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Abstract: Plasmonic structures based on stacked layers of metal and dielectric materials excel as
broadband absorbers because of the nonlinear relationship between the compound materials’ dis-
persion characteristics and the multilayered structure’s actual performance. In this work, radiation
absorption along the plasmonic absorber is studied. Broadband absorptance spectra play an im-
portant role in applications such as photovoltaics, detectors, modulators, and emitters. We propose
and analyze plasmonic stacked structures that exhibit high broadband absorption. For this purpose,
an inverse design approach has been implemented using a conventional genetic algorithm as a
global optimizer in conjunction with a pattern search as a local optimizer. The proposed strategy
found structures with absorption covering the visible spectrum, maintaining its performance for high
incident angles.

Keywords: broadband absorption; inverse design; plasmonic structures; genetic algorithm

1. Introduction

Broadband absorbers with wide-angle operations are intensively studied for their
importance in a myriad of applications. They generally are obtained using noble metals to
enhance light absorption by exploring plasmon excitation [1–4], thus allowing maximum
energy utilization. The resonant nature of plasmons can impose a restriction on the band-
width of absorption, and one way to overcome this limitation is the use of complex designs
such as metamaterial absorbers [3] or nanoparticles [4], resulting in structures that require
complex fabrication processes or have low fabrication error tolerance [4].

In this work, we investigate absorption using multiple metallic and dielectric stacked
films, which, in principle, can provide broadband absorption without requiring complex
designs based on resonator disks, cubes, or pyramids, thus allowing low fabrication
complexity for large-area absorbers. The changes in the light spectrum caused by the
phase shift of transmitted electromagnetic fields in metallic-dielectric interfaces can be
engineered in a proper way by using combinations of a set of interfaces. This phenomenon
has been widely studied, and it has been demonstrated by several structures for solar
energy harvesting and color filtering applications [5–13].

Arrays of silicon carbide micro pyramids have also exhibited absorption with respect
to the direction of propagation in the infrared regime [14]. This singular property finds
application in one-way infrared sources and passivecooling systems. Furthermore, most
of the broadband absorbers with high absorption are based on metamaterials, which
require surface patterning features, including gratings, typically fabricated by complex and
costly nanofabrication techniques such as electronbeam lithography. Consequently, they
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exhibit economical and scalable limitations [15]. Additionally, the absorption mechanism in
metamaterial-based absorbers depends on the electric and magnetic resonances produced
by resonators with complex geometries, resulting in a limited absorption bandwidth. To
increase broadband absorption, several resonators with different resonant frequencies can
be combined [15,16], and the complexity of their fabrication processes increases as the
number of resonators increases. On the other hand, we considered Fabry–Perot-based
cavities absorbers, composed of metal–insulator–metal (MIM) layers that can be used for
this purpose, and they can be easily fabricated in large areas by deposition of the materials
without patterning micro/nano structures.

In this work, we propose a novel stacked metallic-dielectric layered structure and opti-
mize it using a genetic algorithm (GA) in conjunction with a pattern search (PS), resulting
in a broadband absorbance for the visible spectrum. The analyzed multilayer stack is an
exciting example to demonstrate the proposed inverse design algorithm’s effectiveness
because it is a multi-objective problem with several variables, such as wavelengths, mate-
rials, layer thickness, incident angles, and polarization. The usefulness of inverse design
techniques for discovering nanophotonic devices for novel applications in situations where
the traditional intuition-based procedures fail has been demonstrated in [17–20].

Here, the geometrical parameters of the thin layers have been optimized to obtain
high absorption over a broadband interval of frequencies. The results show that the
absorption can be arbitrarily engineered for incident light allowing light manipulation with
applications for detection and sensing.

2. Design of the Absorbers

We considered the search space determined by an array of ten different bi-layer cells.
Each cell comprises a layer of silica and a layer of metal (nickel, gold, or silver), with a fixed
period of 100nm. The fraction of metal (ri) in each cell is a real number parameter to be
determined by the implemented search algorithm. In this scenario of such an infinite search
space, the chosen optimization method is a suitable technique since it is indifferent to the
initial guess. GA is well known for its good performance in multidimensional domains as
a global optimizer in electromagnetic design problems [21–26].

Resonant cavities of the Fabry–Perot (FP) type composed of metal–dielectric–metal
(MDM) have been widely studied. These structures were used to design narrowband
absorbers [26–28] and tunable optical filters [29,30]. For the development of these resonant
structures, it is necessary that the strict condition n = κ is obeyed, where n is the refractive
index of the dielectric and κ is the metal extinction coefficient. In our work, the goal is to
design multiple resonant cavities to develop a broadband absorber. The schematic of the
proposed absorber is shown in Figure 1. The optimization tools are used to find the ideal
thicknesses for maximum absorption.
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Figure 1. Schematic of the absorber, which has one tunable parameter (ri). An entire structure is
composed of 10 such planar cells.

The dielectric and metal refractive indexes were taken from [29,30], respectively. The
penetration depth of the electric field in the metal (δ) can be calculated as the inverse of
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the propagation constant (k). Using SPP dispersion ratio solutions on a dielectric metal
interface, the value of δ can be calculated as [31,32],

δ =
λ
√
|εm| − εd

2π|εm|
(1)

where λ is the free-space wavelength of the incident light, εm and εd are the absolute value
of permittivity for the metallic and dielectric layers, respectively. The εm module was
calculated using the relations:

ε = n2 = εreal + iεimag = (nreal + ik)2 (2)

εimag = 2nrealk (3)

εreal = nreal
2 − k2 (4)

|εm| =
√

εreal
2 + εimag

2 (5)

The behavior of the penetration depth of the field in the visible spectrum for the
three metals is shown in Figure 2. In all cases, the penetration depth decreases when the
wavelength increases. Silver and gold exhibit greater penetration depth than nickel in the
analyzed frequency spectrum.
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Figure 2. Penetration depth (δ) of the used metals.

The absorptance spectrum for each structure was obtained by numerical analysis
through a finiteelement method (FEM) approach using the commercial software COMSOL
Multiphysics [9,27]. The simulation software receives the geometric and material parame-
ters and returns the absorption, which feeds the GA loop. The average of the absorption
has been optimized considering normal incidence (θ = 0), and its value is obtained by

Aave(θ) =
1

λmax − λmin

λmax∫
λmin

A(λ, θ)dλ (6)

The flowchart of the simulation and the interaction between COMSOL and the GA
algorithm is shown in Figure 3.
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Figure 3. GA’s workflow.

As with any other GA algorithm, each iteration involves selecting parents to generate
the offspring, which would become the individuals for the next generation. For this
purpose, we used the roulette wheel selection. It means that the highestscoring individuals
(higher fitness) have more chances of being selected for reproduction. The two selected
parents’ genes were combined for each new individual in a single uniformly distributed
random point crossover.

The probability of crossover is defined as the probability that crossover will occur;
if it does not, the new individual is an identical copy of one of the parents. Each gene of
each new individual is then subjected to a probability of mutation, where that given gene is
changed randomly in the full range of possible states for that particular position. After the
new generation is created, these individuals are simulated and have their fitness evaluated.
They are then ranked with the previous generation. The best individuals of this rank are
kept for parenting in the next generation.

Since we considered a large number of individuals (50) per generation to increase
the probability of obtaining a good number of possible candidates with a high absorp-
tion during the optimization process, we adopted the following stop criteria: maximum
number of generations = 100 or number of generations without changes in the average
absorption = 15. Figure 4 shows the evolution of the average absorption of the best individ-
ual as a function of the number of generations when assuming Ag as metallic layers. For
this particular case, the stop criterion was the number of generations without changes, and
the optimization stopped at generation number 60. Similar behavior has been observed for
the other two metals.
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3. Results and Discussion

Figure 5 shows the absorption behavior of the structure composed of SiO2 and metal
(Ni, Au, and Ag) for different angles of incidence, downwards, after optimization using GA.
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One can observe in Figure 5a left an absorption above 80% that decreases with the
wavelength increasing up to half of the initial value to approximately 40%. Similar behav-
iors are seen in Figure 5b,c for Au and Ag, respectively. When we analyze the absorption,
the structures exhibit the behavior of a broadband absorber with values above 80% in
both cases.

It can also observe the normalized H-field distribution inside the optimized stack
thicknesses for all the simulated wavelengths in Figure 6.
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Figure 6. Normalized H-field distribution inside the optimized multilayered stack as a function of
the wavelength for downward incidence (a) nickel, (b) gold, and (c) silver.

According to Table 1, which shows the thickness of the metals in each pair, and
Figure 7, it is possible to observe that for Ag and Au, the thicknesses of the metals are
much smaller than the penetration depth, as seen in Figure 2. This fact explains the high
absorption, in normal incidence, in the structures composed of Au or Ag; the field can
penetrate all pairs except forpair number 10, as seen in Figures 6b and 6c, respectively.
For Ni (see Figure 6a), the field can only penetrate up to pair number 3; for all other pairs
(4–10), the thickness of the metal is much greater than Ni’s penetration depth, and the field
cannot be absorbed in these pairs.

Table 1. Optimized values of metal thickness in each metal/SiO2.

Metal/Pair 1 2 3 4 5 6 7 8 9 10

dNi (nm) 5.0 5.5 8.9 26.8 25.9 83.7 50.7 32.2 60.8 90.0

dAu (nm) 5.2 5.4 5.8 6.0 6.8 7.9 8.6 9.8 11.8 90.0

dAg (nm) 5.2 6.5 6.0 7.3 7.3 8.4 9.1 14.1 12.3 89.8
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The average absorption values and the standard error deviation, as a function of the
incident angle and metallic materials, are shown in Figure 8. Values of average absorption
higher than 88% can be obtained.
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metallic materials.

The proposed absorbers in this work exhibit similar average values compared with
previously published works [32–36] with the advantage of being a lithography-free fabrica-
tion process. In [32], a plasmonic metamaterial absorber composed of nanocomposite of
gold and silica percolated over a flexible polymer film exhibited almost perfect absorption
at visible frequencies, while in [33], a metamaterial composed of nanopillars of Ni over a Ni
substrate attained 96% in the interval of 400nm to 760nm. In [34], an all metallic absorber
was presented. It is composed of Au nanoparticles with 97% of absorption and covers the
wavelength interval from 320nm to 650nm. In [35], a metasurface absorber on a flexible
film was proposed using a simple fabrication process. It consists of a polyimide nanocone
substrate coated with gold and tungsten layers, exhibiting over 96% optical absorption
in the visible range. In [36], an absorber consisting of two layers of tungsten resonators
on a silicon dioxide substrate coated with additional SiO2 materials exhibiting an average
absorption of 92% from 400 nm to 2400 nm with stable oblique incident angles up to 45◦

was reported. All these absorbers need complex and expensive fabrication processes, which
are unnecessary in the proposed stacked multilayer absorber.

4. Conclusions

In this work, we demonstrated how to obtain stacked layered metallic-dielectric struc-
tures that exhibit high absorption using an automated design based on a genetic algorithm.
The proposed device was numerically analyzed by the FEM and demonstrated an average
absorption above 88% for the visible band. The proposed lossy stack of materials can
achieve near-unity absorption within a broadband interval of frequencies. The stacked thin
films presented in this work are free from complex surface patterns and can be fabricated
over large areas using conventional vapor deposition or electrochemical methods. The
proposed broadband absorber could enhance the optical performance for applications
of infrared thermal emitters, imaging and photodetectors, radiative cooling, and solar
energy conversion.
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