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Abstract: Photon counting detector arrays are commonly used for deep space optical communication
receivers operating on the principle of intensity modulation/direct detection (IM/DD). In scenarios
where beam parameters can vary at the receiver due to scattering, it is important to estimate beam
parameters in order to minimize the probability of error. The use of array of detectors increases the
sensitivity of the receiver as compared to single photo-detector of the same size. In this paper, we
present the derivation of a maximum likelihood estimator (ML) for peak optical intensity, providing
both numerical and closed form expressions for the estimator. Performance of both forms of ML
estimator are compared using the mean squared error (MSE) criterion and Cramer–Rao Lower Bound
(CRLB) is also derived to assess the proposed estimator’s efficiency. This research contributed to
the advancement of estimation techniques and has practical implications for optimizing deep space
optical communication systems.

Keywords: photon counting detector array; scattering channel; Gaussian beam; maximum likelihood
estimator; mean square error

1. Introduction

An exponential increase in the number of devices is creating congestion in the radio
frequency (RF) spectrum [1]. This has prompted the exploitation of other regions of the
electro-magnetic (EM) spectrum for future wireless communication networks. In this sce-
nario, optical wireless communication (OWC), also known as Free-Space Optical (FSO)
communication, has gained a lot of attention exploiting unlicensed optical bands of the EM
spectrum [2–4]. Due to its high data rate capability, low installation cost, rapid deployment,
scalability, enhanced security, and notably wide bandwidth on the unregulated spectrum,
Free-Space Optical (FSO) communication stands as a favorable alternative to its RF coun-
terpart. Free-Space Optical (FSO) communication is the most promising technique for high
data rate transmission [5]. Usage of high power laser sources allows the implementation
of FSO communication systems which support large link distances, due to the smaller
divergence angle of the transmitted optical signal as compared to radio frequency systems.
FSO systems have emerged as an attractive means not only for terrestrial point-to-point
links [6] or as a supplement to fiber optics, but also for deep space and inter-satellite
communication [7] and other applications, including cellular back-hauls [8] and local area
network segment interconnects [9].

In deep space communications, photon counting detector arrays are widely used
due to their ability to detect even a single photon received [10,11]. In the case of pulse
position modulation (PPM), the time of arrival of each photon in a given time slot is very
important for the correct detection of an incoming signal. The sensitivity of the receiver can
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be enhanced by using a photon counting detector array instead of a single photon counting
detector of the same size. The authors of [12] have investigated that an array of photo-
detectors receiver minimizes the probability of error for a fixed Signal-to-Noise ratio (SNR)
and receiver size compared to a single large photo-detector as discussed. In [13], researchers
suggested the use of flexible curvature array detectors for wider field of view (FOV)
detection in astronomy. These curved detector arrays can reduce the complexity of optical
system and enhance the performance of detectors. There are several other advantages of
using photo-detector arrays over a single photo-detector receiver. Firstly, detector arrays
are more helpful during beam acquisition [10] and tracking process, as large array elements
ensure higher tracking accuracy. Secondly, the size of array is easily adoptable by adding
more photo-detectors according the requirement of the system. Finally, an individual
photo-detector in array can be serviced easily without changing the entire system.

Channel State Information (CSI) is an important parameter in every communication
system, which is required for optimum detection of transmitted signal in a communication
system. For a common scenario of a Gaussian beam profile as discussed in [14], beam
parameters like the beam’s peak intensity, beam radius and beam center location on a
detector array represent the CSI for the purpose of optical signal detection. A scattering
channel, such as optical propagation through fog or clouds, results in absorption and
scattering of the energy. This results in the attenuation of the beam peak intensity and the
spreading of the beam on the detector array. Moreover, optical wireless communication
requires line of sight (LOS) for communications [15] but, due to different phenomena,
misalignment occurs between transmitter and receiver. The values of the parameters like
beam position, beam intensity, and beam center location may be unknown on a detector
array [16]. It is evident that, for the optimal detection of a transmitted optical symbol,
these parameters are required to be estimated at the receiver end. The optical beam
position estimator has already been proposed, assuming that other parameters like beam
width and peak optical beam intensity are known [17]. Since practical detector arrays are
discrete in nature, the problem of beam position estimation has been studied for discrete
detector arrays.

In this paper, we are proposing an estimator for the peak signal intensity Io of a
Gaussian-shaped optical beam received over a scattering channel using array of detectors
at the receiver end. We assume that the received optical beam maintains its Gaussian
profile (or an approximately Gaussian profile) as the scattering and absorption merely
hamper the signal intensity. Even though scattering results in beam spreading, the detector
array is large enough to collect all the scattered energy. In Figure 1, the foot print of
Gaussian-shaped optical signal received by single cell photo-detector and detector array
are shown. The spacing between the detector array greater than the size of a photon is
ignored. It can be seen that the optical signal is Gaussian-shaped, with its maximum at the
center, and a gradual decrease as we move away from the center. Moreover, we derived
expression for CRLB, which serves as a lower bound for derived estimators. To the best of
the authors’ knowledge, optical beam intensity is being estimated for the first time using a
photo counting detector array.

The rest of the paper is organized as follows: the system model for an optical link is
outlined in Section 2, whereas the closed form of an ML estimator for the beam’s parameter
is derived in Section 3. In Section 4, the results are presented and discussed. The conclusion
is drawn in Section 5.
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Figure 1. Footprint of Gaussian beam observed at receiver. (a) Single photo-detector, and (b) array of
photo-detectors.

2. System Modeling

The received optical signal gives rise to the photo-electrons in each of the detector of
the array due to the photo-electric effect. Two very common modulation schemes, PPM [18]
and ON-OFF keying (OOK) [19], are used to modulate signal in FSO. The emission of these
photo-electrons during the signal pulse interval help us to detect transmitted symbol. These
photo-electrons are modeled by a non-homogeneous Poisson process [2]:

Po(Zm = zm) =
(
∧

m)
zm exp−∧m

zm!
(1)

where
∧

m =
∫ ∫

Am
λ(a, b, d)dadb is the beam intensity profile on the detector array. Assume

that we have an array of M cells, denoted by regions A1, A2, . . . , AM and each one has
a uniform area equal to A. During an interval T, the count in each cell is given by an
independent Poisson random variable z1, z2, . . . , zM. Noise photons are modeled by a
homogeneous Poisson process with a constant rate of λn. These noise photons are produced
by the background radiation and thermal effects of the detector. Thus, the total mean photon
count per cell are produced by both signal and noise given by:

∧
m

= λn A +
∫ ∫

Am
λ(a, b, d)dadb (2)

For a Gaussian beam, the received signal intensity at the detector array is given in [10]:

λ(a, b, d) = I0exp
[
−(a − α)2 − (b − β)2

2ρ2(d)

]
(3)

where, Io is the peak signal intensity, (αo, βo) are the beam center location on the detector
array, (a, b) are any point inside the region of the detector array, and ρ(d) is the beam radius
or spot size where [20]

ρ(d) = ρ2
o

√
1 +

(
λ(d)
πρ2

o

)2

(4)

Here, the factor ρo is the beam waist, λ is the wavelength of the optical signal, and d is
the link distance.

Detection of the Optical Signal

A common modulation technique used in FSO is pulse position modulation (PPM); a
symbol is sent by varying the position of the pulse during the symbol period, assuming
that transmitter and receiver are synchronized in time with each other. On the bases of a
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likelihood ratio test, receiver will make a decision for every sub interval, whether a pulse is
present or not. We assume two hypothesis [17].

H0: Signal beam is not present.

H1: Signal beam is present.

For H0, when photons are only generated through noise, the mean rate for each cell is
λn , so

Po(z1, z2, , . . . , z3) =
M

∏
m=1

P(0)
m (zm) (5)

and

Po(z1, z2, . . . , z3) =
M

∏
m=1

(λn A)zm exp−λn A

zm!
(6)

For H1, when photons are generated through signal and noise jointly, the mean rate is
given by Equation (2). Therefore, under H1:

p1(z1, z2, . . . , zM) =
M

∏
m=1

p(1)m (zm) (7)

p1(z1, z2, . . . , zM) =
M

∏
m=1

(
∧

m)
zm exp−∧m

zm!
(8)

Computing the likelihood ratio, we will obtain:

ζ(z1, z2, . . . , zM) =
p1(z1, z2, . . . , zM)

p0(z1, z2, . . . , zM)
(9)

Taking the natural log on both sides will give Equation (10):

ln ζ(z1, z2, . . . , zM) =
M

∑
m=1

zm ln

(
1 +

1
λn A

∫∫
Am

I0exp
−(a−α)2−(b−β)2

2ρ2(d)

)
−

M

∑
m=1

∫∫
Am

I0exp
−(a−α)2−(b−β)2

2ρ2(d) (10)

An accurate determination of log-likelihood ratio requires an optimal estimate of the
magnitude of peak intensity function Io, beam center location on the detector array (α, β),
beam width ρ(z), and noise λn. Previously, in [17], the beam center location on detector
array was estimated; now, in this paper, we will estimate Io, assuming that beam width
ρ(z) and noise λn are known and constant.

3. An Estimator for the Beam’s Parameter

In this section, we derive an estimator to estimate our beam parameter Io. As we
do not have any subjective knowledge about the channel, we can not assign any “prior
distribution”. We are assuming that our parameter is unknown but constant, and hence a
classical estimation approach has been preferred.

3.1. Maximum Likelihood Estimator

Taking tools from the classical estimation approach, we are using maximum likelihood
(ML) estimator for estimation of optical signal intensity Io. From the Poisson Point Process
(PPP), the likelihood function is given as [21]

P(z, Îo) =
(
∧

m)
∑M

i=1 zm exp−M
∧

m

∏M
m=1 zm!

(11)
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and the log-likelihood function is given as:

ln(P(z, Îo)) =
M

∑
i=1

Zi ln
(∧)

− M
(∧)

−
M

∑
i=1

(ln Zi!) (12)

where ∧
m

= λn A +
∫ ∫

Am
λ(a, b, d)dadb (13)

Putting the value of
∧

into Equation (12), we obtain the final analytical form expression,
which is given as

ln(P(z, Îo)) =
M

∑
i=1

Zi ln

[∫ ∫
A

Î0exp
−(a−α)2−(b−β)2

2ρ2(d) + λn

]
− M

[∫ ∫
A

Î0exp
−(a−α)2−(b−β)2

2ρ2(d) + λn

]
−

M

∑
i=1

ln Zi! (14)

Taking the derivative, we will obtain:

=
∑M

i=1 Zi

[∫ ∫
A exp −

(
(a − α)2 + (b − β)2

2ρ2(d)

)]
[∫ ∫

A I0exp −
(
(a − α)2 + (b − β)2

2ρ2(d)

)
+ λn

] − M
[∫ ∫

A
exp −

(
(a − α)2 + (b − β)2

2ρ2(d)

)]
− 0 (15)

To maximize, equate the above equation to zero:

0 =
∑M

i=1 Zi

[∫ ∫
A exp −

(
(a − α)2 + (b − β)2

2ρ2(d)

)]
[∫ ∫

A I0exp −
(
(a − α)2 + (b − β)2

2ρ2(d)

)
+ λn

] − M
[∫ ∫

A
exp −

(
(a − α)2 + (b − β)2

2ρ2(d)

)]
(16)

M =
∑M

i=1 Zi[∫ ∫
A I0exp −

(
(a − α)2 + (b − β)2

2ρ2(d)

)
+ λn

] (17)

simplifying the above equation for intensity Îo :

Îo =
∑M

i=1 Zi − Mλn

M
∫ ∫

A I0exp −
(
(a − α)2 + (b − β)2

2ρ2(d)

) (18)

Equation (18) gives the closed form of the maximum-likelihood estimator.

3.2. CRLB of the ML Estimator

Taking the second derivative of Equation (16), we will obtain:

∂2 p(z)
∂2(Io)

= 0 −
∑M

i=1 Zi

[∫ ∫
A exp −

(
(a − α)2 + (b − β)2

2ρ2

)]2

[∫ ∫
A I0exp −

(
(a − α)2 + (b − β)2

2ρ2

)
+ λn

]2 (19)

∂2 p(z)
∂2(Io)

= −
∑M

i=1 Zi

[∫ ∫
A exp −

(
(a − α)2 + (b − β)2

2ρ2

)]2

[∫ ∫
A I0exp −

(
(a − α)2 + (b − β)2

2ρ2

)
+ λn

]2 (20)
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Taking the expectation on both sides:

E
∂2 p(z)
∂2(Io)

= −E


[∫ ∫

A exp −
(
(a − α)2 + (b − β)2

2ρ2

)]2

∑M
i=1 Zi[∫ ∫

A I0exp −
(
(a − α)2 + (b − β)2

2ρ2

)
+ λn

]2

 (21)

as Zi follows the Poisson distribution, thus:

E
∂2 p(z)
∂2(Io)

= −


[∫ ∫

A exp −
(
(a − α)2 + (b − β)2

2ρ2

)]2

∗ M(
∧
)[∫ ∫

A I0exp −
(
(a − α)2 + (b − β)2

2ρ2

)
+ λn

]2

 (22)

where ∧
m

=
∫ ∫

Am
I0exp

[
−(a − α)2 − (b − β)2

2ρ2

]
dadb + λn (23)

Solving Equation (22), we will obtain following result:

E
∂2 p(z)
∂2(Io)

= −


M
[∫ ∫

A exp −
(
(a − α)2 + (b − β)2

2ρ2

)]2

[∫ ∫
A I0exp −

(
(a − α)2 + (b − β)2

2ρ2

)
+ λn

]
 (24)

Taking the negative reciprocal of Equation (24) to obtain the final expression for
CRLB gives:

CRLB =
1

−E
[

∂2 p(z)
∂2(Io)

] =

[∫ ∫
A I0exp −

(
(a − α)2 + (b − β)2

2ρ2

)
+ λn

]
M
[∫ ∫

A exp −
(
(a − α)2 + (b − β)2

2ρ2

)]2 (25)

4. Results

Figure 2 gives the estimated optical intensity Îo against the actual optical intensity.
This graph is plotted using Equation (18) for different values of noise λn. It is evident from
the equation and the plot that estimated optical intensity is inversely proportional to noise
λn. This is due to the fact that as the number of noise photons incident on the detector
increases, the efficiency for detecting the actual signal decreases.

The quantity of error in this detection is shown in Figure 3. This plot is generated for
numerical form, closed form and CRLB using Equations (14), (18) and (25), respectively.
The assumed parameters are: optical intensity Io = 50, beam width ρ = 1 and beam
center location on detector array (α, β) = (0, 0). It can be observed from the graph that
MSE increases as the number of noise photon increases. The MSE remains almost zero for
numerical and closed forms, until the average rate of received noise photons approaches
0.4; later, it grows gradually. For CRLB, it is evident from the graph that its performance
surpass both numerical and closed forms in terms of error. MSE is almost zero till 0.8 and,
even later, the graph for CRLB has less of a slope.

The results presented in Figures 2 and 3 can be compared with those of previous
studies [22,23] for marginal cases of our work. These comparisons show that there is a
good agreement between our results and those of previous studies.
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Figure 2. Estimated signal intensity Îo for different values of λ0 = 0, λ1 = 1, λ2 = 2.

Figure 3. Mean square error for Io = 50, ρ = 1, (α, β) = (0, 0).

5. Conclusions

In this paper, an estimator has been derived for a received Gaussian-shaped optical
signal’s intensity using photon counting detector arrays. Performance of the estimator
has been bench-marked using the mean squared error (MSE) criterion, and comparison is
performed between the numerical form, closed form and CRLB. It was observed that with
increasing noise, the MSE of the estimated signal increases. In the beginning, when the
photon count is less than 0.4 (average rate of received noise photons), the MSE remains zero,
and then it grows gradually with an increasing value of λn. The Cramer–Rao Lower Bound
is also derived; its comparison with numerical and closed forms show that it significantly
surpass them both in terms of performance.

For the scope of this research, it was assumed that transmitter and receiver are syn-
chronized in time, but in a real scenario, one has to synchronize the transmitter and
receiver to minimize delays. Thus, this problem can be extended by considering both time
synchronization as well as intensity estimation problems for future research.
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