = 2. For n = 2, m = 2, there is a small difference between T and M. For p = 0, the
value of T shows a slight error, as a result of Stirling’s approximation. The value of S and P
at p = 0 is incorrect for non-zero values of m. Interestingly, S agrees better than P for small
values of p for the case n = 2, m = 0.

For |v| � 2
√

N, the monotonic regime, the highest power of v dominates (labeled pr,
for ‘power’ in Figure 5), and

L(m)
n

(
v2
)
≈ e±inπv2n

Γ(n + 1)
. (8)

This equation is valid for complex values of v2. The two values for ±inπ depend on the
sign of v.

Tricomi gave an asymptotic expression for v real and > 2
√

N, which can be written in
the form [58]:

L(m)
n

(
v2
)
≈ (−1)n f (n, m)

2(2p)m
(

2πNp
√

p2 − 1
)1/2

× exp
[

2N
(

p2 − p
√

p2 − 1 + arccosh p
)]

, (9)

where in Tricomi’s case, f = fT(n, m) = 1. The first two terms of the argument of the
exponential function tend to cancel for large values of p, so the exponential reduces to a
power law. By applying the asymptotic limit for a large argument of the Airy function
in Erdélyi’s expression for v > 2

√
N, we obtain the same expression as in Equation (9),

but with

fE(n, m) =

√
2πNNe−N

Γ(n + 1)Nm/2 . (10)

Using Stirling’s approximation, this can be written in terms of a Gamma function, Γ:

fG(n, m) =
Γ(N + 1)

Γ(n + 1)N(m+1)/2
, (11)

or approximately as

fA(n, m) =

(
n + m

4 + 3
4

N

)m+1
2

. (12)
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Figure 3. The Laguerre polynomials L(m)
n (v2) (L) for n = 10 (a,c) and n = 2 (b,d), for m = 0 (a,b)

and m = 2 (c,d), plotted against p = v/(2
√

N). Different approximations are also shown: Saghafi
(S) Equation (1); Porras et al. (P) Equation (2); Mendoza (or Lebedev–Szegö–Hilb) (M) Equation (3);
Tricomi (T, chained) Equation (5); Erdélyi (E, dashed) Equation (6).

All these expressions for f tend to unity for large n. Their behavior (cases T, E, G, A) is
illustrated in Figure 4. An example of comparisons for the different asymptotic expressions
for the Laguerre polynomials (T, E, G, A, and also pr) for the case n = 2, m = 0 is illustrated
in Figure 5. In general, we found from numerical investigation that Erdélyi’s expression
gives the best approximation. The power term, labeled pr, Equation (8), only becomes
accurate for large values of p, larger for higher values of n. For n = 10, m = 0, at p = 5
all the approximations except P are within 2% of the correct value, Erdélyi’s expression E
is within 0.1%, but the power term pr is only accurate to within 15%. Nevertheless, the
approximation pr is valid in the limit of large p, which is applicable to the angular spectrum
of eLG beams [44] or to deLG beams.
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0.4
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0.8
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n
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f(n,m)

Figure 4. The factor f (n, m) for different approximations to a Laguerre polynomial for z2 > 4N as a
function of n with m as parameter. For Tricomi’s case, fT , has a constant value of unity. For Erdélyi’s
case, fE: solid lines. The Gamma function expression, fG, is shown as dashed lines. The approximate
case, fA, is shown as chained lines.
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Figure 5. Comparison of the values of the Laguerre polynomial n = 2, m = 0 as a function of
p = v/2

√
N > 1, labeled L, with approximate expressions due to Tricomi (T), to Erdélyi (E), the

Gamma function form (G), the approximation (A), and the power term (pr). The insert shows an
enlarged view, illustrating that the Erdélyi expression is closest to the Laguerre polynomial.

An expression analogous to that of Porras et al. for Hermite polynomials, in the context
of eHG beams, has been presented in Ref. [18]. Lebedev obtained an asymptotic form valid
for both even and odd functions by using Stirling’s formula. This was used to investigate
approximation of sHG and eHG beam by cosine-Gauss (cG) beams [46,60]. Asymptotic
expressions for even and odd values of n, without using Stirling’s approximation, and
therefore valid over a larger range of values of n, were also given by Lebedev [55]. For
these, we have

H(e)
n (v) ≈ (−1)n/2 Γ(n + 1)

Γ( n
2 + 1)

cos
(√

2N′ v
)

exp
(

v2

2

)
, n even

H(o)
n (v) ≈ (−1)(n−1)/2 2Γ(n + 1)√

2n + 1 Γ( n+1
2 )

sin
(√

2N′ v
)

exp
(

v2

2

)
, n odd, (13)

where N′ = n + 1/2. More accurate expressions were given earlier by Szegö, where he
again calls them formulae of Hilb’s type [57], p. 200. Again, these solutions are valid only
for small v, specifically |v| �

√
2N′. These can be added in quadrature to produce complex

solutions, or proportions summed to give an analogy to Gutiérrez-Vega’s fractional Hermite
solutions [38].

For v �
√

2N′, in similarity with the Laguerre polynomials, we have a simple
power term,

Hn(v) ≈ (2v)n. (14)

Equations analogous to Equation (6) for Hermite polynomials for large, real v can be
developed from the expressions for Laguerre polynomials by taking m = ±1/2.

It should be noted that for the Hermite and Laguerre cases, the argument of the
trigonometrical or Bessel function depends on N′ or N, respectively. It is well known
that HG and LG functions are modes of a harmonic oscillator in 1D and 2D, so the 1/2
in Equations (3) and (13) can be interpreted as representing the zero-point energy. The
trigonometrical and Bessel solutions arise for a potential well, equivalent to slab and
circular waveguide modes, respectively. So these equations show that the scale of the
trigonometric or Bessel function in the solution varies according to the mode numbers, i.e.,
the potential well varies in width with energy. Further, these scalings are consistent with
the second-moment beam widths of sHG and sLG modes given by Carter, and by Phillips
and Andrews, respectively [61,62].
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3. Bessel-Gauss Beams and Laguerre-Gauss Beams

The gHG, gLG beams (in Cartesian coordinates x, z or cylindrical coordinates r, φ, z)
are given by [18]

gHG =
νn/2

µN′ Hn

[(
2
ν

)1/2 x
w0

]
exp

(
− x2

µw2
0

)
,

gLG =
νn+m/2

µ2N

(
2r2

νw2
0

)m/2

L(m)
n

(
2r2

νw2
0

)
exp

(
− r2

µw2
0
± imφ

)
, (15)

where µ = 1+ iZ, Z = z/z0, z0 = kw2
0/2, and ν = (1 + c) + 2icZ + (1− c)Z2 = µ[(1 + c)−

i(1− c)Z], and the topological charge m is positive. For gHG, Cartesian coordinates x, z
have been used, whereas for gLG, cylindrical coordinates r, φ, z have been used. The pa-
rameter c is in general complex, which allows for translating the beam axially so that the
waist does not coincide with z = 0. The parameter c has been chosen so that, for real c, the
dual of a beam is given by changing the sign of c, so the parameter c reflects an important
translational symmetry of the beams. Standard beams are given by c = 0, elegant beams
by c = 1 and the duals of elegant beams by c = −1. For |c| → ∞, the beam tends to a
Gaussian. If c = 0, it is seen that ν is real for all z, but for other values of c, the argument of
the Laguerre polynomial is in general complex. If the argument of the Hermite or Laguerre
polynomials tends to infinity, then, using Equations (8) and (14),

gHG =
1
µ

(
2
√

2x
µw0

)n

exp

(
− x2

µw2
0

)
,

gLG =
einπ

Γ(n + 1)
1
µ

(
2r2

µ2w2
0

)n+m/2

exp

(
− r2

µw2
0
± imφ

)
. (16)

Note that ν has canceled out these expressions, so they are independent of the value of c.
Further, for gLG we have taken the positive exponent. For HG, the intensity is a Gaussian
modified to give a dark center. There are even and odd solutions according to the value of
n. For LG, there is an annular vortex field. In particular, these expressions apply for the far
field of eLG or the near field of deLG. More generally, they apply for c ≈ 1, Z small, or for
c ≈ −1, Z large.

Either gHG or gLG can be written in terms of confluent hypergeometric functions. For
gLG we have

L(m)
n (v2) =

Γ(n + m + 1)
Γ(n + 1)Γ(m + 1) 1F1(−n; m + 1; v2)

=
Γ(n + m + 1)

Γ(n + 1)Γ(m + 1)
exp

(
v2/2

)
vm+1 M(n+m/2+1/2),m/2(v

2). (17)

Different approximations to the amplitude in the waist of sLG and eLG beams are
compared in Figures 6 and 7, respectively, plotted against p. In both cases, but especially
for eLG (and even more so as c increases further), the increase in the value of the Laguerre
polynomial with p is overcome by the decay of the Gaussian. A Gaussian is often assumed
to take approximately zero value for an argument greater than three, where its value is less
than 1.2× 10−4. According to this approximation, the intensity of the gLG beam drops to
zero at p = 3/(

√
4(1 + c)N), or 3/(2

√
N) for sLG, and 3/(2

√
2N) for eLG. Thus, for large

n, the form of asymptotic expression is only relevant for comparatively small values of p.
In summary, the approximation E, due to Erdélyi, Equation (6), is excellent even for n = 2,
and approximations M and T (Equations (5) and (9), respectively) are also good.
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Turning now to the cG beam, this is

cG =
A

µ′1/2 cos
(

bx
µ′w′0

)
exp

[
− x2

µ′w′20
+

(1− µ′)b2

4µ′

]
, (18)

where w′0, z′0, µ′ are the corresponding values of w0, z0, µ; b is a scaling parameter; and A is
the amplitude of the beam.

BG beams are given by [2,3,18]

BG =
A
µ′

Jm

(
br

µ′w′0

)
exp

[
− r2

µ′w′20
+

(1− µ′)b2

4µ′
± imφ

]
. (19)
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E
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Figure 6. The amplitude of the standard Laguerre0-Gauss beams (sLG) in the waist for n = 10 (a,c)
and 2 (b,d), for m = 0 (a,b) and 2 (c,d), plotted against p. Different approximations: Saghafi (labeled S)
Equation (1), Porras (P) Equation (2), Mendoza (M) Equation (3), Tricomi (T, chained) Equation (5),
Erdélyi (E, dashed) Equation (6), are also shown.

The dual of cG (dcG) is a hyperbolic cosine Gaussian (chG). The dual of BG is [18,33]

dBG =
A
µ′

[
Im

(
br

µ′w′0

)
exp

(
− br

µ′w′0

)]
exp

[
− 1

µ′

(
r

w′0
− b

2

)2
+

b2

4
± imφ

]
, (20)

where Im is a modified Bessel function, and the quantity in the first square brackets is
approximately constant (≈ (µ′w′0/2πbr)1/2) for large real arguments. The exponential
function then represents an annular beam, with r ≈ bw′0/2, giving

dBG ≈ A
(

1
πµ′b2

)1/2
exp

[
− 1

µ′

(
r

w′0
− b

2

)2
+

b2

4
± imφ

]
. (21)

The waist of dBG is a ring convolved with a two-dimensional Gaussian, equal to the
product of a modified Bessel function and a Gaussian, which thus approximates to an
annulus with a Gaussian cross-section. An approximation to the dual of a Bessel beam can
be efficiently generated experimentally using a combination of an axicon and a lens [29].
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Figure 7. The amplitude of the elegant Laguerre–Gauss beams (labeled eLG) in the waist for n = 10
(a,c) and 2 (b,d), for m = 0 (a,b) and 2 (c,d), plotted against p. Different approximations: Saghafi (S)
Equation (1), Porras (P) Equation (2), Mendoza (M) Equation (3), Tricomi (T, chained) Equation (5),
Erdélyi (E, dashed) Equation (6), are also shown.

4. Aproximating a Laguerre-Gauss Beam by a Bessel-Gauss Beam

We can now use the approximations for the Hermite or Laguerre polynomials for large
n, given in Equations (3) and (13), and match the arguments of the factors with those for
cG or BG. We start with the HG case. For the Gaussian factor for gHG, we obtain

ν− µ

ν
=

c + i(2c− 1)Z + (1− c)Z2

(1 + c) + 2icZ + (1− c)Z2 =
z0 + iz
z′0 + iz

. (22)

If c = 1, corresponding to eHG, this equation is satisfied for all z if z′0 = 2z0, w′0 =
√

2w0.
Note that w′0 6= w0. Taking c = 1 is seen to match the waist and far-field (and all intermedi-
ate regions) simultaneously [44].

For the cosine factors of cG and gHG,

b2 = 4N′
µ′2z′0

νz
, (23)

giving b = 2
√

N′ = (4n + 2)1/2 for c = 1, agreeing with Ref. [46]. The importance for
optics of these results is that large values of b2, corresponding to large values of n, describe
an approximately propagationally invariant beam.

For other values of c, the Gaussian factor does not match for all z, but we can choose
to match, for example in the waist, giving for the gHG case

cz′0 = (1 + c)z0, cb2 = 4N′ = 4n + 2. (24)

Then the value of A is

A = (1 + c)n/2 Γ(n + 1)
Γ(n/2 + 1)

, (25)
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or for the special case of eHG, c = 1, A = 2n/2Γ(n + 1)/Γ(n/2 + 1). To show that this
value of A is valid for all z for c = 1 is a little more difficult, but this can be accomplished
using the asymptotic expansions, valid for large n,

exp
[(

n +
1
2

)(
1− 1

µ′

)]
≈ µ′(n+1/2),

µ′(n+1) ≈ µ(n+1)/2. (26)

For deHG, c = −1, then b2 is negative, corresponding to a cosh-Gaussian beam (chG),
which has an annular form in the waist. In this case, the asymptotic form for large z,
Equation (14), is appropriate.

An advantage of considering the generalized beams, is that b is in general not an
integer, but for traditional HG modes n is an integer, so choosing c to be close to 1 allows a
traditional gHG beam to be fitted to an arbitrary cG beam [18]. If we match to a cG beam
with large w′0, this corresponds to small c, so that 4N′z′0 ≈ b2z0, i.e., a high order sHG beam
is an approximation to a cosine beam [45,60], for x �

√
2N′. A truncated cosine beam

is therefore an even better approximation to a sHG beam [45,60], which exhibits, over a
limited range, propagational invariance and beam regeneration in a scattering medium
such as atmospheric turbulence.

For the gLG case, the arguments of the Gaussians are the same as for gHG, so eLG
matches BG for all z, with z′0 = 2z0, w′20 = 2w2

0. For gLG, matching at the waist,

cz′0 = (1 + c)z0, cb2 = 8N = 8n + 4m + 4. (27)

The value of A is

A = (1 + c)n+m/2 Γ(n + m + 1)
Γ(n + 1)Nm/2 . (28)

Explicitly, in the waist,

Jm(bv′) exp
(
−v′2

)
e±imφ ≈ Γ(n + 1)Nm/2

Γ(n + m + 1)

×
(

2v′2

c

)m/2

L(m)
n

(
2v′2

c

)
exp

[
− (1 + c)v′2

c

]
e±imφ, (29)

where v′ = r/w′0.
For the special case eLG, z′0 = 2z0, and A = 2n+m/2Γ(n + m + 1)/[Γ(n + 1)Nm/2],

which can be shown to be valid for all z for large n, using the asymptotic expansions

exp
[
(2n + m + 1)

(
1− 1

µ′

)]
≈ µ′(2n+m+1), µ′(2n+m+2) ≈ µ(n+m/2+1). (30)

Porras et al. found that, according to their asymptotic expression, A = nm/2 [44]. The
ratio of their value to that based on the LSH model is shown in Figure 8a. The agreement
is exact for m = 0, but becomes worse as m is increased. This behavior occurs because
Stirling’s approximation was effectively assumed. We also have, for the LSH model applied
to eLG, b = 2(2n + m + 1)1/2, agreeing with Ref. [46]. As for the HG case, large b2 and
n corresponds to an approximately propagationally invariant beam. The result for b of
Porras et al. is slightly different [44], as they assume n � m and neglect the zero-point
energy. The ratio of the corresponding values of b,

√
n/N = n1/2/[n + (m + 1)/2]1/2, (i.e.,

the ratio of the inverse widths of the Bessel function) is shown in Figure 8b. For m = 0, the
agreement is within 10% for n ≥ 3, i.e., b ≥ 5.3, and within 1% for n ≥ 25. For other values
of m, the agreement is much worse: even for m = 2, the values agree to within 10% only
for n ≥ 7. Figure 8b also shows the ratio of the widths for m = n. Now, the ratio saturates
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to a constant value for large n. The values for large n do not agree to within 10% unless
m ≤ n/9.

In analogy to the result for 2D [45,60], a high order sLG beam is an approximation to a
Bessel beam, for r/w0 � 2

√
2N. A truncated Bessel beam is therefore a good approximation

to a sLG beam, which exhibits, over a limited range, propagational invariance and beam
regeneration in a scattering medium. For c = 1, the similarity between BG and eLG in this
case becomes stronger, and as c becomes even larger, the similarity between BG and gLG
continues to increase, until as c → ∞, they both tend to Gaussians. For c = −1, dBG is a
good approximation to deLG.
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n
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ratio

m=n
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ratio

(b)

(a)

Figure 8. The variations in the ratios for the model of Porras et al. in Ref. [44] to that of the LSH
model for (a) the amplitude A, given by nm/2Γ[n + 1](n + m/2 + 1/2)m/2/Γ[n + m + 1], and (b) b
for the Bessel function corresponding to an eLG beam, equal to

√
n/N = n1/2/(n + m/2 + 1/2)1/2,

as functions of n, with m as parameter. The variation for m = n is shown as a dotted line in (b).

5. Beam Widths and Beam Propagation Factors

Porras et al. derived the correct expression for the second-moment widths of eLG in
the near- and far-fields, and also the corresponding values of M2 [44]. They are

σ0 =
w0√

2

(
2N − 1 + m2

2N − 1

)1/2

, σ∞ =

√
N

πw0
,

M2
eLG =

[
2N
(

2N − 1 + m2

2N − 1

)]1/2

. (31)
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Borghi and Santarsiero derived the near-field and far-field widths, and also M2, for
BG beams [63]. Using the value for b equal to 2

√
2N, we obtain

σ0 =
w0√

2

{
1 + m− 2N

[
1− Im+1(2N)

Im(2N)

]}1/2

,

σ∞ =
w0√

2

{
1 + m + 2N

[
1 +

Im+1(2N)

Im(2N)

]}1/2

,

M2
BG =

{[
1 + m + 2N

Im+1(2N)

Im(2N)

]2

− 4N2

}1/2

. (32)

The corresponding behaviors of M2 are shown in Figure 9. The agreement between
the values of M2 for eLG and BG are good, even for small values of n, such as n = 2. We
also show the value of M2 for BG as predicted by Porras et al., which does not agree so
well, especially for larger values of m.

0 2 4 6 8 10

2

4

6

8

n

M2

m=0

m=2

m=5

Figure 9. The value of M2 for eLG beams, as a function of n with m as parameter (solid lines). The
predictions of Equation (32) (dashed lines) and the Porras et al. model [44] (chained lines) for BG are
also shown.

But M2 does not tell the whole story, so in Figure 10 we show the second-moment
width in the waist, normalized by w0. Again, the present approximation for BG in
Equation (34) agrees very well, even for small n, but the aproximation of Porras et al.
is much worse for higher values of m.

Often, we are interested in the opposite case of approximating a Bessel–Gauss beam
by an eLG beam. In Figure 11, we show the second-moment width of Bessel–Gauss beams
as a function of the parameter b. The value b = 0 corresponds to a Gaussian beam. The
case of large b tends towards a Bessel beam, but the corresponding second-moment width
tends to a value fixed by the width of the underlying Gaussian, which is a constant. This
behavior occurs because the second-moment width of a pure Bessel beam is infinite, caused
by the strong outer rings.

The most important property of a Bessel beam is that its central structure is propaga-
tionally invariant, so perhaps a more useful measurement of width for m = 0 is given by
the width where the central lobe intensity falls to one half, the half-width at half maximum
(HWHM), w1/2. The normalized HWHM is shown in Figure 12. Again we show the cases
of BG, and the eLG approximations of the present model and that of Porras et al. [44].
The HWHM tends to zero as b becomes large. The present approximate form of eLG,
based on LSH, agrees well even for b = 2, corresponding to n = 0. In the plot, we do not
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assume that n is an integer, so that the Laguerre function does not necessarily degenerate
to a polynomial.
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0.5

1.0

1.5

2.0

2.5

σ0
w0

n

m=0

m=2

m=5

Figure 10. The normalized width σ0/w0 in the waist for eLG beams (solid lines), as a function of n
with m as a parameter. The predictions of Equation (32) (dashed lines) and the Porras et al. model
of [44] (chained lines) for BG are also shown.
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w’0
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b

Figure 11. The normalized second-moment width σ0/w′0 in the waist for BG beams (solid lines), as a
function of b with m as a parameter. The predictions of Equation (32) (dashed lines) and the Porras et
al. model of [44] (chained lines) for eLG are also shown.

If we want to use a traditional Laguerre polynomial, we can take n = ni, an integer,
so that between n = ni − 1/2 and ni + 1/2 (corresponding, for m = 0, to b2 = 8ni and
b2 = 8(ni + 1), respectively), c is taken as

c =
8(ni + 1/2)

b2 . (33)

The resultant HWHM then agrees with that of BG within 1% for any value of b. The
agreement is so good that the corresponding plot is indistinguishable from that for BG in
Figure 12.
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Figure 12. The normalized half-width w1/2/w′0 in the waist for BG beams (solid line), as a function of
b for m = 0. The predictions of Equation (32) (dashed line) and the Porras et al. model [44] (chained
line) for eLG are also shown. Fitting a traditional Laguerre polynomial (integral n) to BG using
Equation (33). gives a curve indistinguishable from that for BG.

6. Variation with the Azimuthal Mode Number

So far, we have restricted our study to moderately small values of the azimuthal orders,
m. While these values are useful for investigating nonparaxial focusing effects [64], for
example, there is also an interest in large values of m, for detection of spinning objects [48],
in high-harmonic generation [49], for multiplexing in communication systems [47], and
in quantum optics [50,65] and quantum cryptography. Although Equation (3) does not
assume that n � m like Equation (2), as the topological charge m increases, then the
peak in amplitude in the waist of eLG moves to higher values of p, and we can see from
Equation (6), that the LSH model then tends to break down. We find that the approximation
of LSH for eLG, although it predicts approximately the correct shape of the amplitude
variation, does not give good agreement for the position, width or height of the peak. For
large n, the peak of the envelope for gLG occurs at

v2
max =

m
1 + c

; p2
max =

m
4N(1 + c)

. (34)

Assuming that the peak is narrow enough that the second square bracket in Equation (6)
is constant and equal to

d2 =
1
2

[
(1− p2

max)
1/2 +

arcsin pmax

pmax

]
, (35)

the width of the Bessel function is changed relative to the Gaussian. Then, the rescaled
Bessel function width is bd = db, so b2

d = d2b2 = 8d2N. We show the value of this scaling
factor d as solid lines in Figure 13, for values of n and m in the domain 0 ≤ n, m ≤ 100. The
value of d is quite close to unity, but has a significant effect on the position of the peak in
eLG. For n = m, d is constant (≈0.9929) over a wide range of values of m, n, as shown by
the chained lines in Figure 13.
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Figure 13. The scaling factor d for b, (a) as a function of n with m as parameter, and (b) as a function
of m with n as parameter. Solid lines correspond to the rescaled case (R), according to Equation (34),
and dashed lines to the optimized case (O).

If m is not too large, we find that the approximations d ≈ 1− m/96N, b2 ≈ 8N −
m/6 = 8(n + 23m/48 + 1/2) hold. For n = m, then as m, n increase, this approximation
predicts that d → 143/144 = 0.9931, b2 → 11.833m, as compared with b2 → 12m for the
approximation of Mendoza, and b2 → 8m for the approximation of Porras.

For n < m, we have found empirically that this rescaling still improves the approxi-
mation to the waist of a BG beam, but there is a reduced, optimum value of d, as shown by
dashed lines in Figure 13. As examples, we show in Figure 14 the amplitude of eLG beams
for m = 100 with (a) n = 100 and (b) n = 10. Different approximations are also shown
after equalizing the peak amplitudes, as the absolute values are not correctly predicted.
For n = 100, the approximation of Mendoza based on LSH (labeled M) is of the correct
shape, but shifted towards smaller values of p and slightly narrower. The rescaled version,
labeled R, based on Equation (34), is very close to the correct form and position. The
values of d are 1 (M), 0.9993 (R), (n/N)1/4 = 0.903 (P). The corresponding values of b are
34.70 (M), 34.45 (R) and 20 (P). For n = 10, the rescaled approximation is better than the
approximation of Mendoza, but the numerically optimized value of d gives a better fit. The
values of d are 1 (M), 0.982 (R), 0.954 (O—optimized), 0.638 (P). The corresponding values
of b are 22 (M), 21.61 (R), 20.99 (O) and 8.94 (P). For this case, the sidelobes are very weak,
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so the beam is not propagationally invariant, as expected from the comparatively small
value of n.

0.05 0.10 0.15 0.20 0.25
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0.1 0.2 0.3 0.4 0.5 0.6 0.7

P

Figure 14. The amplitude in eLG beams (L) for m = 100, with (a) n = 100, (b) n = 10, solid lines.
The approximations of Porras (P, double-chained), Mendoza (M, chained), rescaled (R, dashed), and
optimized (O, dotted) are also shown.

7. Expansion in Laguerre-Gauss Modes

The Laguerre polynomials for fixed m are orthogonal with a Gaussian weighting. In
fact, the sLG modes are a complete set that can be used to expand a BG beam. Indeed, this
was the way the formula for propagation of a BG beam was calculated in Ref. [2].

Here, we generalize the result in Ref. [2], which was for m = 0, to arbitrary, integral
values of m. Equation 22.9.16 of [35] gives an expansion that can be written in the form

Jm(bv′) =
∞

∑
n′=0

1
Γ(n′ + m + 1)

(
b2v′2

4v2

)n′+m/2

exp
(
− b2v′2

4v2

)[
vmL(m)

n′ (v2)
]
, (36)

where v′ = r/w′0, and we have summed over orders n′, to distinguish from n = b2/8−
m/2− 1/2. Note that the summation includes values of n′ � m, whereas Yu et al. used
only n′ ≥ m in their expansion [66]. Equation (7) is valid for different scalings of the
Laguerre polynomial relative to the Bessel function. Even though the gLG beams are an
orthogonal set only for sLG (c = 0), for expansion of the waist of a BG beam in terms
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of gLG beams, each side must be multiplied by the same Gaussian, which requires that
v′2 = (1 + c)v2/2. Then, from Equation (16), we have for a BG beam,

Jm(bv′) exp(−v′2)eimφ = exp
[
− b2(1 + c)

8

]
×

∞

∑
n′=0

1
Γ(n′ + m + 1)

(
b2

8

)n′+m/2

gLGn′m

(
2v′2

1 + c

)
. (37)

This gives an expansion for a BG beam in terms of gLG components for a constant value of
c. Interestingly, the value of c does not affect the relative strengths of the gLG components,
which are the same as for a Poisson distribution with parameter b2/8 and index n′ + m.
Therefore, the strength of the modes for a given m exhibits a peak in the mode number n′,
with an expected value of n′ + m = b2/8. As b increases, the strength of the modes tends
towards a normal distribution with a coefficient of variation that tends to zero.

8. Discussion

We have compared the performance of different asymptotic expressions for Laguerre
polynomials in approximating generalized Laguerre–Gauss beams by Bessel–Gauss beams,
and vice versa. The approximation using the Lebedev–Szegö–Hilb expression, as used by
Mendoza-Hernandez et al. and Chabou and Bencheikh [45,46], is good for all propagation
distances, even for low radial orders n, for elegant Laguerre–Gauss beams (c = 1). An
arbitrary Bessel–Gauss beam requires a non-integral order n elegant Laguerre–Gauss beam
to fit, but for low orders, generalized beams of integer order fit better near the waist. If the
value of c is further increased, the fit between gLG and BG is even better than for eLG, but
the beams tend to lose their propagational invariance property.

However, the Lebedev–Szegö–Hilb approximation tends to become inaccurate for
large values of topological charge, whilst keeping n constant. We have shown that, for
n ≥ m, the agreement becomes better after rescaling the argument of the Bessel function
according to a function of the mode numbers n, m, although the absolute value is no longer
correctly predicted. If n < m, the approximation can be further improved by numerically
optimizing the rescaling factor.

Analogous results for Hermite polynomials, and their application to Hermite–Gauss
and cosine-Gauss beams has also been presented.
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deHG dual of elegant Hermite–Gauss
deLG dual of elegant Laguerre–Gauss
dgHG dual of generalized Hermite–Gauss
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dgLG dual of generalized Laguerre–Gauss
eHG elegant Hermite–Gauss
eLG elegant Laguerre–Gauss
E Erdélyi
gHG generalized Hermite–Gauss
gLG generalized Laguerre–Gauss
HWHM Half-width at half-maximum
HG Hermite-Gauss
LG Laguerre–Gauss
LSH Lebedev–Szegö–Hilb
M Mendoza
pr power
P Porras
sHG standard Hermite–Gauss
sLG standard Laguerre–Gauss
S Saghafi
T Tricomi
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