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Abstract: This article proposes an improved wavelet threshold denoising for laser self-mixing inter-
ference signals. The improved wavelet threshold function exhibits smoothness and continuity near
the threshold. By replacing hard or soft wavelet threshold with the improved wavelet threshold, it
can eliminate the generation of fake self-mixing interference peaks due to local oscillation induced by
hard wavelet threshold, as well as the loss of self-mixing interference peaks due to over-smoothness
induced by the soft wavelet threshold. Compared with hard and soft wavelet threshold denoising,
theoretical simulations and experimental results demonstrate that the displacement of vibrations are
well reconstructed based on the improved wavelet threshold denoising.

Keywords: self-mixing interference; wavelet threshold denoising; displacement reconstruction

1. Introduction

In recent years, the application of laser self-mixing interferometry in micro-displacement
measurement has gained significant attention [1–5]. Laser self-mixing interferometry
offers several advantages over traditional micro-displacement measurement techniques,
including no optical interferometer external to the source, no external photodetector, non-
contact operation, high sensitivity, high precision, environmental insensitivity, and high
resolution [6–11]. As a result, laser self-mixing interferometry has emerged as a prominent
research area in micro-displacement measurement [8–10]. For self-mixing in a diode
laser, the small backreflected field phasor Er re-enters the laser cavity and it adds to
the lasing field phasor E0. The phase of Er is ϕ(t) = 2ks(t), where k = 2π/λ and s(t)
is the distance of the remote target. Hence, the lasing field amplitude and frequency
are modulated by the term ϕ(t) = 2ks(t) [11]. Power fluctuations ∆P in the steady-state
operation of the LD in the weak feedback regime follow the equation: ∆P~cos(ϕ(t)) [6].
In practical measurement scenarios, the presence of various sources of noise, such as
ambient temperature, fluctuation in the LD driving source and other disturbances, can be
introduced into self-mixing interference (SMI) signals [12,13]. When the noise exists in the
SMI signals, it will introduce random disturbance on the phase leading to the instability
and inaccuracy of the displacement reconstruction. Yoshino et al., have used complex
electrical feedback techniques to eliminate the external disturbances to measure vibration
or displacement of the object [14]. Currently, several algorithms are used for denoising
in SMI signals, including FFT phase denoising [15,16], variational mode decomposition
(VMD) denoising [17,18], and wavelet threshold denoising [19].

The wavelet threshold denoising algorithm offers the advantage of retaining signal
characteristics [19]. The wavelet transform-based denoising method, which can effectively
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eliminate noise while keeping an SMI waveform less changed [13]. In this algorithm, the
signals are decomposed into wavelet coefficients at different scales through multiscale anal-
ysis and subsequently performed denoising based on the set of the threshold function [20].
Generally, the set of the soft and hard thresholds have a significant impact on the wavelet
denoising results [21,22]. Zhao Y. et al., used a continuous wavelet transform to remove
noise from SMI signals [23]. Bernal O. D. et al., used two different mother wavelets to
distinguish between the SM mode and displacement direction [24]. However, the wavelet
denoising algorithm using soft and hard threshold functions encounters challenges in
achieving a high performance of SMI displacement reconstruction, in which the loss of sig-
nals and the generation of fake signals happens by using soft and hard threshold functions,
respectively [25–27].

This article proposes an improved wavelet threshold denoising for laser self-mixing
interference signals. The improved wavelet threshold function exhibits smoothness and
continuity near the threshold. By replacing hard or soft wavelet threshold with the im-
proved wavelet threshold, it can eliminate the generation of fake self-mixing interference
peaks due to local oscillation induced by the hard wavelet threshold, as well as the loss of
self-mixing interference peaks due to over-smoothness induced by the soft wavelet thresh-
old. Compared with hard and soft wavelet threshold denoising, theoretical simulations and
experimental results demonstrate that the displacement of vibrations are well reconstructed
based on the improved wavelet threshold denoising.

2. Improved Wavelet Threshold Denoising Function

In the wavelet threshold denoising algorithm, the threshold function is utilized to
perform threshold denoising on the detail component coefficients obtained from the n-layer
wavelet decomposition of the signal, yielding estimated wavelet coefficients [28].

Based on the root-mean-square interpolation threshold function [29], an improved
wavelet threshold function in wavelet denoising is introduced here. The improved thresh-
old function is described as follows:

ω̂j,k =


sgn(ωj,k)

√
µω2

j,k + (1− µ)(|ωj,k| − λ)2
∣∣∣ωj,k

∣∣∣> λ

√
µωj,ke

1
λ2−

1
ω2

j,k
∣∣∣ωj,k

∣∣∣ < λ
(1)

where ωj,k and ω̂j,k correspond to the wavelet coefficients before and after quantization
processing, respectively; j is the scale parameter, and k is the translation parameter; sgn(∗)
is symbolic piecewise function; the wavelet threshold function can be adjusted by changing
the parameter µ(µ ∈ [0, 1]); and the threshold λ is determined by

λ = σ
√

2 ln N (2)

where σ is the noise standard deviation, and N is the length of the signal.
Figure 1 shows the profiles of different wavelet threshold functions with different µ

in Equation (1). The value of threshold λ here is calculated as 1.5 based on the simulated
SMI signals shown in Part 3 according to Equation (2). When µ is 0, Equation (1) is reduced
to soft wavelet threshold function represented by dotted line in Figure 1; when µ is 1,
Equation (1) is reduced to hard wavelet threshold function represented by dash dotted
line in Figure 1. For the absolute value of ωj,k higher than the threshold λ in Figure 1, the
profile of the root-mean-square interpolation threshold function and improved wavelet
threshold function are overlapped, which can overcome the over-smoothness in wavelet
threshold denoising with soft wavelet threshold function. For the absolute value of ωj,k
lower than the threshold λ in Figure 1, the profile of the improved threshold function
exhibits continuity near the threshold, which can overcome local oscillation in wavelet
threshold denoising with the hard threshold and root-mean-square interpolation threshold.
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Figure 1. Different wavelet threshold denoising function (dotted line: soft wavelet threshold; dash
dotted line: hard wavelet threshold; double line: root mean square interpolation threshold; and solid
line: improved wavelet threshold.).

3. Theoretical Simulation and Analysis
3.1. Simulation of Laser SMI Signals

Assume that the object vibrates near the zero point with sinusoidal oscillation, the
SMI signals for the object vibration can be simulated by the method in [30]. The parameters
used in numerical simulation are shown in Table 1.

Table 1. Parameters used in numerical simulation.

Parameter Description Unit Value

Lext Distance from the laser to the object mm 2

L Cavity length of diode laser mm 0.5

α Linewidth enhancement factor 4.15

C Feedback parameter 0.8

λ Wavelength of the laser diode nm 650

A Vibration amplitude of external object µm 2

t Simulation time s 0.2

f External object vibration frequency Hz 10

Figure 2a shows the result of the simulation profile of object vibration; Figure 2b shows
the result of the simulation profile of SMI signals. In Figure 2b, the curve is divided by
dashed lines with the time interval 0.05 s. The hollow stars and solid stars represent the
peak and valley points in SMI simulation signal, respectively. The numbers of peak and
valley values in each divided part are both 12. The random noise with 10 dB is added to
SMI signals and the result is shown in Figure 2c, which is used as the wavelet denoising
target with different wavelet threshold functions shown in Figure 1.
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Figure 2. (a) Simulated displacement of object vibration; (b) normalized intensity of simulated SMI
(peak point marked by hollow star; valley point marked by solid star); and (c) normalized intensity
of simulated SMI with 10 dB noise.

3.2. Simulation of Different Wavelet Threshold Denoising

The SMI signals are decomposed into the target layers by the wavelet threshold
de-noising algorithm, in which the low-frequency approximate coefficients and the high-
frequency detail coefficients are obtained. The coefficients component of wavelet de-
composition for the SMI signals in Figure 2c are shown in Figure 3. The low-frequency
approximate coefficients shown in Figure 3a keep the characteristics of the SMI signal. The
wavelet threshold function shown in Figure 1 are used to filter the high-frequency detail
coefficients shown in Figure 3b–g.
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Consequently, the low frequency approximate component and filtered high frequency
detail component are used to obtain the reconstructed SMI signal by inverse wavelet
transform, the results of reconstructed SMI signal are shown in Figure 4.
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As can be seen in Figure 4, Figure 4a shows the reconstructed SMI signals using soft
wavelet threshold denoising; Figure 4b shows the reconstructed SMI signals using hard
wavelet threshold denoising; and Figure 4c shows the reconstructed SMI signals using
improved wavelet threshold denoising. The hollow stars represent the peak points of the
re-constructed SMI signals; the solid stars represent the valley points of the reconstructed
SMI signals. The number of peak and valley points in the reconstructed SMI signals are
also shown in Figure 4. The number of peak and valley points near and at phase jump
points of the SMI signal are excluded.

Compared with simulated SMI signals in Figure 2b, loss of SMI valley occurs near
0.16 s using soft wavelet threshold function, which can be seen in Figure 4a; fake SMI peaks
happen using the hard wavelet threshold function, which can been seen in Figure 4b. The
loss of the SMI valley and generation of fake SMI peak directly influence the displacement
reconstructed accuracy. Based on the improved wavelet threshold function in SMI signals
denoising shown in Figure 4c, the number of peaks and valleys in SMI signals located
within each phase jump point is 12, which is the same as that shown in Figure 2b.

3.3. Comparison of Displacement Reconstruction for the Simulated SMI

The displacement reconstruction is conducted by the phase unwrapping algorithm for
the SMI signals. Figure 5 illustrates the comparison between the simulated object vibration
signal and the displacement reconstruction from filtered SMI signals by different wavelet
threshold functions for denoising shown in Figure 4.

It can be seen from Figure 5a that the curve of the reconstructed displacement by soft
wavelet threshold denoising deviates from simulated object vibration signal after 0.15 s,
in which the maximum deviation of the reconstructed displacement is 18.26%. This is
attributed to the over smoothness and induces the loss of valleys in SMI signals.

As is shown in Figure 5b, great deviations happen for the phase jump points at 0.05 s
and 0.15 s, and the maximum reconstruction displacement deviation is 20.94%. This is
attributed to the local oscillation phenomenon by using hard wavelet threshold, in which
fake SMI peaks are induced in the denoised SMI signal.
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In contrast, Figure 5c illustrates that the curve of the reconstructed displacement using
de-noised SMI by improved wavelet threshold are consistent with that of the simulated
object vibration. The maximum displacement deviation in vibration reconstruction is
only 1.07%.

4. Experiment of Improved Wavelet Threshold Denoising in SMI Signals
4.1. Laser SMI Experimental Setup and Results

The laser self-mixing interference experimental system consists of three modules:
simulated vibration source, beam transmission, and data acquisition. A semiconductor
laser with a wavelength of 635 nm is selected as the light source. The emitted light is
reflected by piezoelectric ceramics (PZT). A piezoelectric controller (ThorlabsKPZ101) is
used to drive the PZT to generate micro-displacement Lext. The error resulted from the
non-linear reaction of PZT and surrounding mechanical disturbance can be ignored [31].
The driving current of the laser diode controller (ThorlabsLDC205C) was used to set the
working current of the semiconductor laser, and the mechanical translation platform was
used to adjust the length of the external cavity. The SMI signal is converted and amplified
by the current–voltage circuit, and the data acquisition card (NIUSB-6341) is used for data
acquisition, and the SMI signal waveform is displayed on the computer in real time. The
details of the experimental setup are given in reference [6]. In this experiment, the external
cavity length is 33.9 mm, the modulation frequency is 10 Hz, and the modulation amplitude
is 2 V. The power of the diode laser in operation is about 3 mW. The bandwidth and noise of
the detection chain are 1.2 MHz and 135 µV, respectively. The amplitude of displacement of
the PZT mirror is about 5.5 µm. The SNR of the detected signal after SMI is 100:1. And the
PZT is driven to generate the sinusoidal motion. The vibrating back-scattering light from
the PZT mirror can influence the SMI signals. In the process of the experiment, the effect of
the vibrating back-scattering light on the SMI signals can be largely eliminated by adjusting
the external cavity to decrease the scattering light to couple into the diode laser. It can
make sure that the paraxial light beam goes back into diode laser. The experimental results
of SMI signals are shown in Figure 6. The noises in SMI signals shown, e.g., in Figure 6b
originated from electrical noise induced by the voltage fluctuation of the data acquisition
card and the optical noise induced by the fluctuation of the laser output light power.
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4.2. Denoising for SMI Based on Wavelet Threshold Function

The wavelet threshold function shown in Figure 7 are used in SMI signal denoising, in
which the threshold λ is calculated as 0.16 here according to Equation (2) and µ is set as
0.35 for the experimental SMI signals shown in Figure 6b.
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The experimental SMI signals are decomposed by the wavelet, which are shown in
Figure 8. Figure 8a shows the low-frequency approximate coefficient of the SMI signal, and
Figure 8b–g show the high-frequency detail coefficients. The profile of the low-frequency
approximate coefficients keeps the characteristics of the SMI signal. The high-frequency
detail component of the SMI noisy signal is filtered by the wavelet threshold function shown
in Figure 7. Consequently, the filtered high-frequency detail component and low-frequency
approximate component are used to obtain the reconstructed SMI signal by inverse wavelet
transformation; the results of reconstructed SMI signal are shown in Figure 9.
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Figure 9 shows the denoising results of the experimental SMI signals shown in Figure 6
using the different wavelet threshold denoising functions shown in Figure 7. Figure 9a
shows the reconstructed SMI signals using soft wavelet threshold denoising; Figure 9b
shows the reconstructed SMI signals using hard wavelet threshold denoising; and Figure 9c
shows the reconstructed SMI signals using improved wavelet threshold denoising.

As can be seen from Figure 9a, the reconstructed profile for the denoised experimental
SMI signals is distorted from the experimental SMI signals shown in Figure 6, which is
attributed to the excessive smoothing with wavelet soft threshold denoising. In Figure 9b,
the generation of the fake SMI peak or valley happens, which is attributed to local oscillation
induced by the discontinuity with the wavelet hard threshold denoising function.
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4.3. Comparison of Displacement Reconstruction for Experimental SMI

The displacement reconstruction is conducted by the phase unwrapping algorithm
for the SMI signals shown in Figure 9. Figure 10 illustrates the comparison between
the normalized driving voltage on PZT (represented by the solid line) and the normal-
ized reconstruction displacement from experimental SMI signals or filtered experimental
SMI signals.
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Figure 10. Comparison between the normalized driving voltage on PZT (represented by solid line)
and the normalized reconstruction displacement from different SMI signals. (a) Experimental SMI
signals (represented by solid circle); (b) filtered experimental SMI signals by soft wavelet threshold
denoising (represented by solid square); (c) filtered experimental SMI signals by hard wavelet
threshold denoising (represented by hollow square); and (d) filtered experimental SMI signals by
improved wavelet threshold denoising (represented by solid triangle).

The total measurement time needed to interrogate one cycle deformation in Figure 10 is
about 4 s. The displacement interrogation mainly contains two processes: (1) the reconstruc-
tion of the SMI signal by inverse wavelet transform; and (2) displacement reconstruction by
phase unwrapping algorithm. For the experimental SMI signals, the results of displacement
interrogation based on above two processes are nearly the same.

From Figure 10a, the normalized displacement profile is reconstructed from the ex-
perimental SMI signals, which is deviated from the profile of the normalized PZT driving
voltage. These deviations are attributed to the influence of SMI noise in the process of dis-
placement reconstruction by the phase unwrapping algorithm, which affects the accuracy
and stability of the reconstruction.

The profile of the normalized displacement in Figure 10b–d is reconstructed from
the experimental filtered SMI signals, which are obtained based on soft wavelet threshold
denoising, hard wavelet threshold denoising, and improved wavelet threshold denoising.
In Figure 10b, the curve of the displacement reconstruction near 0.15 s is obviously deviated
from the profile of the normalized PZT driving voltage, in which the maximum deviation
between the two curves is 4.72%. In Figure 10c, the curve of displacement reconstruction
near 0.05 s and 0.19 s are obviously deviated from the profile of the normalized PZT
driving voltage, in which the maximum deviation between the two curves is 9.78%. In
Figure 10d, the curve of the displacement reconstruction highly overlaps with the profile of
the normalized PZT driving voltage.

It demonstrates that the improved wavelet threshold denoising function can eliminate
the generation of fake self-mixing interference signals due to local oscillation caused by
hard wavelet thresholds, as well as the loss of self-mixing interference signals due to
over-smoothness caused by the soft threshold.
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5. Conclusions

This article proposes an improved wavelet threshold denoising for laser self-mixing
interference signals. The improved wavelet threshold function exhibits smoothness and
continuity near the threshold. By replacing hard or soft wavelet threshold with the im-
proved wavelet threshold, it can eliminate the generation of fake self-mixing interference
peaks due to local oscillation induced by the hard wavelet threshold, as well as the loss
of self-mixing interference peaks due to over-smoothness induced by the soft wavelet
threshold. The simulation illustrates that the maximum deviation of the reconstructed dis-
placement is 18.26% and 20.94% based on the filtered SMI signals by soft and hard wavelet
threshold denoising, respectively; the experiment demonstrates the maximum deviation
of the reconstructed displacement is about 5% and 9%. Compared with hard and soft
wavelet threshold denoising, theoretical simulations and experimental results demonstrate
that the displacement of vibrations are well reconstructed based on the improved wavelet
threshold denoising.
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